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Chapter 1

Introduction

Summary This is a primer on auctions. It is intended to serve as a guide
to auctions for the practitioner. This chapter explains what distinguishes
auctions from other market transactions. It provides a brief summary of
what is essential or helpful for the practitioner.

1.1 Goals of this Primer

Auctions are an increasingly common share of all market transactions. They
take a great many forms. Often they greatly improve market liquidity, but
often, in contrast, they totally fail to work. Perhaps more than half of all
auctions result in some or all of what is being put for auction remaining
unsold, and even when this does not occur, the transaction prices can be
absurdly low or high, and far from equilibrium levels. This book explores
reasons why auctions work or fail. It explains how auction design affects
bidding decisions and how bidding decisions affect the outcome, sometimes
quite dramatically.

Auctions are highly structured market transactions primarily used in thin
markets (markets with few participants and infrequent transactions). In
such markets, the standard supply-and-demand models of competitive mar-
ket forces usually cannot be relied on to explain the outcomes, because in

11



12 CHAPTER 1. INTRODUCTION

most auctions just a few bidders can have a large influence on the outcome.
An auction is perhaps better characterized as a bargaining process. More-
over, in auctions, unlike most other markets, offers and counteroffers are
typically made within a structure defined by a set of rigid and comprehen-
sive rules. This book provides a fairly complete range of auction structures
and discusses how they can affect auction outcomes.

This book is intended to serve both as an introductory text on auctions as
well as a guide for practitioners, that is, those interested in managing or bid-
ding in auctions. Auctions are highly structured negotiations with a defined
set of rules for offers, counteroffers, price determination, and allocations.
These rigid structures mean that auctions can be analyzed by mathematical
models more accurately and completely than can most other types of market
transactions.

This book provides a guide for modeling, analyzing, and predicting the out-
comes of auctions. To be useful and effective, such a guide must cover some
essential elements of auction theory. In practice, auction theory will rarely
provide an exact and prescriptive model that can be applied directly. On the
other hand, auction theory does provide both insights and specific results
that are of direct value to the practitioner.

While a primer or practitioner’s guide would ideally provide a complete check-
list for what to do to design, set up, and manage an auction, or for bidders
to decide how to bid, that scope is too broad to be practical. Rather, the
focus here is on principles, tools, and examples that can be used to ana-
lyze auctions. This first requires some way to categorize different types of
auctions. In this categorization, I also explain how the auction design and
strategy should depend on the type of auction. Second, I explain the main re-
sults from game theory and the theory of auctions that can provide practical
frameworks for analyzing auctions and bid strategy. Third, I review auction
experience, mainly from actual auctions, but also from experiments. This
part of the book illustrates how auction theory can be applied to auction
design and strategy decisions.

Because of the increased use of auctions in new settings, auctions have be-
come a more common subject of economic research and writing. Because
this primer is intended as a guide for someone interested in designing an auc-
tion and managing it or for someone having to bid, its review of research on
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game theory and auction theory will stress the linkage between theory and
application. Some game theory is crucial for the principles of sound auction
design and for properly assessing bidding strategy.

This book largely avoids trying to provide formulaic and specific task plans
or checklists, because most auction design and bid strategy problems are too
complex to lend themselves to exact formulas. However, one of the main
points of this book is to show how to apply game-theoretic modeling tools
to practical auction design and strategy decisions. Practical difficulties are
explained in some detail. Reality never exactly fits any theoretical model,
but very simple theoretical models can still be very useful.

Explanations of how auction strategy and auction design can matter in one
specific case may have only limited applicability to seemingly very similar
specific cases. Similarly, the main results of auction theory may have only
small direct practical value. What is often most useful are simple mathe-
matical models and a few basic principles for developing them, as well as
guidelines to help identify limitations of such models. Simulations, in which
computer algorithms substitute for bidders, and scaled-down experiments, in
which human subjects play the role of bidders in repeated trials, can also be
useful tools for assessing auction design or bid strategy plans. Much of this
book’s exposition is devoted to explaining how to develop simple and useful
models of auctions.

One additional objective in this book is to explain how both auction design
and bid strategy can have a significant effect on prices and allocations. Auc-
tions are a form of imperfectly competitive markets, in which both sides have
limited information. More specifically, auction design can have a significant
effect on revenues in a forward auction, that is, an auction to sell one or more
lots, and on costs in a reverse, or procurement, auction. I provide many ex-
amples in which identical items have sold for significantly different prices in
the same auction and at the same time. An analysis of how the auction design
affects bidder incentives can usually go a long way in explaining such price
anomalies. Price differences are even more common when identical objects
are auctioned one at a time and in other types of sequential transactions.

I start with some basic exposition of game theory and with a few of the
main results from auction theory. To be useful, a model of an auction must
be consistent and must quantitatively represent the incentives and decision-
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making of the bidders. Mostly, this assumes rational bidders. However,
behavioral and cognitive limitations of bidders are discussed.

This primer should not be considered as a comprehensive compendium of
modern auction theory. Many topics are omitted - such as two-sided auctions
or econometric analysis of auctions1 - and there is relatively limited discussion
of some more technical topics, such as mechanism design. The intent here is
to provide an introduction and a starting point for the reader to either learn
something about auctions or interested in auction design or strategy.2 This
primer still should also be of significant interest to researchers. There are
many significant practical issues in auction design and strategy that have yet
to attract significant attention from researchers. Some of the material in this
book is new, largely motivated by a need to extend and expand the existing
literature in order to address some significant auction design issues that have
arisen in recent auctions.

1.2 What are Auctions?

This section briefly describes what auctions are, and the types of auctions
studied in this book. I also provide a brief introduction to why auctions are
used in preference to other market mechanisms.

To start, it is essential to say what constitutes an auction, or at least what
will be included in this book. What distinguishes an auction from other types
of transactions is not always clearly specified. I will use the term primarily to
describe all one-to-many bidding processes: forward auctions, with one seller
and many buyers, or reverse auctions, with one buyer and many sellers. At
times, the term auction is extended to situations in which there are a few
buyers or a few sellers, i.e., few-to-many transactions. But in these cases,
the few will be assumed to be acting in concert in organizing the auction.
When there are two sellers, acting totally independently, there are really two
independent auctions. In contrast, when the two sellers agree on schedules,
starting prices, or other elements of the bidding process, then the two sellers
are really acting as a single entity in determining the rules of the auction.

1See [58].
2See [46], [54] for more theoretically advanced treatments and also [41].
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The term auction will be restricted here to what are often called sealed-bid
tenders. More specifically, one-shot bidding processes, both price-only and
multi-attribute ones, are referred to here as sealed-bid auctions. Most of the
focus is on price-only or other forms of single-dimensional bidding.

More formally, an auction is defined by:

1. Bidding format rules, which govern the form of bids. Bids can be price
only, multi-attribute, price and quantity, or quantity only.

2. Bidding process rules, including (a) closing rules, which determine the
timing of the auction, (b) specification of the information provided
to bidders during the auction, (c) rules about the processes for bid
improvements or counter-bids, and (d) rules specifying the auction-
closing conditions.

3. Price and allocation rules that determine final prices and the amounts
won by each winning bidder. Auctions can be for single items or mul-
tiple items. Traditionally, multiple-lot auctions have been conducted
as separate auctions, sometimes sequentially and sometimes simultane-
ously. Modern auction designs have been developed to facilitate bidder
arbitrage for similar items or to allow bidders to submit offers for dif-
ferent packages of items.

An auction is one type of market mechanisms. More specifically, an auction
is an allocation mechanism that mostly uses price criteria for determining
allocations – that is, which parties win which objects or contracts – and the
prices paid. Auctions are more centralized than most other market mech-
anisms. In most markets, other than exchanges, buy and/or sell offers are
not all made in one place or submitted through an auctioneer. An auction,
however, is not the only type of centralized market mechanism.

An auction is also a price discovery mechanism. Auctions provide a means for
the entity conducting the auction – the auctioneer, or the auction originator,
to collect information from bidders so as to determine prices and allocations.
The fact that the information bidders provide can affect their prices means
that it can also affect their incentives, as is explained in more detail below.
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An exchange (such as a stock, commodity, or financial exchange) is at times
considered to be a form of auction. Exchanges differ from the auctions con-
sidered here in three respects. First, exchanges involve two-sided or many-
to-many transactions. Second, transactions on an exchange normally run
continuously, whereas auctions are periodic or episodic. Third, exchanges
usually have an intermediary setting the price who is neither a net buyer nor
a net seller on average. The intermediary (or specialist or trading desk) will
have a book of buy and sell orders and adjust prices up or down depending
on the relative volumes of such orders. In contrast, in auctions the originator
will usually have an interest in getting the best price (i.e., the highest price
in a forward auction, and the lowest price in a reverse auction). Auctions
can, however, have independent entities to manage the bidding process.3

1.2.1 Why Auctions?

Auctions are not used for most transactions. The question arises why auc-
tions are used at all. When the transaction frequency is high, transactions
occur at physical or virtual stores, or in exchanges. When it is low, but the
volume or monetary value is high, then an auction is most useful. When the
transaction frequency is low, it will not be worthwhile to incur the cost of
maintaining a trading site, or store. While the organization of an auction
may involve some costs, when the trading events are infrequent, it can be
cost effective for auctions to be used.

When the volume or the value is also low, then bilateral negotiations and
the solicitation of offers through requests for offers (RFOs) or requests for
proposals (RFPs) are often most efficient. When the transaction frequency
is low, the cost of maintaining a store or exchange is high relative to the
transaction value. When the transaction value is low, the cost of organizing
and managing an auction can be prohibitive. Thus, auctions are best for
periodic or episodic high-volume and high-value transactions.

3Sometimes, an auction originator will engage an independent third party to serve as
an auction manager. However, the auction manager usually assumes an operational role.
In contrast, the exchange specialist, or trading desk, will serve to adjust prices to balance
supply and demand offers, and its operations are generally housed by an exchange that
handles hundreds or thousands of types of assets.
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1.2.2 Types of Auctions

Auctions have been around for centuries – at least since the time of Herodotus
in 500 BCE. Auctions can take many different forms and can involve many
types of goods and services. Two main ways in which auctions differ are
in the auction format, or rules structure, and the frequency and volume of
the transactions. Until recently, most auctions were single-object auctions or
sequences of such auctions.

Auction Formats

Traditionally, most price-only auctions have used some variant on one of four
basic forms:

1. English, ascending price

2. Dutch, descending price

3. first-price sealed bid

4. second-price sealed bid.

Some auctions allow bids to include multiple components or attributes, and
not just price. In multi-attribute bidding processes explicit weights or sub-
jective evaluations are used to decide winners.

The most common form of open auction is still open, oral-outcry English
auctions. In a standard English auction, the auction manager or auctioneer
announces prices – an increasing sequence of prices in a forward auction,
and a decreasing sequence in procurement auctions – and bidders indicate
whether they are willing to accept the announced price. Bidders need not
indicate a willingness to accept each announced price in order to remain
eligible, and once one bidder indicates acceptance of the most recent price,
the auctioneer will go to the next increment or decrement. Bidders can often,
if they desire, shout out (inject) jump bids. The auction ends when no one
is willing to improve on the most recently announced price.
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The most common form of online auction is still the English auction, or
simple variants thereof. Instead of an auctioneer calling out prices, though,
the host sets a starting price, and bidders can submit bids at any time during
an open bidding window. Each new bid is posted, and the auction host will
raise the minimum for subsequent bids, similarly to the manner in which a
live auctioneer raises price in an English auction.

Descending-price forward auctions have been used since Babylonian times.4

The name “Dutch auction” to describe these types of auctions probably
arose from their use in selling tulips in the Netherlands, which dates back
at least to the 17th century.5 In a (forward) Dutch auction, the auctioneer
starts with a high price, and gradually lowers the price until a bidder is
willing to accept that price. Notice that for a reverse auction, that is, an
auction in which bidders are sellers and the auctioneer is a buyer, a declining-
price auction would elicit bids from all bidders at a high initial price. So,
strategically, a declining-price forward (Dutch) auction, that is, an auction
in which bidders are buyers, is strategically quite different from a declining-
price reverse auction. Here, the term “Dutch” is reserved for declining-price
forward auctions. The bid strategy is clearly different in a Dutch and an
English auction. In a Dutch auction, a bidder has to guess when to bid. In
an English auction, there is no such guessing. A bidder can stop when his or
her value is reached.

Both first-price and second-price sealed-bid auctions, often called sealed-bid
tender auctions, award to the high bidder the object for sale in a forward
auction, and to the low bidder the contract to supply a product or service in
a sealed-bid reverse auction. In a first-price auction, the winning bidder pays
the bid amount in a forward auction, or is paid the bid amount in a reverse
auction. In a second-price auction, the winning bidder pays, or is paid, the
amount offered by the best losing bid.

Transaction Frequency and Volume

Auctions also differ in how many units are transacted and how often. An
auction for a single object is a one-time event, and the strategic considera-

4See [76].
5See [26] and [70].
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tions are quite different than they are in multi-object auctions and repeated
auctions. The theory and experience for one-shot auctions is a useful ref-
erence point for the subsequent analysis of multi-object auctions. Auctions
can be one-time, or infrequent, events for a large number of objects. The
major spectrum auctions in the US, Europe, and elsewhere are examples of
such auctions. Such auctions have a matching role in determining which ob-
jects go to which bidders, as well as the usual allocation role in determining
winners and losers. Bidders can also interact in the auction to try to more
efficiently sort out who wins what, and at what prices. It is important that
the auction rules allow efficient arbitrage, as otherwise both the auctioneer
and the bidders can lose.

Auctions can also be recurring, such as the monthly capacity auctions con-
ducted by many electricity transmission operators to ensure adequate gen-
eration availability. Many commodities – dairy products, wine, etc. – are
auctioned periodically. Mostly the same bidders compete in each such auc-
tion, and for mostly the same types of products. These periodic auctions are
commonly multiple-unit, and often multi-object. As such, they have many
of the same strategic features as one-shot, multi-object auctions. However,
the repetition allows bidders to communicate and interact over time across
auctions. This can further affect bidding behavior and the outcomes of the
auctions.

Auctions can be categorized in other ways. Forward auctions – that is,
auctions in which there is one seller and several buyers – are perhaps the
most common. But reverse auctions, in which there is one buyer and several
sellers, are also fairly common. The modeling and analysis of forward and
reverse auctions tend to be very similar.

1.3 A New Age of Auctions

Auctions have changed. They come in a great many new forms. A recent
search at the US Patent Office website produced over 2,000 hits for patents
issued that include the term “auction.” While not every patent is for a
different auction design, the number of innovations is still large. There are
two main reasons for these changes, both in some sense owing something
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to John von Neumann (1903–1957), a mathematician who made pioneering
contributions to both computer science and game theory.

One reason is the developments in game theory, a field that barely existed
until the 1960s. Game theory is crucial, or should be crucial, to auction
design. Game theory provides mathematical tools and techniques to analyze
alternative auction designs. While game theory, and game theorists, are not
always directly involved in auction design, their role has increased over the
past ten to fifteen years, both in government agencies (such as the US Trea-
sury, other national treasuries, and other governmental agencies in a number
of sectors including telecommunications, energy, and natural resources) and
in the private sector (where firms such as Google, Microsoft, Yahoo, HP, and
IBM have hired leading game theorists to help improve their pricing tools:
remember that an auction is a price discovery mechanism).

The other area in which von Neumann made pioneering contributions was
in computer science. Without computers and the Internet, the use of auc-
tions might still be where it was centuries ago. To say that auctions are
a price discovery mechanism means bids provide the auction originator in-
formation about valuations, which are then used to determine prices and
allocations. However, bidders will have incentives to withhold information
if the information will affect prices paid. Iterative bidding, and other com-
petitive processes, can mitigate bidders’ incentives for strategic withholding.
These iterative and competitive processes require efficient data exchange and
processing facilities – facilities that would not otherwise be available without
computers. Moreover, the use of the Internet greatly expands the pool of
potential auction participants and reduces participation costs. These factors
tend to improve auction results, and make auctions feasible for transactions
that could never be realized absent computers and electronic communication
networks.

1.3.1 New Types of Auctions

Over the past twenty years there has been a proliferation of different auction
types. This section does not catalogue all of them. Instead, it briefly explains
a few of the ways in which auction design has changed, due in part to changes
in electronic communication technology, and in part to developments in game



1.3. A NEW AGE OF AUCTIONS 21

theory. The former allows more information to be transmitted and processed
more quickly. The latter provides better incentives, and allows auctions to
be introduced in areas where they may never have been possible before.

There have been significant advances in multiple-object auctions. A large
class of simultaneous auctions for buying or selling a number of substitutes
or complements at one time includes the simultaneous multiple round (SMR)
auction, the simultaneous ascending auction (SAA), the simultaneous de-
scending clock auction (SDCA),6 stage clock and package bid auctions, the
Anglo-Dutch hybrid auction, simultaneous auctions with intra-round bid-
ding, and many other designs. They have been introduced building off devel-
opments in game theory for auction design on the one hand, and in computer
and communication technology on the other. In addition, a few types of
package bidding have been introduced, including the SMR auction with hier-
archical package bidding used for the $19-billion auction of 700 MHz licenses
conducted by the US Federal Communications Commission in 2008.

Even simple auction designs have changed. As noted above, online auctions
typically employ a variant of the standard English auction in which a bidding
window is open for a fixed duration, and bidders can enter offers as long as
their offer exceeds the previous high bid by a minimum amount and the
bidding window is open. This type of auction has been referred to as a
“Yankee” auction. It has many variants, including one that extends the
bidding window any time a new bid is entered. E-Bay has a “buy-it-now”
feature that allows a bidder to enter a bid and close the auction.

Computers make possible package, or combinatorial, bidding. A package
bid is an all-or-nothing bid on a combination of items. Package bidding is
intended to address the exposure problem: a bidder having a value for a
combination or package of items, but having a zero or sufficiently low value
for the individual items, will be reluctant to submit bids on the individual
items and risk winning them, unless that bidder is fairly certain it will win
all the items in the package. Package bidding eliminates this exposure risk.
However, package bidding adds a great deal of computational complexity
because of the large number of possible combinations. When there are N

6The SMR and SAA auctions and the related SDCA allow for simultaneous auctioning
in a sequence of rounds of multiple lots. Bidders topped in one round can respond in the
next. Details are explained in Chapter 9 below.
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items available, there will be 2N possible subsets.7 This number will exceed
1, 000 with only 10 items available.

Many new designs address the form of bids and the way bids are submitted
to the originator.

1.3.2 Auctions Replacing Regulation

One area in which auctions have become an increasingly accepted transaction
mechanism is in regulation, especially in the energy and telecommunications
sectors. New Zealand and the US were the first countries to introduce auc-
tions for allocating spectrum rights.8 Prior to auctions being used for allo-
cating spectrum rights, a variety of allocation rules – including first-come,
first-served; lotteries; and comparative hearings – were introduced. Auctions
have now been introduced for allocating spectrum rights in dozens of coun-
tries. Spectrum auctions have perhaps been the largest auctions in history;
the three largest spectrum auctions to date alone generated nearly $100 bil-
lion in revenues – nearly $50 billion for the German 3G auction, nearly $35
billion for the UK 3G auction, and almost $19 billion for the US 700 MHz
auction.

Not all spectrum auctions have been successful. The success of the New
Zealand auctions is debatable in view of their evidently low revenues and
inefficiencies9. The US FCC’s Auction #5 resulted in most of the largest
bidders declaring bankruptcy shortly after the auction. These bidders tried
to renegotiate lower prices, and a number of the large winners were successful
in doing so. It took almost 10 years and a Supreme Court decision to resolve
the conflict between bankruptcy law and the auction rules. Despite a few such
problems, auctions appear to be a tool gaining increasing acceptance from
regulatory agencies. To date the US Federal Communications Commission
has conducted over 50 auctions, the UK, Australian, and Canadian telecom-
munication regulatory authorities have conducted over half a dozen auctions
each, and telecommunication regulatory agencies in many other countries
have used auctions for selling spectrum rights. Auctions therefore appear to

7This includes the empty set and the set itself.
8See [56] and [63].
9See Chapter 4 and [54] for a discussion.
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be a permanent part of the regulatory process for managing spectrum in a
great many countries. Spectrum auctions will be discussed in more detail in
Chapter 2.

Auctions are also increasingly common in the energy sector for electricity
and gas. Simultaneous descending clock auctions are or have been used for
energy procurement in a number of US states, starting with New Jersey and
now including Montana, Illinois, Ohio, and California, and also in Spain and
Italy. Other simultaneous auction formats are or have been used for selling
entitlements for electricity in Belgium, France, Germany, Alberta (Canada),
and Texas. Sealed-bid auctions are being used for energy procurement in
Maryland, Delaware, Virginia, and the District of Columbia. Auctions are
also being used for selling transmission or interconnector rights in the US and
Europe, and for capacity transactions in much of the US. In the gas sector,
various versions of the simultaneous multiple-round clock auction have been
conducted in Austria, Germany, and Hungary for capacity rights.

Not all the experience has been positive. California has had particularly trou-
bling experiences – in 1993, and then during the summer and Fall of 2000.10

The failure of California Power Exchange, a set of daily and longer-term
auctions, is a well-documented example of how not to run an auction. The
California QF auctions described below resulted in negative energy prices.
And some Texas capacity entitlement auctions resulted in difficult-to-explain
50% or greater price differences for identical products in the same auction.
Both of these auctions are described in more detail in Chapters 9 and 10.

In both the energy and telecommunication sectors, participation of quali-
fied bidders is essential for a successful auction. Bidders don’t always show
up in sufficient numbers to make auctions competitive. Some examples in
telecommunications include the first US auctions for 700 MHz spectrum and
wireless communications services in 2000 and in 1997. In the latter case, the
forecast revenues were about 100 times the actual auction revenues. In par-
ticular, the Congressional Budget Office had forecast a value of $1.8 billion,
but the auction raised only $13.6 million.11 Similarly, the Ohio–First Energy
procurement auctions have failed over several years to attract adequate com-
petition to allow First Energy to purchase any of its default service resources

10See [38] for a discussion, and [33].
11See http://energycommerce.house.gov/comdem/legviews/mvbrspec.htm.
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through the auction.

1.3.3 Auctions in the Private Sector

There may be more auction activity in the private sector than in the public
sector, but much less information is publicly available about private sector
auctions. Information about wholesale or business-to-business (B2B) trans-
actions tends to be confidential. There has been an increasing reliance on
auctions for both buying and selling in B2B dealings. Auctions are being used
for everything from selling agricultural commodities to procuring professional
services. A significant number of firms have arisen in the B2B sector, and
many have folded or merged. Among the notable firms still around are Per-
fect Commerce (formerly Commerce One and Perfect), Ariba–Procuri (which
includes what were formerly called Ariba, Procuri and Trading Dynamics),
and Dovebid. Many of these online B2B auction firms have migrated into
supply chain management, and many others have focused on one or two spe-
cific supply chains or “verticals,” such as Hambricht for IPOs, ChemConnect
for chemicals, and Nexant for energy.

For retail auctions, consumer-to-consumer (C2C) and business-to-consumer
(B2C) E-Bay and Yahoo have the largest market shares. What is important
for consumer auctions is participation, and so there has been some tendency
toward increasing concentration on the consumer side. However, specialized
sites such as those for travel and entertainment have been able to maintain
some market presence. Consumer auctions tend to be less rigidly structured,
be less promoted, and have lower participation than do B2B or government-
run auctions. For this reason, less of what follows applies to these consumer
auctions. What has also been notable is that many of the online auction
operations have encountered difficulties. There are a few exceptions, most
notably the online auction site E-Bay and Google and Yahoo, which rely
heavily on an auction pricing mechanism to price-position on their search
pages.
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1.4 Why Auction Design (and Management)

Matters

What seems to be clear is that no one auction approach works all the time.
Paul Klemperer states that auction design is a matter of the “horse for the
courses” and not “one size fit all.”12 There are several reasons auction design
matters.

First, not all auctions work equally well. There are many things that can go
wrong. In some cases the possibility of misallocations caused by an auction
design that puts bidders in a position where they are prone to make miscal-
culations and bad guesses tends not to matter as much when there are many
competitors.

Second, in some cases, most notably in common value or affiliated value
auctions, vigorous competition can result in overbidding and ex post perfor-
mance problems.13

Third, in multiple-lot auctions, misallocations can occur for several reasons.
A great deal of auction design work has been devoted to multi-product and
multi-unit auctions.14 One of the main concerns in multiple-object auctions
is the exposure problem, described above, where a bidder may have a low
value for the individual items in a package on which it places a high value.
Package bidding and simultaneous auction designs, including the SMR and
the SMR with both hierarchical and nonhierarchical package bidding, were
designed in part to address this concern. Auctions without package bidding
are more likely to leave bidders unable to obtain efficient combinations of
lots.

Package bidding raised other concerns, one of which is the threshold problem.
When two (or more) bidders are seeking individual items for which a third
bidder has placed a package bid, then the two bidders may need to find a
way to coordinate their bids.

For example, suppose there are three bidders, B1, B2, and B3, and two items,

12[41], p. 191.
13See [17] for a discussion of oil lease bids with common values.
14See [64] for a discussion.
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I and II. Suppose B1 wants item I, B2 wants II, and B3 wants both. If there
is not much competition for I or II alone, neither B1 nor B2 might have to
offer very much to be the high bidder on those items. Now, suppose that B3
has placed a bid of 8, which is posted, for both items together, and that B1
puts a value of 6 on item I and B2 puts a value of 6 on item II. If, absent B3,
these two items would sell for 2 each, then B2 and B3 would each need to at
least double their bids to win. Neither may want to do so without knowing
how much the other might want to offer. This can result in B3 winning, when
B1 and B2 should. The reverse can happen when B3 has the high combined
value, but cannot enter a package bid. This possibility has been a topic of
active research,15 and recently the UK government has introduced versions
of core-selecting package auctions to address it. Chapters 9 and 10 presents
some of the theory of SMR and package auctions. Chapters 9 and 10 also
present experience with multiple-object auctions in the telecommunications
and energy sectors. Package bidding also can add significant complexity. The
number of possible combinations can get unmanageably large very fast.

One additional reason auction design matters is that some auctions are better
at solving coordination problems for bidders.

On the flip side, there are instances in which it is possible for bidders to co-
ordinate so as to divide the market and limit competition.16 As a response,
regulatory authorities responsible for setting auction rules have limited the
information reported to bidders during an auction. The better bidders are
able to communicate, the easier is coordination, and at times such coordina-
tion can serve primarily to reduce competition in an auction. So the form
of bids and the information reported to bidders can affect competition in an
auction.

As much as design matters, how well an auction does also depends a great
deal on implementation. It is important to emphasize that a primary req-
uisite for any auction is well-prepared bidders. The rules, procedures, and
management must facilitate bidder participation and not deter it. Too often
the reverse is true, often because the originator wants to guarantee the best
outcome from his or her perspective. By optimizing the bidding rules for the

15See [54].
16[18] document one case discussed below, and [15] explain the theoretical risks of open

bidding. Also, see [50].
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originator, participation is discouraged, which paradoxically results in bad
outcomes for the originator. And a competitive auction with less than ideal
rules can often result in more efficient outcomes than will a good auction
design with low participation. What is required is to enhance prospects for
participation. What measures need to be taken so that participation does
not sacrifice post-auction performance is discussed in Chapter 11.

However, auctions with multiple units of the same object do not always
result in uniform prices. One of the great successes in auction design is
the development of efficient auction designs for multi-unit auctions, which
are easy to run. Clock auctions are quite efficient, and fast, for multi-unit,
single-product auctions. Clock auctions and SMR auctions also work quite
well when the products are substitutes and there are no large bidders. As has
been noted elsewhere,17 however, clock and SMR auctions can be vulnerable
to collusive or coordinated bidding. Klemperer designed the Anglo-Dutch
hybrid to try to strike a balance between the benefits of an open SMR auction
and the risks of collusion.

Many new auction designs involve improvements to the bid submission pro-
cess or to accommodate online bidding. The time restrictions imposed in
many online auctions, specifying a narrow bidding window, create incen-
tives for bidders to wait until the last possible instant to bid – an activity
called sniping. The clock auction eliminates this incentive, as the auction
manager, rather than the bidder, raises the price. However, for reasons ex-
plained below, clock auctions are less practical for many consumer and B2B
transactions. This has spawned a great deal of effort to adjust for sniping.

1.5 Outline of This Primer

This remainder of the primer is divided into three parts: (1) theory, (2)
auction practice – that is, design, organization, and management, and (3)
experience.

The theory part starts with a very brief introduction to essential concepts
from game theory. The game theory framework is an essential tool for an-

17See [41] or [18] for a discussion.
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alyzing auctions. I then explain a number of the more significant results
from the auction theory literature, including the revenue, or payoff, equiva-
lence theorem, the winner’s curse, optimal auction design, and the theory of
simultaneous and sequential auctions. The revenue equivalence theorem is
worthy of specific mention as a key result that has widespread applicability.
The analysis of simultaneous and sequential auctions is of great practical
concern, as an auction originator with multiple objects, or multiple units, to
auction will need to decide on whether to run one auction or more, and if
more, how many.

The auction practice chapters address measures that can be taken to mit-
igate bidder collusion and to enhance competition, provisions for informa-
tion disclosure, volume adjustments, and other basic principles of auction
management that can enhance prospects for participation and a competitive
outcome. Information disclosure provisions need to balance the benefits of
information pooling and the risks of collusion. While full disclosure of all
bids can invite market division and coordinated bidding, limited disclosure
can often achieve the benefits of full disclosure without increasing the risk
of anticompetitive bidding behavior. Volume adjustments are another new
administrative tool that can be used to encourage more competitive bid-
ding. These issues are discussed in more detail below. This part of the
book also contains some discussion of auction experiments and simulations.
Experiments are an increasingly popular research area in which subjects are
recruited, and compensated, for participating in auctions staged in controlled
environments. Simulations, on the other hand, rely on computer bidders and
allow the computer to calculate the outcomes. Both forms of tests have
benefits as well as limitations.

The third part of this primer discusses experience. Most of the discussion
surrounds energy and telecommunications auctions, as there is enormous
experience in these sectors, and they have been the proving ground for many
new auction designs. These sectors also include some of the largest and
most newsworthy auctions. This part will discuss auctions in other sectors,
including natural resources, commodities, and general procurement.



Chapter 2

Game Theory, Auction Design,
and Strategy

Summary

This chapter provides a brief introduction to game theory. Game theory
provides analytical techniques needed to analyze auction design and strategy.
This is a nontechnical introduction. The chapter focuses on how to apply
game-theoretic techniques to the analysis of bid strategy and auction designs.

2.1 Game Theory and Auctions

This chapter provides a brief introduction to game theory. An appendix pro-
vides additional background on some of the more technical topics, especially
those related to signaling games. Auctions have specific rules; these rules
govern participation requirements, the form of bids, winner determinations,
and payments. The rules of an auction can almost always be translated into
a precise mathematical formulation. Such formulations are what is more for-
mally called a mathematical game. A mathematical game is a representation
of set of strategic interactions, similar to those that occur in ordinary games,
into mathematical terminology. Such representations can facilitate analysis
of the strategies and outcomes, or equilibria.

29
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This does not mean that it is always easy to solve an auction, as one would
solve a system of equations. It not always easy, or even possible, to find
or write a computer program even to compute auction outcomes. However,
mathematical descriptions can lead to algorithms that solve part or all of
an auction. Often it will be possible to capture the algorithms in computer
programs or solutions of systems of equations, or to identify what specifically
needs to be solved. Numerical techniques can also be applied to check for
consistency of any planned strategy or desired goal of an auction design,
using the underlying mathematical structure of an auction.

This chapter begins by describing what constitutes a game. Then some basic
solution concepts for games are presented. It is explained how an auction can
be interpreted as a game, and how the solution concepts from noncooperative
game theory can be used to identify equilibria, likely outcomes, of auctions.

2.2 Noncooperative Games

An auction is generally best modeled as a noncooperative game. This does
not mean that bidders will not cooperate in an auction; it only means that
the bidders can have conflicting and/or competing interests. Auctions can
be single-stage or multi-stage or multi-round. Single-stage and multi-stage
games are represented in two distinct ways.

2.2.1 One-Shot Auctions

Many auctions are one-shot games. For example, in a sealed-bid auction,
bidders name prices, and no bidder has any chance to respond. Sometimes,
sealed-bid auctions also allow bids to include not only an offer but also desired
quantities and nonprice attributes. Usually, the high bidder wins, and the
amount paid is the bid amount. But other payment rules are common.
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Row/column player Left Right
Top (1,1) (0,3)
Bottom (3,0) (2,2)

Table 2.1: Prisoner’s dilemma

2.2.2 Normal Form Games

A single-stage game is most often described in what is called normal, or
strategic, form. A normal form game is defined by a triple: a set of players
N = (1, 2, . . . , N} , a strategy set of each player, Sj, j ∈ N , and a payoff
function for each player, πj(sj, s−j), describing player or bidder j’s payoff or
profits as a function if its strategy sj and that of all the other players, s−j:

The prisoner’s dilemma is a classic example of a noncooperative game. In
it the row player’s strategy set is {Top,Bottom} and the column player’s
strategy set is {Left,Right}. The payoffs are given by the entries in the
above payoff matrix.

There are many types of these matrix games. In the prisoner’s dilemma, the
players have dominant strategies1 of always playing the strategy that leads
to a joint payoff minimum. Another basic example of a normal form game
is a competitive game, e.g., the matching pennies game. In the matching
pennies game each of two players can choose either heads or tails. If the
choices match, then the first player wins both pennies, and otherwise the
second player does. In this game, if one player does better, the other does
worse, and that is why it is called a competitive game. In this game, there
is no equilibrium in pure strategies. If the first player were to choose heads,
then the second player would want to choose tails, and vice versa. Similarly,
whatever is the choice of the second player, the first player would want to
match that choice.

In order to characterize what players would do in this type of setting, one
must consider random, or mixed, strategies. A mixed strategy for the row
player in the prisoner’s dilemma is a probability of choosing Top, and sim-
ilarly a mixed strategy for the column player in the prisoner’s dilemma is
a probability of choosing Left. In the matching pennies game, if player 1

1This concept of dominant strategies is discussed below.
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were to choose heads with probability 1
2
, then player 2 would be indifferent

between choosing heads and choosing tails, and similarly, if player 2 were
to choose heads with probability 1

2
, then player 1 would be indifferent as

to whether it chose heads or tails. This type of randomization, each player
choosing heads with probability 1

2
, is then an equilibrium, as neither player

would have an incentive to choose any other strategy.

A sealed-bid auction is a normal form game. In a first-price sealed-bid auction
for a single lot, bidders’ strategies are prices for the lot; the high bidder
wins, receives the object, and pays the bid amount. The payoff for the high
bidder is the value less the amount paid. All other bidders receive a zero
payoff. A second-price sealed-bid auction is the same as a first-price auction,
except that the high bidder only pays the second highest bid amount. As in
the matching pennies game, some auctions will not have any pure strategy
equilibrium but will have equilibrium in mixed strategies.

2.2.3 Equilibrium in Normal Form Games

Outcomes of auctions can often be readily predicted through equilibrium
analysis of simple normal form models. The most basic form of equilibrium
is called a Nash, or noncooperative, equibrium. A Nash equilibrium is a set
of strategies, one for each player, such that no player can make a unilateral
change in its strategy and increase its payoff. A Nash equilibrium is a mini-
mum requirement for each entity to be acting consistently in line with each
entity’s view of its own interests.

One alternative, and equivalent, definition of a Nash equilibrium, for non-
cooperative games in general and a prisoner’s dilemma in particular, is that
each player has an expectation about what its rivals are doing, its choice of
strategy is a best reply to those expectations, and every player’s expectations
are the same as the actual strategies chosen.

In the prisoner’s dilemma example, the only Nash equilibrium is (Top, Left).
This is clearly suboptimal for the players. Indeed, this outcome is a dominant
strategies equilibrium: each player’s choice of strategy is the same, no matter
what the other chooses. A multi-unit auction can have a prisoner’s dilemma
component. Suppose, for example, that there are two blocks available, and
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Col\row player Heads Tails
Heads (+1,−1) (−1,+1)
Tails (−1,+1) (+1,−1)

Table 2.2: Matching pennies

each of the two high-value bidders has declining marginal values, say H for
the first block won and M < H for the second block won. Also suppose
that other bidders have values of no more than L < M. Then, it will be an
equilibrium for each firm to keep bidding in an ascending price auction up
to M for a second block, even when their both stopping at L would result in
higher surplus and the same allocation for the two high bidders.

In the matching pennies game, there is also a unique equilibrium: for each
player to choose heads with probability 1

2
. This is a mixed strategy equilib-

rium. It is also not a dominant strategies equilibrium, as the optimal choice
for one player depends on what other players choose:

2.2.4 Mixed Equilibrium in Spectrum Auctions: Some
Examples

This section provides a few sample characterizations of Nash equilibria in
some actual spectrum auctions. These cases are examples of actual auctions
which only have mixed strategy equilibrium.

The first example is an auction of 2G spectrum that the Dutch government
was planning to run in 1998. The government changed the rules after hear-
ing bidder concerns. In that auction, there were 16 very similar blocks of
spectrum for sale, and bidders were to be asked to submit a final round of
sealed bids for each of those blocks. Bidders would need to win between 4
and 6 blocks in most cases to derive any value. A simplified version of this
game was analyzed extensively by [67], in which two bidders are competing
for three blocks and each has to win at least two to derive any value.2 They

2To see that there may be no pure strategy equilibrium, suppose that each bidder has
the same value v, and that each bidder j offers aj , bj , (v − aj , bj) on blocks j = 1, 2, 3. If
aj ≥ bj ≥ 1− aj − bj , then the other bidder can bid a bit more than j on the second and
third blocks and win both.
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were able to completely characterize the equilibrium probability distribution
for the mixed strategy of this auction.

Another example of auctions which will have no pure strategy equilibria com-
prises the supply function auctions commonly used in energy procurement.
These auctions require bidders to submit a separate price for each block (a
step function bid).3 The bidders’ offers are aggregated to form a supply
schedule, and the lowest offers that meet demand are the ones that are se-
lected. In a paid as bid auction, bidders will receive their bid amounts for the
portion of their supply that is selected by the auctioneer.4 The prices each
bidder receives can be uniform, or paid as bid. In a uniform price auction all
winning bidders receive the market-clearing price.

2.2.5 Equilibrium in Multi-attribute Auctions

At times, the auction originator’s objectives will include nonprice factors.
This is especially true when the auction is being run by a government agency
which has a mandate to promote the public interest. Many spectrum auc-
tions include coverage or buildout provisions. And at times, bidders receive a
score based on price and nonprice submissions. For example, a recent French
auction for 4G spectrum licenses weighted each bidder’s monetary offer by
factors that depended on whether the bidder would cover rural areas and pro-
vide wholesale access to resellers.5 The weights for the nonprice attributes,

3See [48] and [36].
4What follows is a very simple example. Suppose there are two suppliers in a region,

each having capacity of 800 MW. This means that both firms are needed, and either firm
can always supply 400 MW at the ceiling price of 100. Normalize price so that demand
net of operating costs (assumed to be the same for both) is 1200 MW for p ≤ 100 and zero
otherwise, where p denotes the price. In a symmetric equilibrium, each firm will choose a
probability distribution function F (p) which makes the rival indifferent as to what price it
chooses. Neither firm will ever offer a price above 100 – or below 50, as for prices below 50
a firm can earn more by offering the ceiling price. Thus, 400pF (p)+800p[1−F (p)] = 4000,
or F (p) = 2p − 100

P , for 50 ≤ p ≤ 100. For p < 50, we have F (p) = 0, and for p > 100,
F (p) = 1. Each firm choosing its price with a probability determined by F (p) is an
equilibrium in this example.

5See http://www.arcep.fr/fileadmin/reprise/dossiers/4G/proj-dec-appel-800mhz-
160511.pdf and http://www.arcep.fr/fileadmin/reprise/dossiers/4G/proj-dec-appel-2-
6ghz-160511.pdf.
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which were 0 or 1 decisions for the bidders, were high. This resulted in all
winning bidders including these attributes in their offers.

Because bidders will often try to maximize net returns or profits, when both
price and nonprice attributes contribute to the winning score, an equilibrium
bid strategy will often be a corner solution; in other words, bidders will
submit the maximum or minimum allowed values for the nonprice component
of the bid, according as the bidder weighs the attribute more or less than the
auctioneer.

One extreme example of this property of multi-attribute auctions was a Cal-
ifornia procurement of “qualifying facilities” (QF) in a sealed-bid auction.
The auction was designed to ensure supply of renewable energy sources. Nu-
merous factors were included in determining the score of each bidder.6 The
auctioneer was seeking to procure electricity from renewable resources for
both peak and off-peak periods, and to promote the construction of renew-
able generation capacity. Bidders were required to submit separate prices for
different components of the generation service: one was a price required for
ensuring capacity availability, and others included prices for energy supplied
in r different periods. Wind farms were among the most significant sources
of renewable energy. However, wind turbines only operate when there is
wind. Therefore, the maximum capacity of a wind farm (or of other renew-
able energy source such as a hydroelectric facility) may not represent average
availability. Thus, the auctioneer wanted to provide different weights on po-
tential availability and actual production. The weight given to capacity in
the score was relatively high; the result was that the winning bidders ended
up receiving high capacity prices and negative energy prices. In other words,
these wind farm developers received less money the more energy their wind
farms supplied.

If the auctioneer can measure the monetary value of the nonprice attributes,
then using those weights will provide bidders the appropriate incentives to
submit optimal combinations of price and nonprice attributes. Simple Nash
equilibrium analysis of bidder incentives when bids include price and nonprice
attributes will usually suffice to anticipate the type of pitfalls that were
experienced in the California QF auction.

6The details of this process are described in [33].
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2.3 Multi-stage and Sequential Auctions

In many instances an auction will have multiple stages, so that bidders can
respond to rivals’ bids. In other cases, there will be a sequence of auctions for
substitutes, for complements, or over time. Equilibrium criteria for one-shot
games cannot allow for interactions and information revealed between stages
or auctions. The extensive form representation of a game can be used to
capture these effects.

An extensive form representation of a game includes three components: a
game tree, decision nodes, and information sets. The tree describes the
possible sequences of decisions and events, which can include random events.
The decision nodes are points at which a player can take an action. And the
information sets represent the information available to a player at each of
the decision nodes. The graph of the prisoner’s dilemma in Figure 2.3 shows
how a normal form game can be represented in extensive form.7

Some auctions, such as the Federal Communications Commission (FCC)
spectrum auctions, allow bidders to gradually improve their offers over the
course of the auction. These multi-stage (or multi-round) auctions can be
represented in extensive form.

Other times, for example in energy markets, the same bidders compete re-
peatedly over time. These type of auctions can be characterized as dynamic
games, and can be represented in a type of extensive form, as is illustrated
above.

2.3.1 Subgame Perfect Equilibrium

Multi-stage games differ from one-shot games in that the players interact
repeatedly in the former and only once in the latter. After each round of
interaction, the players can revise their plans. The notion of a subgame
perfect equilibrium (SPE) is intended to ensure that equilibrium strategies
remain so through the entire course of play. More specifically, a subgame

7The circle around the Column Player nodes in Figure 2.3 indicate that the column
player does not know whether the row player has chosen “Top” or “Bottom” when it is
choosing between “Left” and “Right”.
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Row	  player	  

Column	  
player	  

(Top,	  Le3)	  

(Top,	  
Right)	  

Column	  
player	  

(Bo:om,	  
Le3)	  

Bo:om	  
Right	  	  

Figure 2.1: Prisoner’s Dilemma in Extensive Form

perfect equilibrium in an extensive form game is a Nash equilibrium with
the additional property that the equilibrium strategies remain in equilibrium
when restricted to any proper subgame, that is, any intermediate node of the
game in which players know the prior history. What this means is that after
each stage, round, or period, when a player has to make a decision knowing
previous decisions of other bidders, then the bidder will not want to revise
its strategy at that point.

As an example, consider an auction for three blocks, 1, 2, and 3; suppose
further that there are two strong bidders, A and B. First suppose that the
bids are collected all at once, but are opened one at a time. Also, suppose
that a bid can be contingent on whether or not a bidder won one of the
previous blocks.

Suppose too that the price for each block is the best losing bid for that block.
Suppose both A and B prefer block 1, and that A is the only bidder who has
a high value for block 3. Also, suppose that blocks 1 and 2 are very close
substitutes, but bidder A is the stronger bidder. In this case, the following
strategies are a Nash equilibrium, but not subgame perfect: Bidder A bids
low for block 1, high for block 2, and high for block 3, contingent on winning
one of blocks 1 and 2. Bidder B bids high for block 1, low for block 2, high
for block 3 if it wins block 2, and low for block 3 if it wins only block 1.

B’s high bid for block 3 in the event that it loses block 1 is a noncredible
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threat to deter A from competing for block 1. What is a SPE is for B to bid
low for block 1 and high for block 2, and vice versa for A. If B were to lose
block 1, it would have no incentive to carry out its implicit threat.

Further stability requirements can, at times, further refine the notion of a
SPE. 8

2.3.2 Signaling Games

In many multi-stage auctions, bidders can signal interests or intent.9 For
instance, the United States FCC has conducted several dozen multi-round
spectrum auctions. In these auctions, early round bids are often well below
final prices, and do not represent any commitment by bidders, as the bids
are low and certain to be topped in later rounds. In such auctions, con-
cerns have been raised that bidders can signal so as to achieve coordinated
outcomes.10 The question addressed here is to what extent one can model
such behavior as an equilibrium outcome. Contrary to what may be popular
opinion and some literature, collusive signaling need have no effect on the
outcome. This is not to suggest that signaling in auctions has not occurred
and/or has been ineffective. Rather, signaling is as likely to be ignored, or
even counterproductive, as it is to be effective.

To see this, consider a simple situation in which there are two bidders, A
and B, and two blocks, 1 and 2. Suppose too that each wants one block,
and both prefer block 1, but both prefer block 2 to having to compete for
1. So, there can be two equilibrium outcomes: 1 goes to A and 2 to B, and
the reverse. Now, suppose that before bidding each bidder can announce
which block it will bid for. Presumably, if A announces 1 and B announces
2, then that should be the outcome. However, neither bidder may trust the
other, and either can misinterpret the other. Absent an ability to form an

8A further requirement that can be imposed on equilibrium in a multi-stage game is
that the equilibrium be stable for various forms of perturbations. Small variations in
payoffs can at times disrupt some SPEs. Further small changes in strategies can also do
the same. The ideas of a trembling hand perfect equilibrium (see Selten (X)) and the
stable set of equilibria (see [45] provide further refinements of the SPE criterion.

9See [15] and [18].
10See [15], [18], and www.fcc.gov/wtb/auctions.
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ex ante binding agreement, these announcements are cheap talk, and can be
ineffective or worse.11

Indeed, one case that [18] cite about how bidders can signal each other in
spectrum auctions shows how such efforts can backfire. In that auction,
bidders sent signals – in the form of jump bids and overbidding – that two
bidders were able to convey, observe, and (apparently) understand during the
auction. However, one of the bidders, the receiving party, did not really want
to coordinate in the way that the sending party signaled. During the auction,
the sending party could only see that the receiving party was apparently
acting cooperatively, and not that the receiving party had contacted the
regulator. After the auction, the sending party was subject to prosecution
and fined for attempting to collude during the auction.

2.4 Repeated Games

At times, the same bidders compete repeatedly for more or less the same
lots. An example of this is the daily auctions conducted on most power
exchanges.12 The simplest form of repeated interaction occurs when the
same game is repeated over and over. The notion of a SPE can be extended
to these type of games. As infinitely repeated auctions have no last auction,
rivals’ bids in later auctions can depend on the outcome in a given auction,
can pull a bidder in virtually any direction. This means, when the game is
repeated indefinitely, there are infinitely many possible SPE outcomes.

In contrast, for many repeated games, including all those with a unique
equilibrium in the one-shot stage game, there will be only one equilibrium in
the finitely repeated game, no matter how long the interaction lasts, as long
as there is a fixed end date and players are rational.

What follows is a brief description of the types of outcomes that can arise in
repeated interactions. The discussion assumes that exactly the same game

11Signaling games, such as those in which bidders send signals in auctions, typically have
a multiplicity, and often a continuum, of equilibria. See [69] for a discussion of signaling
games.

12See, for example, [38] for a description of one such market.
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is repeated. However, most of the analysis applies to more general dynamic
games.

2.4.1 Finitely Repeated Games

Consider the case in which the above prisoner’s dilemma is repeated a fixed
and finite number of times. Suppose that at each stage, or iteration, the
row player chooses Top or Bottom, and the column player chooses Left or
Right. These choices are made simultaneously. After the choices are made,
the players are each informed about the other’s choice, payoffs for the stage
are accrued, and then the process repeats.

One could consider the possibility that each player will, in early stages, play
cooperatively, and do so at least until near the end, as long as the other
player does so. This is not a SPE, as each player can infer that the other will
play noncooperatively (i.e., Top or Left) in the last period. Therefore, each
player has an incentive to play Top or Left in the next to last period too.

The same logic will then apply to the third to last stage, as each player knows
the other will choose to play noncooperatively in the second to last stage. By
backward induction, there will be only one SPE in the entire game, which is
for the row player to always choose Top and the column player Left.

If the game has a probability p of running an additional period, so that the
end is uncertain, then other outcomes are possible. More specifically, if either
player defects from a cooperative strategy, it will earn 3 for one period, and
1 for all subsequent periods – for however many periods the game lasts. The
present value of this strategy is 3 + δp

1−δp , where δ is the discount factor. In

contrast, continued cooperation results in an expected payoff of 2 + 2δp
1−δp .

And this quantity is larger than the first whenever 2δp > 1, that is, when
discounting is not too fast and the probability of the game ending fast not
too high.

So, for example, in repeated interaction of traders in energy markets, there
is a possibility of the traders all refraining from aggressive bidding, even
where there is uncertainty. When there are multiple Nash equilibria in the
stage game, cooperative outcomes can still be stable with finite interaction,
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provided that there are bad and good equilibria, and that each player wants
to avoid the bad equilibrium in the last stage.13

2.4.2 Infinitely Repeated Games

An infinitely repeated game is one in which the same players interact in
the same strategic situation indefinitely. The main, and big, difference be-
tween finitely repeated games and infinitely repeated games is that there is
no last period. This means that, unlike a finitely repeated game, the back-
ward unraveling from cooperative Nash equilibria does not occur. Therefore,
cooperative outcomes are possible. Indeed, in infinitely repeated games, it
can be shown that any payoff combination in the stage game that dominates
the lowest payoff that each player can guarantee itself (its minmax payoff)
can be supported using grim trigger strategies as a SPE, as long as the dis-
counting is not too fast. A grim trigger strategy is one in which each player
adheres to the cooperative play as long as no other player has deviated in
any previous round. If there was a deviation by a player, then everyone re-
verts to that strategy that gives the defector its minmax payoff thereafter.
When discounting is slow enough, the one-shot benefit from a deviation is
outweighed by the benefits of continued cooperative play.14

This means that the outcome of repeated auctions can be indeterminate.
As is discussed in more detail below, information that limits the ability of
bidders to coordinate actions can induce bidding to be more competitive.
This indeterminacy result, called a folk theorem for repeated games, can be
extended to situations in which players cannot directly observe rivals’ actions.
When actions are not directly observable, payoffs are still observable, and so
a player might become increasingly certain over time that a rival or rivals
are deviating from cooperative play. Nevertheless, cooperative play can be a
SPE when each player uses a stochastic decision rule: continue to cooperate
as long as the price, or payoff, has averaged at least a threshold level, and if
not, then revert to the Nash equilibrium (punishment) for a fixed and finite
number of periods.15

13See [25] for a discussion of cooperative equilibria in finitely repeated games.
14See [2].
15For a more detailed discussion of cooperative equilibria with demand or cost uncer-

tainty, see [30].
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The reason to use a stochastic decision rule is that demand or cost shocks
can result in low prices or profits even when there are no defections. So, the
rule to use for determining whether to continue to cooperate has to leave
some buffer for uncertainty. The reason for a finite punishment duration is
that there is always a positive probability of triggering the punishment, and
so the equilibrium should leave room for reversion to cooperative play.

2.4.3 Overlapping Generations of Players

The assumption that play goes on forever is consistent with many institu-
tions, but not with the horizons of the individuals making decisions. How-
ever, there are generally older and younger players involved. As long as it is
commonly accepted that older players will tend to act more opportunistically
and that the younger players will get their turn, then cooperative play is still
a SPE. More specifically, a folk-theorem result still applies when (i) there is
an infinitely repeated game in which the identities of the players change over
time, (ii) each player only considers its payoffs during its term, so that there
are no bequest motives, (iii) there is no period in which every player leaves
and is replaced by a younger player, and (iv) terms are long, and discounting
is slow enough. Should a younger player not tolerate an older player getting
a larger share, then the entire play would revert to competitive play for the
rest of that player’s term. This is enough to support cooperative behavior.

2.5 Summary

This chapter explains how auctions can be modeled as noncooperative games.
Single-round or -stage auctions can be modeled as normal form games, and
the Nash equilibrium concept is useful in analyzing such auctions. At times,
the Nash equilibrium solution will not be able to specify certain outcomes,
but rather random ones (mixed strategy equilibria). Such equilibria can be
useful in explaining what might otherwise appear to be inconsistent behavior
in some auctions.

Extensive form games can be used to represent sequential auctions. Sub-
game perfect equilibrium will often characterize the plausible outcomes, and
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ones that rule out noncredible implied threats. However, there can be room
for signaling in extensive form games to further refine the equilibrium set.
Such signaling will not always be effective, even when there are no costs of
conveying signals that can be understood by rival bidders. Costly signaling
can, at times be used to sort out different types of outcomes, e.g., those that
might be achieved if everyone knew certain bidders were strong, from those
that would be achieved if those same bidders were known to be weak.

SPE of repeated games can lead to a wide range of outcomes. Auction rules
that limit information available to bidders can make bidding more competi-
tive. However, absent some model of behavior, it can be difficult to predict
what type of outcomes are likely in repeated auctions.
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Chapter 3

Revenue Equivalence

Summary This chapter explores the relation in outcomes between different
auction types. It explains that a first-price sealed-bid auction is strategically
equivalent to a Dutch auction. Also, conditions are provided under which an
English auction is strategically equivalent to a second-price sealed-bid auc-
tion. This chapter also provides an explanation of the derivation of perhaps
the single most significant result in auction theory, the revenue equivalence
theorem (RET). This result states that the expected revenue and bidder pay-
offs from two auctions will be the same when the final allocations are the
same.

3.1 The Four Basic Auction Types for Single-

Object Auctions

A single auction can include one or multiple objects, and can also include
multiple units of each object available. Multiple-object auctions, and even
multiple-unit auctions for a single product, confront bidders with the problem
of anticipating prices in other auctions or for other objects when bidding on
any single unit or object. This is explicitly the case in a sequence of auctions
for substitutes and/or complements. But it is also the case when there are
parallel independent auctions. This chapter focuses on single-object auctions,

45
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where these interdependences are not an issue. Much insight can be derived
from an analysis of these types of auctions. A great many different auction
formats have been used even for single-object auctions. By far the most
common are four main traditional types of auctions:

1. English, ascending price, open outcry

2. Dutch, descending price

3. First price sealed bid

4. Second price sealed bid

And the English and first-price sealed-bid are by far the two most com-
mon auction formats. These auctions are also primarily used for the sale or
purchase of a single object at a time. Each of these auctions can be used
iteratively to sell multiple objects. This is typically the case at both tradi-
tional on-site auctions and in many online auctions. However, as will be seen
in subsequent chapters, these four traditional auctions are not well suited for
the sale of substitutes or complements, which involve strategic cross-auction
interdependences for bidders.

The English auction has several, closely related equivalents. One version
has the auctioneer announcing an ascending sequence of prices, and bidders
agreeing to keep in the auction or dropping out.1 A strategy for a bidder
in this form of the English auction is a rule to determine when to stop
bidding (drop out). In a truly open auction, bidders will see the number of
other bidders still remaining, and possibly their identities, when making a
decision about whether to drop out. This can be material information and,
as is explained in further detail below, can materially affect the outcome.
More commonly, auctioneers tend to start the price very high, then quickly
backtrack and lower the starting price. In addition, bidders do not have
to agree to each announced price (except in the Japanese auction variant),
and at times bidders can call out their own price suggestions with larger
or smaller increments than is suggested by the auctioneer. Online auctions
typically also have the feature of the English auction that bidders are asked

1This form of auction is sometimes referred to as a Japanese auction, or a Japanese-style
English auction.
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to respond to an increasing sequence of prices. However, online auctions
typically have fixed deadlines for submitting bids.2 This makes an online
auction strategically much different than a traditional English auction. On
the other hand, when the online auction has an extension rule that prolongs
the auction by a fixed amount of time after each new bid, the auction is
essentially an English auction.

The descending price Dutch auction has the auctioneer start with a high
price, and the auction ends when the first bidder enters the auction.

The first- and second-price sealed-bid auctions are auctions in which bidders
submit a sealed bid for the object for sale. In both, the high bidder wins. In
the first-price auction, the winner pays the bid amount. In contrast, in the
second-price auction, the winner pays the highest losing bid amount.

One of the main insights of the early auction literature3 is that the English
and the second-price sealed-bid auctions are, in many cases, strategically
equivalent, and likewise the Dutch auction and the first-price sealed-bid auc-
tion. What is meant by strategically equivalent is that the strategies bidders
would want to use are essentially identical.

As is explained below, this strategic equivalence of the English auction and
the first-price auction will hold when information revealed during the course
of bidding in an English auction will not affect a bidder’s valuations or strate-
gies. However, when information a bidder gets during bidding rounds can
affect valuations or expectations, then bidding behavior is affected, and the
strategy equivalence need not hold.

3.2 Auction Strategy in the Four Basic Auc-

tion Types

Each of these four auctions can be described as a normal form game. Sealed-
bid auctions are very straightforward to describe in this fashion. In both first-
and second-price auctions, the bidders (the set of players) have as a strategy

2This type of auction is sometimes referred to as a Yankee auction.
3[73] and [61] .
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the choice of a monetary amount to offer for a single available object. The
winner determination in both is the same – the high or best bidder (assuming
a forward auction). The only difference is in the payments: in the first-price
auction, the winner pays its bid amount. In contrast, in the second-price
auction, the winner pays the second highest bid amount. Losers pay nothing.

The Dutch auction is also very straightforward to describe in normal form.
In any Dutch auction, the bidders (players) will see a decreasing sequence of
prices. The prices may decrease more or less continuously, or in fairly large
steps. A strategy is the price at which to first agree to purchase the item.
The winning bidder is the one that enters first, and it pays its bid amount.
Losers pay nothing.

In an English auction, the strategy can be more complicated. Bidders will
face an increasing sequence of prices. A strategy is a decision rule determining
when to drop out. The decision rule can depend on the size of the increment
and on the number of other bidders remaining in the auction at each price. It
can also depend on how fast each rival bidder is increasing its offer. In simple
auctions, when prices increase continuously or nearly so, then bidders will
base the decision to stop bidding on their own values, and not on the size of
the increment. If the outcome of other bidders is immaterial or unobservable,
then the strategy for when to stop bidding is simply a limit price. In more
complex auctions in which rivals’ information or identities are material, the
bidding strategy can depend on who is still bidding in the auction. The
winner is the last bidder in, and at the last agreed-on price.

The Japanese auction variant of the English auction requires all bidders to
remain in at each posted price as long as they are willing to purchase the
item. Once a bidder drops out, it is no longer able to reenter the bidding. As
in the standard English auction, the activity of other bidders can materially
affect any given bidder. But, if not, the strategy in the Japanese auction is
simply a stopping price.

3.3 Strategic Equivalence

This section explains the strategic equivalence of first-price auctions and
Dutch auctions, and of second-price auctions and English auctions.
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First consider the English auction. As noted above, in the most usual English
auction, an auctioneer calls out an escalating sequence of prices, and at least
one bidder that is not the standing high bidder must meet the most recently
announced price, within a fixed amount of time, to keep the auction from
ending. In this type of auction, the optimal strategy for a bidder with a value
v is to keep bidding as long as the price is no higher than v, and then drop
out.4 This assumes that bid increments are small; if not, then a bidder may
have an incentive to skip a turn responding to a new bid. This also assumes
that a bidder does not revise its valuation during the auction based on what
it sees from others’ behavior. This is not always the case.

For example, in a common-value auction, each bidder has a signal of the
true value sj = v + εj, where v is the true value and εj is an independently,
identically distributed error term. This type of situation is common in oil
lease bidding.5 In this case information about others’ bids provides some in-
formation about a bidder’s forecast error. In the case of oil lease bids, it was
observed that although bidders may have, on average, unbiased forecasts,
they will only win when their forecasts are too optimistic. Seeing other bid-
ders staying in or dropping out provides information about how optimistic
is a given bidder’s forecast; this information can be used to revise expecta-
tions. This type of revision is not needed in an auction in which bidders have
independent private values, that is, each bidder’s value is uncorrelated with
its rivals’.

In the second-price sealed-bid auction, it is straightforward to see that a
bidder’s dominant strategy is to bid its true value.6 There is no incentive
to bid more than one’s value. For, suppose a bidder offers b > v, and the
highest offer by a rival is b′. There are three cases to consider:

1. b′ ≤ v < b. Then overbidding does not matter. This bidder wins and
pays b′.

4How quickly a bidder should bid can also be part of the strategy, as it can influence
other bidders.

5See [17].
6The following discussion assumes independent private values. If there are affiliated

values, it is still a dominant strategy for a bidder to bid its value, but this value is
conditional on it being the high bidder.
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2. v < b′ ≤ b. Then this bidder wins, and pays b′ > v. In this case,
overbidding reduces this bidder’s payoff.

3. b′ > b. Again overbidding does not matter, as this bidder loses.

A similar argument can be used to show a bidder will never want to bid any
b < v. If it did, there is a chance it would lose, when it should not. On
the other hand, if bidding b′ > b does not affect whether the bidder wins,
then this higher bid would impose no additional costs on the bidder. Thus,
underbidding cannot be an equilibrium. This shows that in a second-price
sealed-bid auction, it is always optimal to bid one’s value; in other words,
this is a dominant strategy.

What this means is that the point at which a bidder stops bidding is the
same in an English auction as the amount a bidder would offer in a second-
price sealed-bid auction. Further, the bidder pays the second highest bid
amount. Thus, the auctions are strategically equivalent, and achieve the
same prices and payoffs to the bidders. The auctions also give the seller the
same price, and the same buyer pays it. Thus these two auctions are also
outcome equivalent, as well as payoff equivalent, at least in an independent
private values setting. Note that if bidders cannot observe rivals’ bids, and
price increases are continuous, the fact that the auction continues can convey
information. When bidders are never told who else is bidding, or how many
other bidders remain active, and the stopping rule is for the auctioneer to
continue increasing price until a fixed upper bound higher than market clear-
ing, then the English and second-price auctions will always be equivalent –
strategically and with respect to payoff and outcome.

In a first-price sealed-bid auction a bidder will want to bid less than its value.
If a bidder offers its full value, then it will earn zero surplus even when it
wins. The calculation of how much a bidder should offer involves a tradeoff
– a lower offer provides a higher surplus if the bidder wins, but a lower
probability of winning. The bidder will want to to choose its bid amount, b,
so as to maximize

P (b)(v − b) (3.1)
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where v is the bidder’s value and P (b) is the probability that it wins.7

In a Dutch auction, a bidder will not want to bid until the price falls at least
to its value v. Once the price falls to v, the bidder will want to choose a
price to make a first offer b so as to maximize (v − b)P (b). This is the same
expression as (3.1). Thus, a bidder will want to choose the same bid amount
in both first-price sealed-bid auctions and Dutch auctions. The Dutch and
the first-price sealed-bid auctions are strategically equivalent: bidders will
have incentives to bid the same amounts.

In summary:

Theorem 1 ([61] and [73] . In (reduced) normal form, Dutch auction and
first-price sealed bid auction are strategically equivalent.

A strategy in the first-price sealed-bid auction is just the price the bidder
offers. In a Dutch auction, the strategy is the price at which to start bidding.
Assuming that price falls continuously in the Dutch auction, the expression
(3.1) establishes that these are the same decisions.

3.4 Revenue Equivalence of English and Dutch

Auctions

One question often raised is: What difference does auction design make?
For instance, there has been much, and sometimes heated, debate about
the relative merits of uniform price vs pay-as-bid auctions in the energy
sector.8 This section explains one of the more remarkable theoretical results
of economics – the revenue equivalence theorem (RET). The result is that
the expected payments and outcome of the English and Dutch, and therefore
those of the first-price and second-price auctions, are the same – at least
when bidders have independent private values.

7The first-order conditions are that the optimal b will satisfy (v − b)P ′(b)− P (b) = 0,
or v−b

b = P (b)/bP ′(b).
8See [40].
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Recall that in an English auction, or a second-price sealed-bid auction, all
bidders bid truthfully; in equilibrium, the high-value bidder wins and pays
(approximately) the valuation of the bidder with the second highest valu-
ation. In the Dutch auction, or the first-price sealed-bid auction, the high
bidder will still usually win,9 but the amount of the winning bid, which is
the transaction price, will generally be less than the value. The question is
by how much the winning bid amount will fall short of the winning bidder’s
value. The remarkable answer is that this gap is exactly equal to the ex-
pected value of the second highest value of the bidders, or the equilibrium
price in an English auction – at least in the case in which bidder values are
independently distributed.

The intuition for this result is fairly straightforward, although the deriva-
tion is somewhat more complicated than for strategic equivalence of the bid
strategies in the Dutch and first-price, sealed-bid auctions. Consider the
first-price sealed-bid auction. The high bidder won’t know ex ante who the
high bidder is. However, this high bidder should only be concerned with the
case in which it is the high bidder, as in other cases its bid won’t matter.

So, the high bidder will want to bid just a bit more than the second highest
bid amount. This amount is no more than the second highest value, as the
second highest bid can never be above value in equilibrium in a first-price
sealed-bid auction. Of course, the second highest bidder will offer a bit less
than its value too. So, the high bidder will want to weigh the benefit of
bidding a bit more than the expected amount of the second highest bidder’s
value. This high bidder would gain a bit of surplus by bidding a bit less, but
would lose with a higher probability. When the high bidder’s offer exactly
equals the expected amount of the second highest bidder’s value, then the
benefits of increasing its bid a small amount will exactly equal the costs.

This RET theorem can be established in two different ways. The more direct
approach is to compute optimal bid functions, and then to show that the
optimal bid in equilibrium means that the high bidder will bid the expected
amount of the second highest bidder’s value. The next section develops an
approach to calculating an optimal bid function, but does not provide a
complete proof the RET.

9It is assumed that bidders use equilibrium bid strategies, and have the same preferences
toward risk.
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The less direct, and much more general approach is to rely on what is called
the revelation principle, to restrict attention to direct revelation mechanisms,
that is, auctions which essentially ask bidders to report their type. In direct
revelation mechanisms, the bidders’ reports determine the winner and the
payment. Auctions are a specific form of direct revelation mechanism –
bidders are asked to report values, and payments are based on those reports.
Of course in a first-price sealed-bid auction a bidder won’t wish to offer its
full value, but its offer can be used to impute its value. In that sense a
first-price sealed-bid auction is a direct revelation mechanism.

The RET states that any two auctions which always have the same winners,
and give the lowest-value bidder the same (zero) expected surplus, always
result in the same auction revenues. The intuition for this result is as follows.

Consider a bidder with value v, who submits a bid b = β(v), where β(v) is
a bid function. Now, consider the incentives of this bidder to report that it
is a slightly stronger or weaker bidder by reporting b+ ∆ = β(v + δ). It has
to be the case, at equilibrium, that this bidder will not gain by reporting
a bit more or less. So, the extra payoff is offset by the extra probability of
losing by altering a bid. This would have to be true for any two auctions that
always result in the same winners. This means that the shape of the total
payment schedule, P (v), would have to be same for any two auctions that
always result in the same winners. And if the lowest-value bidders always
get a zero payoff, then the two auctions would always generate the same
revenues. [41] provides a more general statement.

Theorem 2 ([41] p. 43). Assume each of N risk-neutral potential buyers
has a privately known value independently drawn from a common distribution
F (v), which is strictly increasing and atomistic on [v, v̄]. Also, suppose no
buyer wants more than one of the k available and indivisible objects. Then
any auction mechanism in which (i) the objects always go to the k buyers
with the highest values and (ii) any bidder with value at v expects zero surplus
yields the same expected auction revenue and results in a buyer with value v
making the same expected payment.

Sketch of Proof
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Suppose values are iid draws on [v, v̄]. Let F (v) be the distribution, with
F (v) = 0 and F (v̄) = 1.

Let Sj(v) be the expected surplus of bidder j with value v. Let Pj(v) be the
probability that bidder j wins.

So Sj(v) = vPj(v) − E[payment by type v of player j]. For, if bidder j
reports any v′ 6= v, then Sj(v

′) = Pj(v
′)v− [expected payment by a bidder j

of type v′].

So Sj(v) ≥ Sj(v
′) + (v − v′)Pj(v′).

This implies Sj(v + dv) ≥ Sj(v) + (−dv)Pj(v + dv). Also, Sj(v + dv) ≥
Sj(v) + dvPj(v).

The above two inequalities imply Pj(v+dv) ≥ [Sj(v+dv)−Sj(v)]/dv ≥ Pj(v).

Letting dv → 0 leads to
dSj

dv
= Pj(v). (Note that if S(v) = vP (v) − X(v),

where X(v) is the payment that the bidder must make, the condition becomes
d[vjP (v)−x(v)]

dv
= Pj(v).)

Integrating up to v yields

Sj(v) = Sj(v) +

∫ v

v

Pj(x)dx

Now, consider any two mechanisms that have the same Sj(v) and the same
Pj(v) for all v and for all players j. So, j’s expected payoff is the same for
both mechanisms. This means that the auctioneer gets the same expected
revenues. �

A direct application of the above result is the revenue equivalence between
first-price, second-price, English, and Dutch auctions when bidder valuations
are independent draws from the same distribution. This result is also key
to characterizing an optimal auction, as is explained in more detail in the
next chapter. Absent any reserve price, the second-price or English auction
yields an expected revenue of the the value of the second highest valuation
among the bidders. So, at least in the case of independent private values, a
second-price auction with a positive reserve price will be optimal.
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The above statement of the RET imposes a few significant assumptions. One
is that each bidder is only interested in at most one unit. Should a bidder
want more than one unit, strategic withholding, that is, bidding low on one
unit hoping to affect the clearing price can be a factor. This possibility
is discussed in more detail in Chapter 8. Another key assumption is that
buyers have independent private values. As is explained in Chapter 5, RET
no longer holds in a common value auction, that is, an auction in which
values of different buyers are correlated.

3.5 Summary

This section considered single-object auctions. The main insight, that the
auction rules for determining the winner and the price paid can affect bidder
incentives, was used to characterize some key properties of auctions. First,
there is a strategic equivalence between Dutch and first-price sealed-bid auc-
tions. Second, under some assumptions, there is also a strategic equivalence
between standard English auctions and second-price sealed bids. The more
significant result is that the auction revenues can be the same for two auc-
tions that appear quite different, such as the English auction, the second-price
auction, the Dutch auction, and a standard first-price sealed-bid tender.

The RET is significant in practice. In particular, it suggests that discriminatory-
price auctions, in which each winner pay its own bid amount rather than same
price others pay for identical lots, will not always produce better revenues
or results than uniform-price auctions. As noted above, this means that de-
cisions about the payment rule that occur in some sectors, such as energy,
should focus on whether revenue equivalence holds and on bidder incentives,
and not on the fact that bidders pay less than bid amounts in a uniform-price
auction. Also, spectrum auctions that provide some bidders with discounts
can create strong incentives for bidders to find ways to qualify, with the net
effect of bidding away such discounts.

This has been the experience in the US FCC spectrum auctions, where bid-
ding credits have been competed away. The experience in FCC Auction 11
illustrates this quite clearly (Figure 3.1). That auction included three iden-
tical licenses in each of 493 geographic regions, called Basic Trading Areas.
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Figure 3.1: FCC Auction 11

Block
Market 
Name Num Bids

High 
Bidder

High Bid 
($k)

Net Bid 
($k)

Price 
($/bu)

Ave Price D/E - 
Price of F % difference

E New York, NY 0 AT&TWire  58,800 58,800 0.33
F New York, NY 0 NorthCoast 100,320 75,240 0.56
D New York, NY 0 OPCSE     50,700 50,700 0.28 ($20,490,001) -40%
F Los Angeles, CA0 AerForce  5,965 4,474 0.04
D Los Angeles, CA0 AT&TWire  37,510 37,510 0.26
E Los Angeles, CA0 Rivgam    31,910 31,910 0.22 $28,745,000 90%
F Chicago, IL 0 NextWave  30,753 23,065 0.38
D Chicago, IL 0 SprintCom 59,976 59,976 0.73
E Chicago, IL 0 SprintCom 62,741 62,741 0.77 $30,605,499 49%
D San Francisco, CA0 AT&TWire  13,655 13,655 0.21
F San Francisco, CA0 NextWave  5,779 4,334 0.09
E San Francisco, CA0 Western   10,737 10,737 0.17 $7,861,753 73%
D Philadelphia, PA 0 Comcast   12,169 12,169 0.21
F Philadelphia, PA 0 NextWave  29,407 22,055 0.50
E Philadelphia, PA 0 Rivgam    12,761 12,761 0.22 ($9,590,250) -75%
D Detroit, MI 0 NextWave  3,815 3,815 0.08
E Detroit, MI 0 OPCSE     3,856 3,856 0.08
F Detroit, MI 0 OPCSE     8,500 6,375 0.18 ($2,363,081) -28%
D Dallas, TX 0 AT&TWire  25,895 25,895 0.60
E Dallas, TX 0 AT&TWire  27,060 27,060 0.62
F Dallas, TX 0 NextWave  21,340 16,005 0.49 $1,695,000 8%
F Boston, MA 0 NorthCoast 8,909 6,682 0.22
D Boston, MA 0 OPCSE     6,515 6,515 0.16
E Boston, MA 0 OPCSE     7,515 7,515 0.18 ($1,893,996) -25%
F Washington, DC 0 AerForce  11,780 8,835 0.29
E Washington, DC 0 OPCSE     6,071 6,071 0.15
D Washington, DC 0 Rivgam    6,820 6,820 0.17 ($5,334,493) -78%
E Houston, TX 0 AT&TWire  9,835 9,835 0.24
D Houston, TX 0 SprintCom 13,259 13,259 0.33
F Houston, TX 0 Telecorp  10,150 7,613 0.25 ($1,869,539) -18%
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One of the three licenses, the F block, was reserved for “designated entities”
(small bidders), and the other two blocks were available to all bidders. The
small bidders also received bidding credit, that is, they paid a discounted
price. The net effect was that the small bidders paid virtually the same
prices as the larger ones.10

10Figure 3.1 shows the results of the bidding in the largest ten regions.
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Chapter 4

Optimal and VCG Auctions

Summary

This chapter provides a description of how the optimal bid strategy is cal-
culated for a bidder. This is then applied to characterize optimal auction
design. Finally, this chapter provides a characterization of all auctions in
which bidders will have incentives to accurately report true valuations, that
is, Vickrey-Clark-Groves auctions.

4.1 Optimal Auctions

This chapter characterizes an optimal auction. “Optimal” here is used to
mean an auction design and configuration that, for a forward auction, max-
imizes expected revenues. It turns out that most often many designs will
achieve the same expected outcome. This should be apparent from the rev-
enue equivalence theorem, which states that the English, Dutch, first-price,
and second-price auctions all result in the same outcome in the case in which
all bidders have independent private values. The reservation price is a config-
uration parameter of all four main auction formats discussed in the previous
chapter, and it can affect the outcome: the level of the reservation price can
determine whether or not an object is sold. On the other hand, a public

59
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and secret reservation, under the assumption of independent private values,
should result in the same expected revenues, assuming that all bidders will
participate and higher-value bidders always offer more than lower-value bid-
ders. In practice, bidders face participation costs, and so a private reservation
which reduces participation can influence the outcome and auction revenues.
This is also not to suggest that any two auctions will always result in the
same expected revenues, even assuming the same winners and the same reser-
vation prices. As will be explained in Chapter 5, when bidders values are
affiliated, the English auction generates higher revenues than does either a
first-price or a second-price sealed-bid auction.

4.2 Calculating Optimal Bid Functions

This section shows how to directly calculate optimal bid functions for a bid-
der seeking to maximize its expected surplus in a first-price auction. This
calculation can take two approaches. The first is to rely on RET, and esti-
mate the amount of the second highest bidder’s value. This approach works
for Dutch auctions and first-price auctions when bidders have independent
private values. The second, more general approach is to directly optimize
the expected bidder surplus.

The following describes how optimal bid strategies can be calculated for
the case in which there are N symmetric bidders competing in a first-price
auction. Each bidder j’s valuation, vj, is, ex ante, random. The density
function of the realized valuations is the same for all bidders, is denoted
f(v), and the corresponding distribution is F (v). A strategy is a function
β(v) mapping a bidder value into bids. Then, in this symmetric case, each
bidder of type v will choose a bid b to maximize (v − b)FN−1[β−1(b)].

This implies the first-order conditions

−FN−1
(
β−1(b)

)
+ (N − 1)(v − b)f

(
β−1(b)

)
FN−2

(
β−1(b)

)
β′−1(b) = 0

As β′
(
β−1(b)

)
= 1

β′(v)
, where b = β(v), the first-order condition can be rewrit-

ten as
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−FN−1(v) + (N − 1)(v − b)FN−2(v)f(v)/β′(v) = 0

or

d

dv

[
(v − β(v))FN−1(v)

]
= FN−1(v)

Integration implies

β(v) = v −
K +

{ ∫ v
0
FN−1(s)ds

}
FN−1(v)

(4.1)

Note that the condition that a zero-value bidder gets zero implies K = 0.

It is relatively straightforward to calculate optimal bids when values are
uniformly distributed. Let [v, V ] denote the interval over which values are
distributed, and L = V − v. Then the expected value of the high bidder’s
valuation is N

N+1
L + v, and this bidder’s expected price is N−1

N+1
L + v, which

can be derived from (4.1).

The simplest case is when there are two bidders whose have values uniformly
distributed over some interval, say [0,M ]. In this case, a bidder with value v
will wish to choose its bid, b, to maximize (v − b) b

v
. This leads to a solution

b = v
2
.

To calculate optimal bid functions more generally using this direct approach
requires an explicit formula for the distribution function F (v). The indirect,
RET approach offers a shortcut, through calculating the amount of the sec-
ond highest bidder’s valuation. An exact calculation of this latter amount
may be no easier than the direct approach, but to the extent that one can
approximately estimate the value for the second highest bidder, that will
make it easier to determine how to bid.

These approaches also assume that bidders are risk neutral. Consider a
bidder with value v, who can offer either b or b̃ > b. Let ρ be the probability
of winning with an offer of b, and ρ̃ > ρ be the probability of winning with an
offer of b̃. The expected payoff from bid b is is E(b) = ρ(v− b), and from bid
b̃ is E(b̃) = ρ̃(v− ṽ). In words, the offer of b̃ results in a lower payoff, with a
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difference b̃− b, but a higher probability of winning, ρ̃− ρ. This bidder can
strictly prefer b̃ to b, even when E(b) = E(b̃), or vice versa, depending on
the bidder’s preferences toward risk. If the bidder is more concerned about
winning than about the expected payment, it would prefer to bid more than
maximizes E(b).

4.3 Optimal Auctions

This section summarizes the key results from Myerson’s famous (1981) paper
on optimal auction design. An optimal auction, that is, one that maximizes
expected revenues for the seller, can be derived using two key insights from
Myerson’s paper. The first insight is that for any auction there is an equiva-
lent auction in which bidders are asked to report values. The second is that
the optimal bid strategy determines the shape of the function for the payoff
based on reported type, up to an additive constant. The constant can be set
to make the lowest-value bidder indifferent between participating and not
participating in the auction. This fully defines the optimal auction.

4.3.1 The Revelation Principle

Auctions for a single object can take many forms, and both losers and winners
can be required to make payments. The following assumes, as above, that
each bidder i’s type, or value, vi, is distributed according to a probability
density function, f(vi). The values are distributed over some range [ai, bi]
for i = 1, 2, . . . , N. A strategy for a bidder then is a choice of some action,
from a set of permitted actions defined by the rules, i.e., αi = αi(vi) ∈ Ai.

An auction “mechanism” is defined by the strategies and the rules for de-
termining winners and payoffs. A strategy, in the context of an auction
mechanism, is a choice of a bid amount as a function of the bidder’s type, v.
The winners are generally the highest value bidder, or bidders - in a multi-
object auction. And a bidder’s payoff is the value of winning (assuming it
wins) less the payment it has to make.
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A direct revelation mechanism is an auction in which bidders report values;
the probability of a bidder winning, ρ(v), and its payment, x(v), will be a
function of the vector of reported types of all the bidders, v. Note that the
actual type can differ from the reported type.

The revelation principle states that given any feasible auction mechanism,
there is an equivalent direct revelation mechanism which gives the seller
and all bidders the same expected utilities as the given mechanism. The
reason that the revelation principle holds is straightforward. Suppose bid-
der j of type vj in an auction would have chosen action a(vj). Then,
an allocation rule that gives each bidder the probability of winning pj =
pj[a1(v1), a2(v2), . . . , an)vn)] and allocation of xj = xj[a1(v1), a2(v2), . . . , an)vn)]
would provide each bidder the same incentives and outcomes as the given auc-
tion. In other words, one can back out strategies bidders would choose to
determine prices and allocations consistent with those that would result from
bidders’ optimal choices in the original auction.

4.3.2 The Revelation Principle and Optimal Auctions

The revelation principle was derived as a lemma in Myerson’s 1981 paper
and used in solving for optimal auctions. The payment rule and the rule
determining the probability a bidder of a given type wins determine the bid-
ders’ behavior and the auction’s outcome. This follows because the payment
rule and the probability of winning determine bidding incentives. A bid-
der will prefer to report being of type v to any other type v + ∆v when
S(v) ≥ S(v + ∆v)−∆v P [(v + ∆v)], where S(v) is the net surplus a bidder
of type v receives if it wins. As shown above, this condition fully defines the
surplus function, and therefore the payment rule, up to an additive constant,
Sj(v), which in turn determines the payment of the lowest-value bidder:

Sj(v) = Sj(v) +

∫ v

v

Pj(x)dx

Now, consider any two mechanisms that have the same Sj(v) and the same
Pj(v) for all v and for all players j. So, j’s expected payoff is the same for
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both mechanisms. This means that the auctioneer gets the same expected
revenues.

Therefore, the term Sj(v) determines the expected payoff to the lowest-value
bidder that actually bids. Variations in Sj(v), through bidder participation
fees, reservation prices, etc., will affect the total auction revenues. Thus,
the auction revenues can be written as a function of R = R(Sj(v)). The
optimal auction, that is, the one that maximizes seller’s expected revenues,
corresponds to the choice of an expected surplus for the lowest-value bidder.
This, in turn, is equivalent to the choice of a reservation price.

To see what this value is, consider the case where the seller does not have any
value for keeping the object, and where the bidders have values uniformly
distributed on [a, b]. An optimal auction will be a modified Vickrey auction
in which the seller sets a reservation price.

This is no longer a Vickrey auction, as the seller will have a preference to
set a minimum price for the case in which there is only one high bidder.
The simplest case is that of one bidder – the seller will want to choose a
reservation price of b−a

2
. This means that the seller will sell the object with

probability 0.5. Another way to see this is to look at expected revenue as
a function of the reservation price r. This will be r[1 − F (r)], and it is
maximized at r = b−a

2
.

The following calculations illustrate why the auctioneer will want to set a
positive reservation price and risk the object not being sold. Suppose the
values are uniformly distributed on [0, 1]. When there is no reservation price
and one bidder, the equilibrium in the totally noncompetitive “auction” is
for this bidder to bid a bit more than 0 in a first-price auction, and its value
in a second-price auction. This provides the auctioneer with zero expected
revenues. Now, if the auctioneer sets a reservation price, its expected rev-
enues are the reservation price times the probability that this bidder has a
value above that level. The optimal reservation price is 1

2
.

When there are two bidders whose valuations are uniform draws from the
interval [0, 1] and no reservation price, the expected revenue in a second-
price auction is 1

3
. On the other hand, if the auctioneer sets a reservation

price of 1
2
, it will receive an expected revenue of 5

12
.1

1 To see this, notice that both bidders will have valuations above 1
2 with probability 1

4 .
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More generally, for any n the seller will want to choose this same reservation
price at b−a

2
when bidders have uniform values on an interval [a, b]. The

probability of the object not being sold is 1
2

n
. For a large number of bidders

this probability gets arbitrarily small. When the distribution of values for
different bidders can have different upper and lower bounds, it is possible
that the revenue-maximizing auction will discriminate by allowing bidder-
specific reservation prices, so that a bidder who has a higher value, when ex
ante that bidder is expected to have a highe value, may still lose to a bidder
with a lower value.

Also, notice that an auction that maximizes expected revenues will not be
efficient. When an object has no intrinsic value for the seller, then the efficient
outcome is for the seller to award the object to the bidder with the highest
value for it. An open first- or second-price auction with no reservation will be
efficient in this sense. However, this will not maximize the seller’s expected
revenues. The seller will want to impose a positive reservation price.

When a government agency is auctioning off a resource, or concession, such
as a spectrum license, oil lease, or highway concession, the optimal auction
will not usually be the one that maximizes revenues. The agency may have
other objectives, such as ensuring that the object is acquired and used. For
instance, if an agency wants to promote development of the communications
sector, it is likely to prefer allocating spectrum for free, if no one is willing to
pay a positive price, with some sort of buildout requirement. This suggests
that a government agency should set a zero reservation – unless the revenues
lost from the optimal auction would need to be made up from a different
source, such as increases in tax rates. Indeed, there are times when an agency
will set a negative reservation price; for example, in allocating spectrum or
telecommunications concessions agencies may want to provide subsidies to
ensure target coverage goals are met.

This analysis assumes all bidders show up. If bidder participation can be
random or if there are participation costs, then another rationale for setting
a positive reservation is that the auctioneer would have the possibility of
withdrawing an object from the auction and reauctioning at a later date.

In this case, expected revenues are 2
3 . They both have valuations below 1

2 with probability
1
4 , resulting in the object being unsold. And then, with probability 1

2 , only one bidder
can meet the reservation price, and revenues equal the reservation price. This results in
expected revenues of 1

4 ×
2
3 + 1

2 ×
1
2 + 1

4 × 0 = 5
12 .
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When participation at each auction date is random, then, as explained in
more detail below in the analysis of multi-unit auctions, a positive reservation
price could increase revenues and efficiency. This is very clearly the case when
the auctions are conducted for future delivery of an object.

4.4 Incentive-Compatible Auctions

This section describes auctions which provide each bidder an incentive to
report true values. The simplest form of such an auction mechanism is
the second-price auction for a single object. For single-object auctions, the
second-price sealed-bid auction is a mechanism under which it is a dominant
strategy for bidders to report true values, that is, the auction is incentive
compatible. What is key to this incentive compatibility is that a bidder’s
increasing its offer has no affect on the price the bidder pays except when
this increase affects whether the bidder would have won, that is, when the
bidder is pivotal. What is shown below is that this idea can be extended to
multi-object auctions.

4.4.1 The Vickrey-Clark-Groves Mechanism

Recall that, from the RET, a second-price and a first-price auction for a sin-
gle object will, with independent private values, result in the same expected
outcome. However, it is not the case that bidder behavior will be the same.
Vickrey noted that in a second-price auction each bidder has a dominant
strategy to truthfully report the object’s value. In contrast, in a first-price
auction, each bidder will pay its bid, and each bidder will offer an amount
less than its value. In equilibrium, the amount by which the winning bidder
will shade its bid is the expectation of the second highest value. This section
shows is that in more general settings with multiple objects it is possible to
fully characterize all auctions in which bidders will always want to bid truth-
fully. Such auctions are called Vickrey-Clark-Groves (VCG) mechanisms. A
second-price auction is just a special case of a VCG mechanism.

What follows assumes additively separable utilities, that is, a bidder’s utility
of winning an object or allocation x can be written as ui = vi(x) + ti, where



4.4. INCENTIVE-COMPATIBLE AUCTIONS 67

ti is the monetary transfer that i receives. The revelation principle states
that it suffices to consider only direct revelation mechanisms in characterizing
auctions in which bidders will have incentives to truthfully report valuations.
In other words, bids can be assumed to take the form of reported valuations
for an outcome or an allocation.2

A VCG auction is a mechanism in which a bidder’s transfer satisfies the
following condition:

ti[w(x)] =
∑

w−i[x
∗(w)] + hi(w−i(x)) (4.2)

where x∗(w) is the allocation when w(·) = (w1(·), . . . , wn(·)) is the vector
of the reported valuations and w−i is the vector of valuations of all bidders
other than i.

Note that i’s bid only affects its transfer, or payment, in (4.2) to the extent
that i’s bid changes the allocation that other bidders receive. If i’s bid is
not pivotal, then i’s bid has no effect on its monetary payment. Further, it
can be shown that a mechanism that satisfies (4.2) has the property that i’s
transfer will equal the amount by which i’s bid affects the aggregate welfare
of the other bidders, i.e.,

ti(w−i, wi)− ti(w−i, w′i) =
∑

w−i(x
∗)−

∑
w−i(x

′) (4.3)

where x∗ is the allocation at (w−i, wi) and x′ is the allocation when the
reported valuations are (w−i, w

′
i). In other words, i’s report only affects i’s

transfer to the extent that this report affects the aggregate welfare of other
bidders. Indeed, this latter condition is essentially a necessary and sufficient
condition for an auction mechanism to provide bidders an incentive to bid
true values.3

2In Chapter 10, properties of VCG auctions are explained in further detail.
3See [31] for a more formal discussion.
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4.4.2 Properties of VCG Auctions

The second-price auction and, more generally, the VCG auction has the de-
sirable property of eliciting truthful revelation of preferences and of achieving
efficiency. This raises the question why the VCG auction should not be used
more generally. This section addresses this issue.

One property of VCG auctions is that a winning bidder does not have to
pay its bid amount. The gap between the winning bid and the payment
can be quite large. Auctions in which the second price was less than 2%
of the winning bid occurred among the first spectrum auctions.4 This gap
does not mean that there was necessarily any lost revenue. However, it does
suggest that a reservation price or a higher reservation price might have been
advisable. Such large gaps can look bad for the auctioneer and also require
post-auction rationalization, they invite challenges and litigation, and they
may result in cancellation or re-auction. A first-price auction or an English
auction avoids this second guessing. And, in some situation, an English
auction will also result in higher revenues.

VCG and Budget or Revenue Constraints

The VCG auction has a number of other properties that may discourage
its adoption. Recall that in a VCG auction, a bidder payment is given
by (4.2). One condition that might be needed to ensure feasibility of the
auction is some budget balance requirement. Or, in a government-managed
auction, the revenues might be capped or required to be distributed back
to the participants net of administrative costs. For example, the auction
can include contributions by users and offers from suppliers. The agency
conducting this (two-sided) auction might not be allowed to incur a deficit.
Absent some additional restrictions, the sum of the bidder payments in (4.2)
can otherwise be arbitrary. This limitation on transfers to bidders imposes
the condition that the sum of the terms in (4.2) is zero. However, as [54] has
shown, this type of restriction can be incompatible with the requirement for
a VCG auction to exist in (4.3).

4See Mueller [56].
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To see this, consider the case of two bidders for one object.5 The required
condition is that there are functions h1 and h2 that always add up to zero
Suppose that bidder 1’s possible values for the object are either 1 or 3, and
bidder 2’s possible values are either 2 or 4.

• If bidder 1’s valuation is 1 and bidder 2’s valuation is 2, then bidder 1
should pay p1 = h1(2) and bidder 2 should pay p2 = 1 + h2(1). So we
seek p1 + p2 = 0 = 1 + h2(1) + h1(2).

• If bidder 1’s valuation is 3 and bidder 2’s valuation is 4, then it must
be the case that p1 + p2 = 0 = 3 + h2(3) + h1(4).

• If bidder 1’s valuation is 1 and bidder 2’s valuation is 4, then it must
be the case that p1 + p2 = 0 = 1 + h2(1) + h1(4).

• If bidder 1’s valuation is 3 and bidder 2’s valuation is 2, then it must
be the case that p1 + p2 = 0 = 2 + h2(3) + h1(2).

Adding of the first two and last two equations from the above list requires
that

0 = 4 + h2(1) + h1(2) + h2(3) + h1(4) = 3 + h2(1) + h1(2) + h2(3) + h1(4)

This is impossible, so budget balance fails. More generally, this means that
a VCG auction may fail to exist when the auction must also meet specific
revenue targets, even when the revenue targets are consistent with bidder
valuations, such as raising zero net revenues in the above discussion.

4.4.3 Multi-object VCG Auctions

This section provides a brief description of some multi-product VCG auc-
tions; Chapter 10 provides more detailed analysis of multi-object VCG auc-
tions. Where bidders are each seeking to purchase at most one object, the
second-price auction can be readily modified for the case of k identical ob-
jects. More specifically, when all objects are sold to the k highest bidders,

5The following is from Milgrom [54].
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but for the k + 1st highest price, then each bidder will have as a dominant
strategy to bid its true value, as is the case in the standard second-price
auction.

Spectrum Auction Examples

Several spectrum auctions have been conducted using a modified VCG for-
mat.6 There have been a few auctions of identical spectrum licenses which
use a variation of the k + 1st-price rule, but are no longer incentive com-
patible. One was in Denmark in 2011.7 That auction included four generic
licenses, and bidders could win one license each. The four highest bidders
won, but paid the fourth highest bid amount. In this case it was no longer
true that a bidder would always want to bid its value. When it is possible
for a bidder to be a marginal bidder, then the bidder would want to shade
its offer, just as in a standard first-price auction.8

Lot Winner High Bid 2nd Bid
1 Sky Network TV $2,371,000 $401,000
2 Sky Network TV $2,273,000 $401,000
3 Sky Network TV $2,273,000 $401,000
4 BCL $255,124 $200,000
5 Sky Network TV $1,121,000 $401,000
6 Totalisator A.B. $401,000 $100,000
7 United Christian $685,200 $401,000

Table 4.1: New Zealand 8 MHz UHF TV license auction

Another series of spectrum auctions in New Zealand used a second-price rule
(Mueller ([56])). However, these auctions were not incentive compatible, as
bids for each identical license were taken separately, and the price for each
license was the second highest bid for that license. Table 4.1 from [56] shows

6 See http://stakeholders.ofcom.org.uk/spectrum/spectrum-awards/ for examples of
such auctions in the UK.

7See http://en.itst.dk/spectrum-equipment/Auctions-and-calls-for-tenders/3g-
hovedmappe/3g-auction-2001-1

8There was no document released by the Danish government indicating the reason for
this provision. It may be the case that this auction design could result in higher prices,
or, at least, it would be less obvious when a bidder paid much less than its value.
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one such simultaneous auction for seven identical licenses. The prices paid
ranged from NZ$100, 000 to NZ$401, 000.

The New Zealand government also conducted a set of separate second-price
auctions for three cellular licenses. The relevant bids for these three auctions
were as follows: The following tables - 4.2, 4.3 and 4.4 show the results.

Bidder Bid amount
Telecom New Zealand NZ$101,200,000

First City Capital NZ$11,158,800
Imagineering Telecommunications NZ$1,388,000

Table 4.2: New Zealand AMPS A Auction

Bidder Bid amount
Bell South NZ$85,552,101

Telecom New Zealand NZ$25,200,000
Racal-Vodafone Ltd NZ$1,000,000

Broadcast Communications Ltd. NZ $2,000

Table 4.3: New Zealand TACS A Auction

Bidder Bid amount
Bell South* NZ$85,552,101

OTC International* NZ$13,250,000
Telecom New Zealand* NZ$7,000,000

Broadcast Communications Ltd. NZ$5,000
Michael Oliver Thaisen NZ$300

Table 4.4: New Zealand TACS B Auction

The winning bidders had to pay NZ$11,158,800 and NZ$25,200,000 for the
AMPS-A and TACS-A licenses. The three high bidders for the TACS-B
license (marked *) were disqualified, and the entire auction was rerun. In
these auctions for cellular licenses, the bidders had to determine how to bid
across auctions. Even where the bids are collected at the same time, bidders
still need to guess how to bid.9

9See [56]. It is unclear from Mueller whether the auctions were simultaneous or sequen-
tial.
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As noted above, there are incentive-compatible VCG designs for multi-product
auctions. Chapter 10 below characterizes prices and outcomes in such auc-
tions, as well as the variants of VCG auctions being used for selling spectrum
licenses in a number of European countries.

4.4.4 VCG-like Mechanisms for Advertising Auctions

One area in which a variant of the second-price auction is commonly used
is for position in the ad sections of online search engine web pages, such as
Bing and Google. When someone enters a keyword, e.g., “plumber,” the
top of the screen will contain a small number of ads. Which ads appear
depends on continuous online bidding for the positions. These auctions now
generate billions of dollars in annual revenues.10 The following describes the
mechanism used for these auctions, which is a variant of the VCG auction.

To use Varian’s [71] notation, it is assumed that there are A agents competing
for S < A slots. The bids typically take the form of a fee paid by the winner
per click-through. The higher slots are assumed to have a higher click-through
rate (ctr), xs. So, a bidder that derives a profit of va per click will earn a
profit of uas = vaxs from winning slot s. The slots are numbered in such a
way that xj > xj+1 for all j = 1, 2, ..., S−1. Table 4.5 summarizes the Google
auction.

Position Value Bid Price CTR
1 v1 b1 p1 = b2 x1
2 v2 b2 p2 = b3 x2
3 v3 b3 p2 = b3 x3
4 v4 b4 p1 = b4 x4
5 v5 b5 p1 = 0 0

Table 4.5: Position Auction Bids and Payoffs

Bids for these slots take the form of a bid per click-through. So, if a bidder
with value per click-through va pays ps = bs+1 for slot s, then that bidder’s
profits are xs(va − ps) = xs(va − bs+1). In other words, the bidder that wins

10Varian [71] gave a figure of over $10 billion for 2005, just for Google and Yahoo.
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slot s pays the value the next highest bidder would have derived from that
slot.

Varian shows that this pricing rule will result in the same allocation and
payments at a symmetric Nash equilibrium as the VCG pivot mechanism.11

Thus, the position auction does provide bidders some incentives to bid truth-
fully. However, this result rests on a number of assumptions. I briefly list a
few.

First, it is assumed that bidders each would receive the same ctr, xs, from a
given slot. It is unclear why this assumption is reasonable. Indeed, bidders
may place different priorities on getting the top slot.

Second, bidders may have advertising budgets limiting what they can bid.
Suppose, for example, there are two bidders, each having a budget of 100,
and each wanting to buy a high position for the same three keywords. There
will be no way for two bidders to allocate their budgets so that the resulting
outcome is a Nash equilibrium in pure strategies. Each will want to try to
pick up one slot cheaply, leaving a lot over for a second slot. Indeed, there is
no equilibrium in pure strategies.

Third, values of some slots can depend on other slots won. There can be
both substitutes and complements. The Google auction does not allow for
the type of contingent or package bids that are required if bidders are to
convey true values.

4.5 Summary

This section concludes with a brief discussion and example of how the prin-
ciples of optimal auction design discussed in this chapter can be put into
practice. As is explained below, there may not be a single optimal auction
design, or if there is one, the conditions under which it applies may be overly
restrictive. This discussion uses an example from an actual auction design
problem to illustrate some of the main issues.12

11The pivot mechanism has each bidder pay the difference between the aggregate value
of rivals’ winning bids without that bidder and the value with that bidder.

12Much of what follows is based on [53] and joint work done on a related project.
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The design problem being addressed was to determine how to best allocate
universal funds to support universal telecommunications service goals in the
United States. The US Federal Communications Commission (FCC) and the
state regulatory commissions established the Joint Board on Universal Ser-
vice. The purpose of this agency is “to make recommendations to implement
the universal service provisions of the Act. This Joint Board is comprised
of FCC Commissioners, State Utility Commissioners, and a consumer advo-
cate representative.”13 The Act established a fund to promote deployment
of telecommunications services in rural areas in for under-served segments.

The problem was to find an efficient auction design. This design had to meet
the objective of minimizing costs for each market area receiving funding.
In other words, the auction design was to maximize the benefits that could
be provided with a fixed available amount of universal service funds. The
auction design needed to take account of a number of features of the market.
First, there was the problem of dividing the market into areas of a size
appropriate to the potential service providers. This is a problem addressed in
more detail below. For universal service funds, the potential service providers
included wireline telephone companies, cable television, and cellular firms.
This suggested certain geographic areas.

One additional concern was that there could be post-auction holdup or per-
formance failures. Auction winners would be more likely to meet their uni-
versal service commitments if there was competition in the market. Unfor-
tunately, this form of competition can result in excessive costs due to un-
necessary duplication of facilities. The proposed way to address this tradeoff
was to include in the benefits accruing to consumers an extra factor for the
presence of post-auction competition in a market. This meant that a second
provider would be selected when the costs imposed by that provider were
below a certain level.

The auction design problem was to derive conditions on the set of winners
and payments that had to be satisfied at an optimum. What was shown
was that an optimal auction design was any design for which the efficient
set of providers almost always won, and for which the highest-cost winners
earned zero profits.14 What this result does not provide is an explicit char-

13See http://transition.fcc.gov/wcb/tapd/universal service/JointBoard/welcome.html.
14See [53] for details.
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acterization of the optimal auction design; rather, it indicates than there is
an entire class of auction designs that all achieve the same outcome. This
general result does have some directly useful implications. For instance, it
indicates that the market structure should be endogenous. However, it is left
for the auction designer to develop specific rules and verify they do indeed
satisfy the conditions for an optimum allocation.
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Chapter 5

Imperfect Information and the
Winner’s Curse

Summary

This chapter describes auctions in which bidders have imperfect informa-
tion about the value of the object for which they are bidding. One specific
case is that in which the object has the same common value for each bidder,
but bidders have different ex ante estimates of the value. This chapter also
examines auctions in which bidders have affiliated values, that is, bidders’
values are correlated in some way. What this means is that winning provides
information, and so bids should be adjusted to allow for this fact.

5.1 Common Values and Order Statistics

Competing bidders often have to bid without having perfect certainty over
values. A bidder may have an ex ante belief, or prior, about the value.
That prior, which can be modeled as a probability distribution, and one in
which the possible range of values is bounded both above and below, may
be correlated across bidders. For example, in any auction for a durable asset
with a resale market, such as real estate or a building, bidders’ values will

77
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be correlated, as part of each bidder’s value is the potential gain from resale.
In the pure common-value case, all bidders will have the same value ex post,
even if they have different forecasts of value ex ante. Bidders for oil leases will
usually have only imprecise, and sometimes asymmetric, information about
the amount of oil available in the tract being auctioned,1 but all bidders may
have the exact same value ex post – the value of the oil in that tract. In any
auction in which value depends on future prices, such as oil for oil leases,
or on complementary products, the bidders’ valuations must contain some
common-value components.

In a common-value auction, the winning bidder will tend to have the most
optimistic forecast value, and thus tend to overestimate the value. This will
be true, for instance, when each bidder has access to a signal of the value
of an object; then the bidder with the highest signal will generally want to
bid the most. In this case, the winning bidder will tend to overpay whenever
the underlying value is the same for all bidders, i.e., in a pure common-value
auction, unless that bidder adjusts its bids to allow for the fact that being
high bidder means it has the most optimistic signal. If each bidder bids up
to its ex ante, unconditional expected value, as it would in a second-price
auction in the pure private values case, the winning bidder will likely bid too
much.

To see why this is the case, suppose that the true value of an object is
V , and n bidders have signals sj, j = 1, 2, . . . , n, uniformly distributed on
[V − k

2
, V + k

2
]. If bidder j offers sj, then the expected price is V+kn−3

2(n+1)
, which is

greater than V whenever there are four or more bidders. In other words, the
bidder with the highest signal will have a value which, on average, will exceed
the true value by k n−1

2(n+1)
. Knowing this, such a bidder should discount its

bid accordingly. A naive bidder, failing to make such an adjustment, might
win the auction, but suffer losses. Such was the experience of bidders for oil
leases as documented in [17].

It is easy to see that the RET can fail when there are common values, or
even when bidder valuations are affiliated, that is, imperfectly correlated.
Consider the above example of a common-value auction. In a common-
value auction, the rival bidders can have accurate forecasts on average, but
the winner in each auction will tend to be that bidder that has the most

1See [17] or [35] for a discussion of oil lease auctions.
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optimistic forecast in that auction. In the second-price auction, bidding
the ex ante signal of its valuation is the dominant strategy when values are
independent. However, while it still might be the case that a bidder should
bid its ex ante value in a second-price auction, conditional on being the
winner among n bidders, it is no longer true that this value should be the
stopping price in the English auction is adjusted each time a different bidder
drops out. The question addressed here is how auction formats compare with
common or affiliated values.

This chapter also addresses the more general question of how imperfect and
asymmetric information can affect bidding behavior and the auction out-
come. More specifically, the precise information structure can affect bidder
behavior. When bidders have affiliated values, the structure of information
can matter a great deal. As is explained in further detail below, it can matter
more whether information is private than whether it is precise.

5.2 Bidding Strategy in Common-Value Auc-

tions

This section assumes a pure common-value auction, that is, each bidder i has
a signal xi = v + εi of the true value v.2 It is also assumed that the signals
are drawn from a common density function f(ε). Note that the expected
value, conditional on all n bidders’ signals, is 1

n

∑
xj. While it is true that

E(xj) = v = 1
n

∑
xj (where E(Z) denotes the expected value of Z), it is

not the case that E(X1) ≡ E(maxj{xj}) = v. In other words, the likely
winning bidder will usually be the bidder that has the highest signal and
will have an expected value, conditional on winning, that does not equal the
unconditioned expected value. Thus, in an auction, the bid strategy must be
adjusted for this bias, to avoid the winner’s curse. This adjustment will be
based on the information available to the winning bidder, and that bidder
has to make his or her final decision about a last and best offer. Because
the information available can depend on the type of auction, the expected

2In contrast, in a pure private values case, each bidder’s valuation is independent, i.e.,
there is no common value term, v.
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revenues of different auctions, such as English and Dutch, need not be the
same.

5.2.1 Bid Strategy in Dutch and First-Price Auctions

In a first-price auction, (4.1) determines the optimal bidding strategy, assum-
ing independent private values. As above, let β(s) denote the equilibrium
bid function for all other bidders, and assume a symmetric equilibrium. In
the case of common values, it is still true that a bidder with a signal s of
value v will, at equilibrium, not want to shade its bid below (increase its
bid above) β(si) when the lower (the higher) probability of winning will not
exceed the benefits of reducing (increasing) its cost should it win. That is,
using the notation of Chapter 4,

E
[
v − β(si + ∆s)|si + ∆s ≥ sj, j 6= i

]
≤ E

[
v − β(si)|si + ∆s ≥ sj, j 6= i

]
This condition just states that a bidder with signal si will not want to re-
port it has a different signal sj ± ∆. Moreover, this condition is the same
as used in deriving (4.1) except that the expectation was not conditional
on the bidder having the highest value signal. More to the point, in the
independent-private-values case of Chapter 4, the probability that a bidder
would attach to winning is not affected by others’ values, whereas bidders’
values are so affected in the common-value model. Thus, it is still the case
that the optimal bidding rule has the same form as in (4.1), with the excep-
tion that the distribution function is conditional on the bidder in question
having the highest value, i.e.,

β(v) = v −
K +

{ ∫ v
0
FN−1(s|v > s)ds

}
FN−1(v|v > sj for all other bidders j)

(5.1)

Moreover, it is also the case that a bidder in a first-price auction will face
exactly the same tradeoffs as in a Dutch auction. In both cases, each bidder
will want to shade its bid a bit, that is, bid below value. Moreover, in
each case a bidder will face the same tradeoffs in making that decision. A
winning bidder will want to enter a bid, at an amount less than value, that



5.2. BIDDING STRATEGY IN COMMON-VALUE AUCTIONS 81

maximizes its expected surplus conditional on its having the most optimistic
value. Thus, the strategic equivalence of the Dutch and first-price sealed-bid
auctions carries over to the common-value case.

5.2.2 Bid Strategy in a Second-Price Auction

In a pure common-value auction, the firm with the highest value estimate will
win and pay the amount offered by the bidder with the second highest value.
So, if any bidder wins, it will have the highest signal, and its offer should be
discounted accordingly. The offer should equal how much the bidder expects
the value to be, conditional on its forecast having the highest value. The
amount that a bidder should offer is still equal to its true expected value.
However, the expected value is no longer the signal or forecast value.

5.2.3 Bid Strategy in English Auctions

When bidders’ valuations are independent, the optimal bid strategies in the
second-price and English auctions are essentially equivalent. In the English
auction, a bidder will want to bid up to its forecast value, and then drop
out; in the second-price auction, a bidder will bid its ex ante forecast value.
The outcome is also the same. To see this is no longer true when there
are common values, it suffices to consider the decision facing a bidder about
when to drop out in an English auction.

Consider a bidder that has a signal s about the value of the object being
auctioned. Further assume that this is a pure common-value auction. What
follows describes the bidding decision for a Japanese-style English auction,
that is, an auction which starts with a low price which the auctioneer grad-
ually increases until there is only one bidder remaining. Bidders, at each
increment, must indicate that they are still in the auction or drop out. Once
a bidder drops out, it is never allowed back. And bidders each see how many
bidders remain after each bid increment.

If the bidder has not seen any rival drop out, then the worst case – that is,
the case in which the bidder would have the lowest conditional forecast value
– is when all rivals have a signal which is just the same as its own. So, if the
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true mean forecast is 1
n

∑n
k=1 sk, a firm with the signal s should drop when

the price reaches the expected value E[V |sk = s for all k].

Let p1(s) denote the value of the first drop. Notice that this is a strictly lower
amount than a bidder might forecast to be the expected value, assuming it
has the lowest value signal.3

Then the next drop must occur when the bidder with the second lowest value
signal can expect to lose money if it should stay in. The decision about when
to drop for the bidder with the second lowest value signal needs to be based
upon what its forecast would be, conditional on its winning. The only way
such a bidder (call it bidder 2) can win is if all its remaining rivals have the
same value as it does, unless it bids too much. Bidder 2 will bid too much if it
stops after higher-value bidders have dropped out. The worst case for bidder
2 occurs when every rival has the same value, just a bit more than bidder
2’s value, and they all drop out at a price just above where bidder 2 might.
Bidder 2 can wait, with the expectation that the actual value is better than
the worst case; however, this bidder does not want to win if it actually has
the second lowest signal, and so its choosing to drop out, assuming the worst
case, is, in this instance, a dominant strategy.4 Let βk(s, hk−1) denote the
strategy for the kth bidder to drop out given that the history of the k − 1
previous drops is hk and the bidder has signal s. Also, suppose bidders are
indexed in order of the value of their signals.

Let β2(s, p
1) = E[V |β1(s) = p1(s), sj = s for all j ≥ 2], where sj is the jth

highest signal. Then β2(s, p
1) specifies the optimal price at which to drop

out of an English auction for a bidder with the second lowest signal. One
can iteratively define an optimal stopping price for each bidder,

βk(s, hk−1) = E[V |sj = s for all j ≥ k, hk]

These strategies yield optimal prices for a bidder to drop out, except for
the last two bidders. The last two bidders will see that all other bidders
have dropped out. Thus, the remaining bidder with the lower signal should

3Suppose, for example, forecasts are uniformly distributed on some interval [V − 1
2 , V +

1
2 ], where V is the unknown true value. Then the expected value of V for a bidder that
knows it has the lowest forecast value sN among N bidders is sN − 1

N+1 + 1
2 .

4If there are only two bidders, then this analysis needs to be modified, as in this case
the second lowest bidder would want to wait longer.
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assume its last remaining rival has a higher signal. For example, suppose
that there are two bidders to start the auction. Also, suppose that these two
bidders have signals that are sj = V + εj, where εj is uniformly distributed
on [−1

2
,+1

2
]. If the bidders do not know the true value V , then the lower-

value bidder should drop out when the price reaches its signal plus 1
6
, as the

expected value of the lower value signal will be V − 1
6
, and that of the higher

value signal will be V + 1
6
.

This induction approach defines optimal bid strategies for a sequence of
common-value English auctions. Assuming risk-neutral bidders, bidders will
drop out in the order of the value of their signals, and the bidder with the
highest signal will win, but will only pay the price at which the second-
highest-value bidder drops out.

5.2.4 Comparisons between English, Second-Price, and
Dutch Common-Value Auction Outcomes

The above provides an analysis of the optimal bidding rules in English, Dutch
or first-price, and second-price auctions when there are common values. Com-
mon values mean that bidders need to adjust their bids to reflect that win-
ning provides information. In other words, the winner will tend to have the
most, and an overly, optimistic forecast.5 In many auctions, bidders’ values
have common-value components. [17] observed that bidders for oil leases
often failed to adjust for the winner’s curse, and as a result winning bidders
tended to overbid. These were not pure common-value auctions, i.e., bidder
values included not only the common value of the underlying oil, but also
the knowledge, costs, and ability to exploit the oil lease, which could differ
across bidders. However, bidders still needed to adjust for the likelihood that
winning means that a bidder has made an overly optimistic forecast.

As an illustrative example, suppose bidder signals of values are distributed
uniformly on some interval [V − 1

2
, V + 1

2
], and bidders do not know V .

Suppose that the true value is V . So, the expected value of the jth lowest
signal will be sj = V − 1

2
+ j

n+1
.

5If there are only two bidders, or if the number of lots available is more than half the
number of bidders, then the marginal losing bidder will tend to have a forecast value that
is below the true value.
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In a second-price auction, a bidder that has a signal s will have expectation
that the true value is s − n−1

2(n+1)
conditional on its being the winner. This

implies that the expected value for the bid amount of the bidder with the
second highest signal is V − n−1

n(n+1)
.

On the other hand, in an English auction, the bidder with the jth lowest
signal will want to bid up to the point at which the price equals s1+sj

2
. The

expected value of this price is then V
2
− V

2(n+1)
. That is, in the English auction,

the expected price is higher, and closer to the expected value. This is not
always true, but when there are common values, the expected price in the
English auction cannot be less than in the second-price sealed-bid auction.

And finally, in a first-price sealed-bid auction, a bidder with signal s that
offers β(s) = s− x will have a probability of winning of s− V + 1

2
, and will

win V − (s−x). The bidder will want to maximize the expected value of this
with respect to x. It can be shown6 that the optimal bid is β(s) = s− 1

2
, or

x = 1
2
. This results in an expected value for the price of V − 1

n+1
.

Summarizing, the expected price is

• In an English auction: V − 1
2(n+1)

• In a second-price auction: V − n−1
n(n+1)

• In a first-price auction: V − 1
n+1

.

So, in this example, and more generally, the equilibrium price in an English
auction will be the price from a second-price auction, which, in turn, will
exceed the price from a first-price auction.

5.3 Almost Common-Value Auctions and In-

formational Asymmetries

Bidders can differ in the amounts of information they have access to and
in their underlying values. For example, in the types of oil lease auctions

6See [41].
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described in [17], some bidders may have access to better geological infor-
mation than their rivals. Moreover, there are investments in complementary
facilities that some bidders may have already incurred and rivals have not.7

The optimal auction strategy, and thus the outcome, will depend a great deal
on how information is distributed among the bidders.

The preceding section considered the case in which, ex ante, all bidders have
the same quality of information, although not usually identical information.
Bidders may all derive value from the same unknown variable, such as the
amount of oil in an oil tract, but will typically have different views or forecasts
as to the magnitude of this common value. This type of model is sometimes
referred to as an oil lease model.

However, bidders need not be symmetric. First, some bidders may be better
informed than their rivals. This is the situation in drainage or resuscitation
tract auctions; in such auctions, those bidders that have previously explored
or developed the tract will have knowledge about reserves and costs that
rivals do not have. Sometimes, informed bidders may not all have access to
the same information. In other cases, bidders will have some private values,
that is, economic advantages. This is the case, for instance, when some
bidders have previously invested in complementary assets, such as storage
and pipeline facilities. This cost advantage, or value premium, gives these
bidders an advantage over rivals.

5.3.1 Auctions with One Informed Bidder

This subsection considers the situation in which one bidder is informed, and
the other bidder or bidders are uninformed, about the value of the object for
sale. In the simplest case, the value can be high, H, with ex ante probability
ρ, and low, L, with probability 1 − ρ. Assume too that this is a first-price
sealed-bid auction. In this situation, the informed bidder will want to bid
just high enough to make uninformed bidders indifferent between bidding
and not bidding. More specifically, let x = ρzH + (1 − ρL), where z is the
probability that an uninformed bidders wins when the value is actually H.
If the uninformed bidder always bids x, and the informed bidder offers x

7See for example [35] .
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when the value is H, then the uninformed bidder will be indifferent between
bidding and not. Any lower bid will mean that the uninformed bidder can
bid a bit more and always win when the value is high. Any higher bid will
mean the uninformed bidder would not bid.

This logic can be generalized for any number of uninformed bidders. Some-
what surprisingly, the outcome is the same. One key requirement for an
equilibrium is that uninformed bidders must just break even, conditional
on winning; otherwise the informed bidder should raise its bid. If there is
only one informed bidder, then the equilibrium bid is the same no matter
how many uninformed bidders there are. The other key requirement for an
equilibrium is that no bidder has an ex ante negative expected payoff.

Notice that a pure common-value English auction ends up as essentially a
first-price sealed-bid auction for the two bidders that have the most optimistic
forecasts. After all but the last two bidders have dropped out, each of the
two remaining bidders will know its own signal, and each will know that, if
it is not the last to drop, then it will have the highest value signal. The one
with the high value signal will know this value, which its only remaining rival
can only guess at. Analytically, the firm with the lower forecast of the two
will not want to wait too long to drop. The difference is that in the common-
value auction, the last two bidders do not know which is the stronger until
after the auction ends.

5.3.2 Auctions with Both Informed and Uninformed
Bidders

When there are two or more informed bidders, and uninformed rivals, the
uninformed rivals will generally be at a critical disadvantage. If the informed,
or better-informed, bidders have identical information, then they will bid
prices down to the point where uninformed bidders cannot break even. In
other words, uninformed bidders do not want to win. For any common
signal, the informed bidders will never, in equilibrium, submit any offer that
will leave a positive profit. If one informed bidder did submit such an offer,
then an informed rival would seek to submit a slightly lower bid amount.
Thus, if an uninformed bidder wins, it will have bid too much, and will lose
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money. This situation is then logically equivalent to a pure common-value
auction among the informed bidders, with uninformed bidders not bidding.

The situation is different when bidders have different information. In that
case, if several bidders have access to the same information, then none of
those bidders will be able to earn positive expected profits. On the other
hand, if one bidder has access to even very imperfect signals about the ob-
ject’s value that its rivals do not have, it can earn a profit. For example,
suppose one bidder has a signal of value that has a high variance, and several
other bidders have access to an identical, low-variance signal. The bidders
that have the same information will compete away profits. When the bidder
with different information has a positive signal, while the others have a neg-
ative or lower signal, it can win, and earn a positive return. In other cases it
will not win.

5.3.3 Other Asymmetries

Most auctions have common-value aspects. Often bidders differ in many
other ways. After any uncertainty is resolved, bidders can have much different
underlying values – due, for instance, to differences in costs or ability to
derive benefits from what is available. If a single bidder has a value or
cost advantage as well as an informational advantage, then the analysis is
essentially the same as in the case in which there is a single informed bidder
competing with one or more uninformed bidders.

On the other hand, with several informed bidders, only one of which has
a value or cost advantage over its rivals, the higher-cost informed bidders
should not win, but their presence will mean that uninformed bidders should
not bid, or bid only very low. An uninformed bidder can have a cost advan-
tage over an informed rival. This case is more complex in that the information
advantage can fully or partially offset the benefits of the value differential.

More specifically, the informed bidder may choose to bid low, and accept a
low or zero probability of winning, if it has a negative signal of the value,
and to bid aggressively if it has a positive signal. The bidder with the higher
value may want to reduce its bid, knowing it will derive lower net value if it
wins. If it may be the case that the strong bidder will never want to allow
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the informed bidder to win: it will want to keep its bid high enough to win
all the time. Alternatively, the strong bidder may want to allow the informed
bidder to win when it has a positive signal. In this case, the informed bidder
will bid just high enough to top the informed bidder when the value is low.8

5.4 Summary

This chapter has examined the influence that uncertainty in a common or
affiliated value has on the outcome of an auction. Bidders facing this type
of uncertainty will want to adjust bids to offset the impact of the winner’s
curse: winning means a bidder has the most optimistic forecast, which will
usually be too high. One of the key results of this chapter is that an open
auction allows bidders to aggregate information. This reduces the winner’s
curse and increases auction revenues. Thus, an English auction will generate
greater revenues than a first-price or second-price sealed-bid auction.

This chapter also explains how one can calculate an optimal bid strategy to
correct for the winner’s curse. The calculation essentially involves correcting
estimates of values and optimal bids for the fact that having the winning bid
means that the bidder has the highest (most optimistic) signal. It turns out
that the additional information available to the winning bidder in an English
auction increases the precision of value forecasts. The second-price auction
will also generate more revenue than a first-price auction.

This type of analysis has had some practical and observable implications
for oil lease bids. This is one situation in which bidders have experienced
the winner’s curse, and presumably learned how to adjust their bids. The
empirical evidence9 suggests that bidder experience has allowed bidders to
adjust bids in line with what is an ex ante optimal bid strategy. [30] also
suggest that this is also likely to be the case with asymmetric information.

8Suppose the strong bidder places a value that is 2 higher than the uninformed bidder’s,
and that the value to the informed bidder can be 2 or 8. If the probability of a high value
is sufficiently great, viz., 2p − 4(1 − p) > 2(1 − p), where p is the probability of a high
value, then the strong bidder will always win, and will bid 8. This bidder will win 2 with
probability p and lose 4 with probability 1− p. For smaller values of p, the strong bidder
will prefer to allow the informed bidder to win when the value is high.

9See [60].
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Undoubtedly, the winner’s curse arises in other auctions, but it is less well
documented than it is for oil lease bids. There is, however, extensive ex-
perience with spectrum auctions, and there are numerous cases in which a
bidder has won only to find it overpaid. The most striking example is the
German 3G auction in 2000. In that auction, two bidders, Group 3G (a con-
sortium which included Sonera and Telefonica) and Mobilcom Multimedia
(with France Telecom as the major mobile operator in the consortium) each
paid approximately $8 billion for a license, only to abandon it a short while
after the auction. Neither operator ever launched.10 These were very large,
and presumably well-prepared and sophisticated, firms.

The ability of bidders to offset for the winner’s curse can be very limited.
Experimental evidence suggests that the calculations can be hard for bidders
to make accurately. As the theory suggests,11 providing more information
to bidders should improve welfare and efficiency. In practice, however, it is
unclear in many cases (especially one-off auctions or auctions that are very
sporadic for bidders) how to correct accurately for the winner’ curse.

10A few years later, Telefonica reentered the German market through an acquisition of
one of the winners, and was losing money as of 2011.

11See [55].
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Chapter 6

Sequential Auctions of
Substitutes

Summary

This chapter examines sequential auctions of multiple lots of an identical good
or service. The question addressed is whether price systematically increases
or decreases from one auction to the next. Such systematic price patterns
can be an important consideration for bidding strategy and for auction design.
First considered is a sequence of auctions with an identical pool of risk-neutral
bidders. It is shown that under fairly general conditions the expected price
will tend to neither increase or decrease across auctions. It is also shown
that when bidder opportunity costs can change from one auction to the next,
or when bidders are risk-averse, definite pricing trends will arise.

6.1 Multiple-Lot Auctions

A single auction or auction event will often include multiple units of identical
or similar products. This chapter examines auctions in which the lots are
sold sequentially, generally one at a time. Subsequent chapters consider
alternative auction designs in which a single auction process, or even a single
package bid, can include multiple units, or even multiple objects.

91
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Bidders participating in a sequence of auctions will need to decide how high to
bid in any given auction when there are other auctions to follow for identical
or similar objects. This is especially the case In a sequence of auctions;
an aggressive bid early in the sequence can lead to regret when prices are
significantly lower in subsequent auctions. Conversely, a bidder who decides
not to bid up to his or her value in an early auction can be disappointed
with much worse prices, and the possibility of being shut out, in subsequent
auctions.

This chapter describes solutions to the sequential decision problems facing
the originator and the bidders. The analysis of the solutions to these decision
problems is then applied to characterize expected equilibrium outcomes in
different types of sequential auctions. Most of what follows assumes that
each bidder is interested in at most one unit, so that strategic withholding is
not a consideration. Thus, a bidder considering whether to improve its offer
for any lot will have to weigh the extra probability of winning the current
auction against expected surplus that it will receive for waiting for one of
the next lots. The number of remaining lots and the number of bidders can,
in theory, affect this calculation, and in a surprising way. This calculation
can be affected if bidders are risk averse, or if their opportunity costs change
across auctions.

The auctioneer, at times, will also have a choice about how to allocate what
is available for auction over time and across auctions. This type of timing
decision is common in energy procurement1 and in many other sectors.2 As
is explained below, this decision can affect overall revenues. In addition,
the auctioneer may consider different reservation prices, and different ways
to split the quantity available across auctions. The auctioneer can consider
reservation prices based on offers in the auction, choosing to defer some vol-
ume to the next if competition is low, and the reverse if competition is high,
in an initial auction; in other words, the auctioneer can choose the quantity
to carry over from one auction to the next, based on the level of competition
as well as on other factors, such as pre-auction price expectations.

1See for example www.bgs-auction.com. These auctions stagger purchases over time.
In addition, each auction contains a provision for deferring procurement to a later date
should participation in any one auction be limited. See also [49] .

2See for example www.globaldairytrade.info for wholesale dairy auctions, and
www.cranberryauction.info for wholesale cranberry auctions.
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These decisions become more complex when the products are imperfect sub-
stitutes. In this case, the order of what is offered can affect bidder decisions
and the overall outcome.

6.2 The Declining-Price Anomaly

An item sold in one auction will often have a copy, or a similar item, available
in subsequent auctions. It has been observed that prices will tend to vary
quite a bit even when identical objects are auctioned one after another in the
same auction event. This suggests that auction design and strategy can affect
the outcome. This also appears to contradict one of the fundamental results
of economic theory – that all parties face the same price for the identical
product in a competitive market. [4] refers to this lack of price uniformity in
these auctions as “the repeal of the law of one price.” This phenomenon has
been the subject of numerous theoretical and empirical studies.

This lack of consistency in prices was noted in a study of wine auctions and
is illustrated in Figure 6.1.3 The first auctions for the 1961 Palmer and 1927
Croft each sold for a significant premium with respect to the final auctions.
This data appears inconsistent with standard models of perfect competition.
This and other empirical evidence suggests what is often called an afternoon
effect or a declining-price anomaly ; that is, as in these wine auctions, for the
early lots to sell at a premium relative to the later lots is fairly common,
and much more common than for prices to increase across auctions.4 The
task addressed in what follows is to identify the factors that determine what
patterns of prices arise in practice.

In theory there are two effects. One is that bidders should want to bid less
aggressively for the first lots than for the later lots. In the first auction there
are more remaining chances to win. In the last auction, bidders should be
willing to bid up to their reservation values, but not in the other auctions.
This logic means that a bidder’s optimal bidding strategy should be to bid
an increasing fraction of its reservation price from one auction to the next.
However, the countervailing factor is that the first winners will tend to be

3See [4] .
4See [4] and ([5] .
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Christie's
London

Sotheby's
London

Christie's
Chigaco

Butterfield's
San Franc. Total

Later price
higher 271 143 90 20 524

(11%)

Later price
lower 628 430 183 41 1282

(28%)

Later price
equal 1498 1073 226 39 2836

(61%)

Source: "Liquid Assets", The Intemational Guidet o Fine Wines,I ssue No. 4, Spring 1988.

Distribution of price patterns for identical wines sold in same auctions (number of auctions)

Lot size Price Price/
bottle Lot size Price Price/

bottle Lot size Price Price/
bottle Lot size Price Price/

bottle

Lot 1 12 920 77 12 800 67 12 480 40 10 400 40

Lot 2 12 800 67 12 800 67 12 480 40 12 500 42

Lot 3 12 700 58 12 750 63 12 480 40 12 500 42

Lot 4 12 650 54 24 480 20 12 480 40

Lot 5 12 650 54 24 480 20 12 480 40

Lot 6 12 650 54 20 480 24

Lot 7 12 650 54

Chateau Palmer
1961

Croft
1927

Chateau
Margaux 1952

Quinta de Noral
1934

Figure 6.1: Sequential Wine Auctions
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those with the highest valuations, so competition should tend to decrease
from one auction to the next. In theory it is possible for these two effects to
cancel out. One main result of this chapter is that under certain conditions,
they do. This chapter also explains some conditions under which price can
be expected to increase or decrease.

This chapter also explains when prices can be expected to increase or decrease
across auctions. Briefly, when a seller (a buyer) holds two equivalent auctions,
then the buyers (sellers) bidding in the first auction will want to offer a
slightly lower (higher) price than the expected value of the price in the second
auction. The intuition behind this result is that a bidder in the first auction
will want to pay no more than the expected price in the second auction less
an amount to adjust for the expected surplus from winning the second.

6.3 Weber’s Martingale Theorem

This section presents a fundamental and surprising result, Weber’s martin-
gale theorem characterizing the expected values of prices in a sequence of
auctions. This result states that the expected price in one auction is, under
conditions explained below, equal to the price in the previous auction. In
other words, the most recent auction price is the best predictor of the price
in the next auction. The intuition behind this result derives from the fact
that if strategic bidders were to think one auction would produce a lower
price, these bidders would all want to participate, and remain active, in that
auction, until the price reached the level of other auctions. This strategic
behavior would tend to arbitrage the prices across auctions. In this case,
the auction design, and more specifically the allocation of the total quantity
across auctions, should not affect the expected price in any auction or the
overall auction revenues.

Consider a model in which there are some number B of bidders, and I <
B items for sale. Each bidder can win at most one lot. To simplify the
exposition, it is assumed that each bidder has a valuation vb and that the
bidders’ valuations are uniformly drawn from a uniform distribution over
the unit interval. Assume bidders are labeled so that vb > vb+1 for all
b = 1, 2, . . . , B − 1. These assumptions allow an easy characterization of
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equilibrium, and as will be clear from what follows, the results apply quite
generally. What follows assumes that the lots are sold in a sequence of first-
price auctions.

The following basic insights allow a direct calculation of the solution to the
auction.

1. Backward Induction: To solve for the equilibrium of this auction it is
easiest to start working backwards, from the last auction. First, assume
all but one item has been sold, and that there are B − I + 1 bidders
remaining.

2. Revenue Equivalence Theorem (RET): A consequence of the RET is
that the highest-value remaining bidder, I, should win the last auc-
tion and have to pay a price equal to the value of the second highest
remaining bidder. So, the price that the high-value remaining bidder
pays should equal vI+1, the value of the I + 1st remaining bidder.

3. Order Statistics : The expected value of vb, the bth highest valuation or
the bth order statistic, is B+1−b

B+1
. This means that the expected value of

vI+1 is B−I−1
B+1

. Notice that this ratio is close to 1 if I and B are large
and I is almost as large as B. If I = αB, α ∈ (0, 1), and both I and B
are large, then the price will be approximately 1− α.

The above implies that last item sold will sell for a price of B−I−1
B+1

, assuming
this last auction is a second-price sealed-bid one. (Note that the RET implies
that the item would also sell for this same price if the last auction were a
first-price sealed-bid or an oral ascending auction.) Bidder I’s value will on
average be B−I

B+1
, and I will pay B−I−1

B+1
, which is the fraction B−I−1

B−1 of I’s
value.

Then, the question is what should be the price of the next to last item sold.
Assuming that the I − 2 highest-value bidders win items 1, 2, . . . , I − 2, then
the remaining bidders will be I − 1, I, I + 1, . . . , B. Bidder I should win
that last auction, but not pay more than B−I−1

B+1
, the same price as bidder I.

Therefore, in the next last to auction, bidder I − 1 should win on offering a
price which equals the fraction B−I−1

B−I+1
of its value.
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By backward induction, all I objects sell for the same price B−I−1
B+1

, and the

bidders should offer increasing fractions of their value, B−I−1
B−1 , . . . , B−I−1

B−I+1
, B−I−1

B−I .

In this example, the expected price is constant, and in particular, the ex-
pected value of the price in each auction is the same as the price in the last
auction. This property means that the price is what is called a martingale.
This result is quite a bit more general.

Proposition 1 Suppose there are I identical items available in a sequence
of first-price auctions. Suppose that each bidder can purchase one item, and
that a bidder with valuation v will bid more for an item in an auction than
a bidder with valuation w < v.

Then, the expected value of the price in each auction will equal the price in

the previous auction, i.e., E
(
pi|pi−1, pi−2, . . . , p1

)
= pi−1.

Sketch of Proof

Let Ij denote the information available when item j+ 1 is to be sold. Notice
that RET implies that the expected payment by winners of the last I − j
lots is E[vI+1|Ij+1]. Then the expected price as of auction j for items sold
in subsequent auctions j + 1, j + 2, . . . , I is E

[
E[vI+1]|Ij+1|IJ

]
= E[vI+1|Ij].

Therefore, this price must be the same as the price for auction j. �

Notice that the martingale theorem extends to the case in which the auction-
eer can divide the available volume across any fixed number of auctions. More
specifically, suppose that the auctioneer conducts a sequence of uniform-price
auctions. In each auction a, la lots are sold. Also, suppose that in each auc-
tion the top la bidders win and pay the lowest of the winning offers. Then,
a similar argument implies that all items will sell for a price equal to vI+1,
independently of the how the items are distributed across lots.

6.4 Strategic Allocation Decisions

In practice, auctions can include multiple units sold (or purchased) at one
time. Thus, an auction originator can face the decision how to divide the
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amount available across auctions. The martingale theorem suggests that
decisions about how to allocate quantity sold (or purchased in a reverse
auction) across auctions should not affect the expected outcome.

There are a variety of reasons why this is not necessarily the case. One
of the most common is uncertainty about overall market conditions. For
example, in a series of ongoing energy procurement auctions, the utilities
conducting the auction leave open the option of limiting procurement volume
if transitory market conditions are highly unfavorable. Transitory energy
price spikes that occur on the day of an auction could leave the utilities,
and the ratepayers who are their customers, paying prices that reflect the
price spikes, not the underlying market conditions. Unusual events, such
as hurricanes, can create significant short-term price uncertainty, which can
justify some auction volume reductions.5

This section explains two other factors: one is how the split of the auction
volume across time can affect relative competition, bid strategy, and prices
across auctions, and the other is how resolution of uncertainty may affect the
outcome.

These questions are related to the question of the strategy a buyer or seller
should take when choosing between forward and spot market transactions.
[3] consider a model in which firms can compete in both spot and forward
markets. The offers in the forward market affect the payoffs in the spot
market. This can be modeled as a two-stage auction – the first-stage sales
are not made to the highest-value bidders, but to a subset of average buyers
over the two stages. What Allaz and Vila find is that if one firm participates
in the forward market and the other cannot, then the one that participates
will be able to earn a higher profit.6 If both try to compete in a forward
market, then both earn less than if they had waited for the spot market. As
is explained below, Allaz and Vila’s [3] result has a natural extension to a
sequence of auctions.

5See [49] for a more extensive discussion.
6In particular, the firm participating in the forward market is a Stackelberg leader (see

[68].
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6.4.1 A Simple Two-Auction Example

This subsection considers a very simple example in which the auctioneer
wants to sell two objects one at a time to B bidders.7 Bidder valuations in
each auction are uniformly distributed on [0, 1], that is, the distributions of
the bidder valuations in the two auctions are stochastically equivalent. This
means that each bidder’s valuation for each object in each of the two auctions
has the same distribution. This does not mean that any bidder’s valuation
in one auction is the same as its valuation in any subsequent auction. So,
the highest-value losing bidder in the first auction will not necessarily be
the highest-value bidder in the second auction. This is in contrast to the
assumption of the martingale theorem, that bidder valuations do not change
from one auction to the next.

More specifically, it is assumed that each bidder obtains a signal of its value
for each object before each auction starts and that the distribution for deter-
mining values is the same across auctions (and bidders). This type of model
allows for variations where, for example, the lots vary slightly in ways that
each bidder might value in a different way, or where bidders’ circumstances
can shift in a manner which is equally likely to cause value to increase or
decrease. In what follows, a few simple examples are used to illustrate how
shifts in bidder valuations across auctions can affect whether prices tend to
increase or decrease.

A Two-Unit Example

As a base case example, first recall the above example in which there are B
bidders competing for two (rather than I) identical objects, and that bidder
values do not change at all across the two auctions. It is assumed that each
bidder is interested in only one object. For the sake of illustration it will
be assumed that bidder valuations are fixed before any auctions start and
are drawn from a uniform distribution on [0, 1]. If the objects are sold in a
single first-price (i.e., pay-as-bid) auction, then the bidders with the highest
two values will win, and the price will be B−2

B+1
, which is the expected value of

7This example follows [10].
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the third-highest-value bidder.8 On the other hand, suppose the two objects
were auctioned one at a time. Then there would be B−1 bidders competing
in the second auction, and their expected values would be B−1

B+1
, B−2
B+1

, . . . , 1
B+1

.

The expected price would be B−2
B+1

. Therefore, in the first auction, no bidder

would want to bid above B−2
B+1

, and so this would be the expected price in
that auction as well. Thus, expected prices are the same whether there is
one auction for two objects or two auctions for one object each.

Now, suppose that bidders’ values are not necessarily the same for the two
objects. This could be the case, for example, if bidders acquire information
or their opportunities changes between the two auctions. The latter will
occur when, for instance, bidders may engage in other related transactions.
Or it can be the case that bidders view the two items as very similar, and
bidder valuations for each item are the same except for some random com-
ponent which is not correlated across items for each bidder. That is, bidder
valuations are stochastically equivalent.

As above, the auctioneer has two items for sale, and can choose to sell them
either all at once or sequentially. The B bidders each can still win at most
one item, but now each bidder’s valuation for an item is a separate random
draw in each auction from the uniform distribution over the unit interval.

In this case, it is easy to compute the expected value of the price if both
items are sold at one time in an auction in which both winning bidders pay
the third highest offer amount9:

p2 =
B − 2

B + 1

Then expected auction revenues will be

R2 =
2B − 4

B + 1
8If this were a third-price auction, that is, the highest two bids were to win and pay

the third highest bid amount, then each bidder would have a strong incentive to bid its
value. The RET states that the expected outcome would be the same as with a pay-as-bid,
sealed-bid auction.

9This is the pricing rule equivalent to a second-price rule for an auction with a single
object.
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If, on the other hand, the items are sold one at a time in two second-price
auctions, then the expected price in the second (last) auction will be

p1+1
2 =

B − 2

B

This means that the expected surplus derived from participating in the sec-
ond auction will be 1

B(B−1) . Therefore, (a) a bidder in the first auction will
not want to bid up to its full value, as it has a positive expected value from
participating in the second auction, and (b) the highest-value loser in the first
auction cannot always expect to win the second unit. Thus, the expected
value of the price in the first auction will be

p1+1
2 =

B − 1

B + 1
− 1

B(B − 1)

So, expected revenues from selling the items one at a time will be

R1+1 =
B − 1

B + 1
+

1

B − 2
− 1

(B − 1)B

Now R1+1 −R2 > 1
B(B+1)

(B − 3) > 0 for B > 3. Therefore, selling the items
sequentially raises more revenues when there are more than three bidders.

A Three-Unit, Two-Auction Example

A variant of the second example considers the case with three units and two
auction dates. More specifically, suppose the auction originator wants to sell
I > 2 units in two auctions. It has the option of selling a fraction x in the
first and y in the second. For simplicity, suppose I = 3. In this case, the
expected prices in the two auctions depend on whether one unit or two is
sold in the first auction.

If one unit is sold in the first auction, then the expected valuations in the
second auction of the remaining B − 1 bidders are B−1

B
, B−2

B
, . . . , 1

B
. This

means that the expected price in the second auction will be
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E(p122 ) =
B − 3

B

Thus, those bidders losing the first auction can anticipate a surplus of 1.5
B

with a probability of 2
B−1 . So, in the first auction, bidders will shade their

bid by

s12 ≡ 3

B(B − 1)

So the expected price in the first auction will be

E(p121 ) =
B − 1

B + 1
− 3

(B − 1)B

Similarly, if two units are sold in the first auction, then the expected valua-
tions in the second auction of the remainingB−2 bidders are B−2

B−1 ,
B−3
B−1 , . . . ,

1
B−1 .

Then the expected price in the second auction will be

E(p212 ) =
B − 3

B − 1

This means that the expected surplus is

s21 ≡ 1

(B − 1)(B − 2)

So, in the first auction, the expected price will be

E(p211 ) =
B − 2

B + 1
− 1

(B − 1)(B − 2)

Comparing revenues R21 ≡ E(p211 ) + 2E(p212 ) − 2s21 with R12 ≡ E(p121 ) +
2E(p122 ) − s12 indicates that R12 − R21 = 2

B+1
[1 − 1

B
] + s12 − 2s21. This is

necessarily positive for large B.

The above two examples illustrate three points.
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• First, the fact that bidder valuations can vary from auction to auction,
although they have the same distributions, means that there is an op-
tion value from participating in the last auction which does not exist
when bidder valuations are constant across auctions.

• Second, the degree of competition will vary across auctions. The first-
order effect means that the larger the number of remaining bidders
relative to the remaining auction volume in the last auction, the lower
the price in the last auction.

• These examples suggest that when the auction originator has some
flexibility about how to divide the total volume available, then decisions
about how the volume is divided, and (as will be explained below) the
flexibility of the auction originator to shift volume across auctions, can
affect average auction prices.

This logic generalizes to some extent to multiple auctions and multiple lots.
When bidder valuations across auctions vary, but are stochastically equiv-
alent, the allocation of the auction volume across auctions will affect the
expected price in the final auction, and therefore earlier auctions. The rele-
vant order statistic for determining the last auction price is B−I+x−1

B−I , where
I is the number of items, B the number of bidders, and x the number of lots
sold before the final auction. This price will depend on x.

6.4.2 Optimizing the distribution of auction target vol-
ume across auctions

This section considers a generalization of the above example with two auc-
tions. It considers a reverse auction. In it the auctioneer wants to purchase
a total of K units from N bidders, and can choose how to divide this into
X units in the first auction and Y = K − X in the second. The question
addressed here is what is the optimal way to do so to minimize expected
overall procurement costs. The analysis of how to divide a total number of
lots to be sold across two auctions is essentially the same.
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Given that there are two auctions, and bidders’ costs in each auction are, as
above, a random, independent, and uniform draw over the unit interval, the
second-auction price will be p2 = Y+1

N−X+1
= K−X+1

N−X+1
. This implies that the

average second-period winner will have costs of Y+1
2(N−X+1)

, and will therefore

have an average surplus (for winners) of Y+1
2(N−X+1)

. This implies a first-

period price of X+1
N+1

+ Y
(N−X)

Y+1
2(N−X+1)

= X+1
N+1

+ (K−X)
(N−X)

K−X+1
2(N−X+1)

; the probability

that a first-auction loser will be a second-auction winner is K−X
N−X . Total

costs are then X
(
X+1
N+1

+ K−X+1
2(N−X+1)

(K−X)
(N−X)

)
+ (K −X)

(
K−X+1
N−X+1

)
. Notice that

the first-auction expected price is increasing in the quantity purchased in
the first period, and similarly, the second-auction price is increasing in the
quantity purchased in the second auction. The optimal ex ante value of
X ∈ {0, 1, . . . , K} will minimize

C(X,K) = X

(
X + 1

N + 1
+

K −X + 1

2(N −X)(N −X + 1)

)
+(K−X)

(
K −X + 1

N −X + 1

)
(6.1)

and, if there is no second auction, then the second term in the right-hand
side of (6.1) is zero. So, C(0, K) = C(K,K) = K

(
K+1
N+1

)
. It will be optimal,

ex ante, to divide the auction quantity between the two dates.

Tables 6.1 and 6.2 provide some illustrative calculations. The first example
assumes N = 10 and K = 4; the second example considers the case in which
N = 400 and K = 250.

x y p1 p2 Total Costs
0 4 — .46 1.82
1 3 .25 .4 1.45
2 2 .31 .33 1.29
3 1 .38 .25 1.39
4 0 .46 — 1.82

Table 6.1: Sequential auctions of 4 lots to 10 bidders

These examples show that there is a benefit in splitting the auction quantity
over the two auctions, and some advantage in auctioning more in the first
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Figure 6.2: 10 Bidders and 4 Lots
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Figure 6.3: 400 Bidders and 250 Lots
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x y p1 p2 Total Costs
0 250 0.198 0.63 156.48
100 150 0.377 0.501 112.98
140 110 0.442 0.425 108.60
141 109 0.443 0.423 108.598202
142 108 0.445 0.421 108.598178
143 107 0.446 0.419 108.60
145 105 0.449 0.414 108.63
150 100 0.457 0.402 109.79

Table 6.2: Sequential auctions of 400 lots to 250 bidders

auction than in the second, at least when there is a large quantity to be
purchased in aggregate. The intuitive reason to divide the auction quantity
is that the auction manager gets a larger sample of offers. A bidder at one
date is effectively a different bidder at a different date, in that its costs can be
higher or lower. Dividing the volume lowers the expected procurement costs,
absent strategic bidding. However, bidders will behave strategically. Bidders
in one auction will want a higher profit margin than in a later auction. This
strategic withholding effect limits how much the auction manager will want
to delay procurement.

These examples also assume that the decision to split the auction volume
is made before the first auction, and before any bids are received. If the
auctioneer can defer the decision to determine the auction volume on each
date based on the number of bidders, then it will be possible for the auctioneer
to obtain a still better outcome. More specifically, given any volume that the
auctioneer might choose to leave for the second auction, it can calculate the
expected auction price. This price is what it should use to set reservation
prices in the first auction. Such reservation prices in the first auction can
only improve its outcome.

6.4.3 Sequential Auctions and Risk

A bidder’s preference toward risk can be a factor that enters into a decision
about how much to bid in one auction when there are other auctions to
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follow.10 Consider the case in which a bidder can make a purchase in one
of two auctions, each of which is a second-price auction. If the high-value
bidder in the first auction lets the second high-value bidder win by bidding
low, then in the second auction it can expect to win the object and pay the
third highest value. Let x− V 3, where V 3 is the (random) value of the third
highest value bidder. This will provide the bidder, ex post, with some utility
u(x− V 3).

Suppose this bidder is risk averse, and could win the object for the expected
value of V 3 = v3. Because of risk aversion, u(x− v3) > E[u(x−V 3)]. As this
is the case, the bidder would offer more in the first auction than v3 to insure
against the risk associated with the randomness of the second auction price.
Thus, if all bidders are risk averse, then they should each offer a bit more
than v3 to win the first auction, and the expected price should be falling.

If risk aversion is the determining factor in price dynamics across auctions,
then prices should decrease. If changing bidder opportunities are, then prices
can increase or decrease. Thus, when there are multiple auctions over time,
then prices sometimes increasing and sometimes decreasing suggest that risk
aversion alone is an inadequate explanation of price patterns. On the other
hand, shifts in bidder valuations across auctions would suggest that the price
patterns would depend on how the total volume is divided across auctions.

6.4.4 Auction Timing

This subsection now provides another example of how auction timing can
affect the auction revenue when bidders learn more about values over time.
In particular, it is assumed that there are two bidders and one item for
sale. The value each bidder will place on the item is either 0 or 1, and
the two bidders have a common ex ante prior, α ∈ [0, 1], that each value
will be high. Moreover, the valuations are independently and identically
distributed. So, there are four possible outcomes (0, 0), (1, 0), (0, 1), and
(1, 1) with probabilities of (1−α)2, α(1−α), α(1−α), and α2, respectively.
Suppose that the item can be auctioned at one of two dates, early or late.

An early auction means that no ex ante uncertainty is resolved. If the item

10This issue was addressed by [52] .
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is sold at the early date, then the price, in either a first-price or a second-
price auction, will be α. The winning bidder has zero expected surplus. If, in
contrast, the auction is conducted at the late date, then the price will be 1
with probability α2. In a second-price auction – or, by revenue equivalence,
in a first-price auction – the late-auction price will be 0 with probability
1−α2. Therefore, the expected revenues are α2. Notice that the late-auction
expected revenues α2 are less than α, the expected revenues in the early
auction.

This result is reversed with a larger number of bidders. If there are B bidders,
then the probability that no more than one bidder will have a value of 1
is (1 − α)B + Bα(1 − α)B−1, and the expected value in a late auction is
1−

[
(1−α)B +Bα(1−α)B−1

]
. The late auction will have a higher or lower

expected value depending on B and α. When α = 0.5 and B = 3, then an
early and a late auction have the same expected revenues.

6.5 A Summary of Auction Timing Consid-

erations

This chapter considers situations in which different units of an identical prod-
uct can be purchased or sold at different dates. This is a fairly common
occurrence in many industries, ranging from wine to electricity. The way in
which the different units are divided over different auctions at different times
can, but need not, affect the outcome. Indeed, a very fundamental result is
that strategic arbitrage by bidders will tend to equalize prices across auctions.
When this martingale result holds, auction design and bidding strategy are
both simplified. However, the martingale theorem will not always apply.

When the martingale theorem does not apply, the possibility of shifting pur-
chases and sales over time confronts both bidders and the auction originator
with strategic choices. When bidder valuations tend to shift, the above ex-
amples suggest there is a tendency of prices to decline in forward auctions,
or increase in reverse auctions. However, the auction originator can choose
to allocate quantities in a way that can cause prices to either increase or
decrease. And competition can shift over time. Therefore, bidders cannot
plan on prices falling.
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The above suggests that an auction originator’s choice of timing will affect the
outcome, even without uncertainty. When there is uncertainty, the auction
manager will also want to consider the impact of the resolution of uncertainty
on competition and the expected prices.

Thus, a firm, government body, or other entity considering auctioning off a
set of objects should consider a number of factors in determining whether
and how to auction the objects in different events. The relative benefits of
different options will depend, in part, on how the allocation affects bidder
strategies, as well on how it affects the intensity of competition across auc-
tions. As can be seen above, these choices can affect the outcome in favor of
the auctioneer or in favor of the bidders.
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Chapter 7

Sequential Auctions of
Complements

Summary

This chapter examines auction design and bidding decisions in sequences of
auctions in which the outcome of one auction affects a bidder’s profits from
winning a subsequent auction. At times, a winner of an initial contract or
concession will have a stronger incentive to extend its contract or renew its
concession in a second auction than it would had it lost the initial auction.
This chapter also explains how the bidding strategy in one auction can be
affected by the effect the outcome of that auction may have on a follow-up
auction for a complementary product or contract. In both cases, we find
a tendency toward increasing dominance, that is, the winners of an initial
auction have an advantage in follow-up auctions. This also causes bidding to
be more competitive in an early auction and less competitive in a subsequent
auction.

The complementarities considered can be of two forms. First, the winners
of one lot may have a higher value, or a lower cost, for a complementary
lot. Second, a winner in one auction may, possibly over time, invest in
complementary assets that give it advantages in subsequent auctions.

111
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7.1 Examples of Complementarities

Complementarities are common in auctions. They arise out of decisions of
the auction designer about how to divide what is to be purchased or sold into
lots. There are many reasons why an auction manager may not want to have
one large lot. One primary reason is that different bidders will have different
interests. Bidders may be seeking overlapping sets of lots. Or there may be
small bidders and large ones. For this reason, an auction may include both
large and small lots. This chapter assumes that the lots are sold in sequence;
for the most part, it also assumes that the lots are uniform in size.

There are plenty of examples of sequential auctions with complementarities
across regions. The European 3G and 4G spectrum auctions were sequen-
tial. At least for some of the bidders, the value of a spectrum license in one
Eurpoean Union (EU) country would be positively correlated with having
licenses in other, nearby EU countries. There are numerous reasons for this,
including the fact that knowledge about the technology and network equip-
ment can be transferred across borders, economies of scale in obtaining in
marketing, roaming advantages, and economies of scale in network develop-
ment and management. In addition, most the 4G auctions included blocks in
multiple spectrum bands, which could be either substitutes or complements.

The other type of synergy of concern here is value dependences over time.
One fundamental question in many auctions for concessions, licenses, or pro-
curement is the duration of the contract. In many cases, to derive value (in
a forward auction) or meet performance requirements (in a reverse auction),
the winners must make sunk investments in durable capital projects whose
economic life far exceeds the term of the contract, license, or concession. It
is often argued that short-duration contracts will not allow the bidder to
recover fixed investment costs, or that bidders will need to inflate costs to
be able to recover their fixed investments. However, this assertion can only
be valid if the winners in an initial auction do not win subsequent renewal
auctions. As we shall see, it is often the case that initial winners will win
follow-up auctions. Therefore, it is far from obvious what effect an initial
contract duration will have on the outcome. Renewal auctions are quite
common in some sectors.

One example of this type of problem is spectrum auctions; most spectrum
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licenses are for a limited term, ranging from ten to twenty years.1 The ques-
tion arises as to what happens after the initial license duration or contract
ends. While in some cases, as in the FCC auctions, there is a presumption
of renewal of the contracts, this is far from universally true, and the terms
of renewal are often not even described, much less fully specified. It can
also take five years or longer to fully build out a license area, and once it is
built out, the facilities, such as radio towers, cables connecting towers to the
network, and other network equipment, will have value beyond the license
term. Moreover, a firm will not want to turn off service to its customers the
day its license expires, but it could, in theory, be faced with this prospect.

In the energy sector, in many geographic areas, regional transmission organi-
zations (RTOs) have been organizing bidding procedures for the procurement
of capacity. In a capacity auction, the bids are for payments beyond antici-
pated energy generation service revenue, to ensure capacity gets constructed
that otherwise might not be.2 The bids often cover a period of no more
than ten years despite the fact that the facilities often have useful lives of
twenty or more years. These auctions are being conducted both for resource
adequacy (that is, to ensure adequate reserve margins) and for renewable-
energy procurement. Similar auctions have been planned and conducted for
transmission capacity. If the contracts are for ten years but the facility lasts
twenty years, then the bidder may have a incentive to ask for nearly twice as
much, per unit or per year, for a ten-year contract as it would for a twenty-
year one. This logic fails if the first winner is almost certain to win an auction
for a contract renewal. However, a shorter contract term does create some
risk of losing the contract part way through recovering up-front investments,
which is a risk that does not arise with longer contracts.

One auction design option when there are complementarities of the types
described above is to permit packages – either prespecified, or allowed to be
specified by the bidders. This is often not a practical option. One reason
is that package bidding introduces added complexities discussed in Chapter
10. Second, different jurisdictions may not be able to, or may not want

1The US Federal Communications Commission has been awarding most of the
broadband PCS licenses for ten-year terms. See the license-period provisions at
www.fcc.gov/wtb/auctions.

2See www.caiso.com for a discussion of the California capacity auction proposal. See
www.iso-ne.com/markets for a description of the ISO New England capacity auctions.
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to, conduct a simultaneous auction or to create packages. For example, it
might be impossible for EU member countries to agree on a single auction for
all their 3G or 4G licenses. Third, when the complementarity is over time,
the early winners may have strategically different positions than rivals in
renewal auctions. The remainder of this chapter considers complementarities
in sequential auctions.

7.2 Renewal Auctions

This section examines the influence of contract duration in a sequence of
auctions. The section starts with a simple example. It is assumed that
there is a franchise auction at some date 0, and a follow-up auction at some
other date, 1. Each auction is for a fixed-duration contract – for example,
a spectrum license for a fixed number of years. It is assumed that any
winner in the first auction must make a sunk durable investment of K > 0
to extract value, but that this investment will not depreciate at all through
the end of the second contract period. With the investment of K, a bidder
j = 1, 2, . . . , N can expect to earn vj−K in the first period if it wins the first
auction, or in the second period if it has not already incurred a first-period
investment of K; and to earn vj if it (won the first auction and) has already
made the sunk investment of K. In what follows, it is assumed that 2v1 > K,
that is, there is a positive surplus available.

Further, suppose there are the same N ≥ 2 bidders in each auction. To
simplify the exposition, it is assumed that each auction is a second-price
sealed-bid auction. Solving for equilibrium is straightforward.

Start at the last auction. Suppose bidders are indexed so that vj ≥ vj+1 for
all j = 1, 2, . . . , N−1. Also, suppose that v1−vN < K, that is, the difference
in bidder values is not as large as the sunk costs. Then, if bidder 1 wins the
first auction, it will be willing to offer v1 in the second auction, and the next
best offer would be from bidder 2, which would be willing to offer v2−K. By
assumption, v2 ≤ v1, so v1 > v2 −K, and bidder 1 will win the first auction,
at a price of v2 −K.

If some other bidder, say bidder h, has won the first auction, then v1 − vh <
v1 − vN < K, by assumption, so that bidder h will win the second auction,
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at a price of v1 − K. Thus, the bidder that wins the first auction will win
the second auction.3 So, the bidder that wins the first auction will also win
the second auction, and at a price of v1 −K if bidder 1 did not win the first
auction, or a price of v2 −K if bidder 1 did win the first auction.

This allows solving for the price, and winner, in the first auction. Bidder 1
would pay up to

b11 = v1 −K + [v1 − (v2 −K)] = 2v1 − v2 (7.1)

in the first auction, and the most any other bidder would offer in the first
auction, which would be offered by bidder 2, is4

b21 = v2 −K + [v2 − (v1 −K)] = 2v2 − v1. (7.2)

where bij is the amount bidder i offers in auction j. Notice that the term
[v1 − (v2 −K)] in (7.1) is bidder 1’s expected surplus in the second auction.
As v1 > v2 by assumption, b11 > b21 = 2v2 − v1. This is an equilibrium in
the first auction provided that 2v2 − v1 ≥ 0. If 2v1 − v2 > 0 > 2v2 − v1,
then bidder 1 would win the first auction and have to pay max{0, 2v2 −K},
which is the most that bidder 2 could possibly offer. The amount bidder
1 pays in the first auction, 2v2 − v1, exceeeds bidder 1’s profits in the first
period, v1 −K, whenever K > 2(v1 − v2). Bidder 1 is willing to lose money
at first because it can recover the losses in the second period. Notice, too,
that the price in the second auction is higher (lower) than in the first when
v2 < (>) v1 −K.

This logic extends to the case in which there is a sequence of S auctions,
each for a fixed contract duration. In what follows, it is assumed that the
fixed and sunk investment is the same as above, and will have an economic
life at least as long as that which is spanned by the S auctions. Solving for
equilibrium can be accomplished in a manner similar to the above, starting
with the last auction.

There are several possibilities in the last auction. Suppose, without loss of
generality, that firm 1 is the firm with the highest value of vj which has won

3If v1 > vN + K, then bidder 1 could win the second auction after losing the first
auction; however, in equilibrium, bidder 1 would win the first auction.

4This assumes 2v2 > v1.
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a previous auction. Then, firm 1 will have a higher valuation for the last
auction, v1 > vj > vj −K for all j 6= 1. And the most some other firm will
pay is either vj or vj −K for some j 6= 1. So, the highest-value firm that is a
previous winner going into auction S will win auction S and pay maxj 6=1{vj}
over previous winners j, or maxj{vj−K} if firm 1 won all previous auctions.

Working backwards to auction S − 1, we find that the highest-value winner
of the previous auction S− 2 should win auction S− 1 (unless K is not very
large and the difference between v1 and the j which was the highest-value
previous winner is relatively large). The willingness to pay of the highest-
value winner in auction S is v1 + (v1 − (v2 −K)) = 2v1 − v2 +K, assuming
1 won all previous auctions, or v1 + (v1 − vh) = 2v1 − vh, assuming h is the
highest-value previous winner other than firm 1. Both are larger than 2vh−v1,
which is the most another bidder would offer in auction S − 1. Inductively,
the highest-value winner in auction S − t will win auction S − t− 1, and so
all auctions will be won by the same bidder, bidder 1. Bidder 1 will derive
a surplus of at least v1 − v2 in each of auctions 2, 3, . . . , S, and v1 − v2 + K
along the equilibrium path. So, in auction 1, bidder 1 will be willing to offer
at least v1 + (S − 1)(v1 − v2)−K, and should be willing to offer as much as
v1 + (S − 1)(v1−max{0, v2−K}). The next-highest-value bidder, 2, should
similarly be willing to offer as much as v2+(S−1)(v2−max{0, v1−K}). So, the
first auction can be for a very high price, larger than min{(S−1)K, (S−1)v2},
with the losses in the first auction offset by profits in the renewal auctions.

Notice that in a sequence of auctions in which the first auction’s winner has
an advantage in subsequent auctions, the competition in the first auction
can be intense. Prices can far exceed the franchise value. However, the
losses in the initial contract are offset by the profits from the subsequent
renewal contracts. Notice too that the contract duration does not affect
overall auction revenues. It does affect auction prices – longer contracts
reducing the first-auction price, and not increasing it.

7.3 Sequential Auctions of Complements

This section considers a sequence of auctions for complements. More specif-
ically, it is assumed that the sum of bidder standalone valuations for indi-
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vidual objects is less than the valuations for the packages. Arguably, this is
often the case in spectrum auctions, in which bidders realize economies of
scale and scope when acquiring more spectrum in a larger geographic area.
For example, a firm may place a higher value on a UK license if it also wins
licenses in Germany and Italy. Or a firm may place a higher value on a New
York license if it also wins a Chicago and a Los Angeles license. There is a
large literature on auction design for complements and for package bidding.
However, oftentimes it is not possible to conduct auctions for complements
at one time, or to allow package bidding.

A very simple example can illustrate how complementarities can affect bid-
ding decisions and prices. Suppose there are two bidders and three lots, and
the lots are sold in a sequence of first-price auctions. Further, suppose each
bidder derives a value of 1 from two or three lots, and 0 from one lot. The
equilibrium price in the first auction of this “chopsticks” example will be 1,
and the prices in the second and third auctions will be 0.

Or consider the following straightforward extension of the example from the
previous section. Suppose there are two lots, k = 1, 2, and bidders j =
1, 2, . . . , n. Suppose too that for each bidder j, the value of winning lot k is
vjk and the value of winning both is vj > vj1+vj2. That is, each bidder places
a higher value on the package than the sum of the individual lot values. In
what follows, it is also assumed that vj > vj+1 and vjk > vj+1 for all j and
k.

Consider a sequence of two second-price auctions. To solve for equilibrium,
start with the second auction. There, the first auction’s winner will have
a value of vj − vj1 > vj2, and other bidders will have a value of vj2. If
bidder 1 wins the first auction, then it will win the second, as by assumption
v1 − v11 > v12 > vj2 for j > 1. If bidder 1 does not win the first auction, the
first auction’s winner j will win unless v12 > vj − vj1.

So, if 1 wins the first auction, it can expect to win the second auction at a
price of v22 and derive a surplus of v1− v22. Therefore, 1 should be willing to
bid up to this amount to win the first auction. No other bidder j can derive
a greater surplus in the first auction. The most another bidder can expect
to win is v2− v12, as by assumption bidder 2 has the next highest valuations
and would at most earn a surplus of v2 − v12 from winning the first auction.
Thus, it is a subgame perfect equilibrium for bidder 1 to win both auctions,
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the first at a price of v2 − v12 and the second at a price of v22. Note that
bidder 1’ s value minus the total amount paid by bidder 1, v1−v2 +v12−v22,
is positive, as by assumption v1 > v2 and v12 > v22.

The above argument will extend to a larger set of complements. More gener-
ally, the first auction’s winner will tend to have an advantage in auctions for
complements. In the above example, the first-auction price can be quite high
relative to the second-auction price. For example, suppose v2 = Nv = v2k
for k = 1, 2 in the above example; then the price in the first auction will
(N − 1)v, and the price in the second auction will be v. Thus, for strong
complements, i.e., large N , the price in the first auction will be many times
the price in the second.

In the European 3G auctions, there are some complementarities – both on
the cost side, in rolling out service, and on the revenue side, at least from
roaming revenues. Firms with operations in one country can use the same
equipment vendors in another country, and usually benefit from economies
of scale. Also, European mobile operators are able to capture a higher share
of high-margin international roaming when they have operations in multiple
countries. The European 3G auctions were run sequentially (although those
in Germany and the Netherlands occurred virtually at the same time). The
pattern of prices in the European 3G auctions (Table 6.1) suggests that these
incentives were relevant in that early losers were discouraged from competing
aggressively in the subsequent auctions.

Table 7.1: European 3G Auction Prices

Country Date Per capita revenues
UK March, April 2000 $4.90
Germany July, August 2000 $4.74
Netherlands July 2000 $2.33
Italy October 2000 $1.84
Austria November 2000 $0.62
Switzerland December 2000 $0.13

One other form of complementarity arises when bidders have budget con-
straints: the more a bidder spends on one of two or more complements, the
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less money the bidder will have available for other lots. While, on the sur-
face, the view that budgets can explain the pattern of European 3G auction
prices appears plausible, this seems inconsistent with the bidding, unless bid-
ders also were interested in aggregate coverage across Europe. There were
13 bidders that started in the UK 3G auction. The 8 losers did not spend
any money, and presumably should have had money for subsequent auctions.
In Germany, Debitel (partly owned by Swisscom) dropped out, but Debitel
was not involved in the UK. So, the 8 losers still should have had money
to bid in the Netherlands, Italy, Austria, and Switzerland, as well as in the
sealed-bid tender in France (where one of four 3G licenses went unclaimed
at a minimum of 2 billion euros).

7.4 Sequential Intellectual Property Rights

Auctions

Another area in which sequential auctions occur is for new technology. Over
time, technology improves. Often, the firms developing the technology are
not the ones that use it directly; rather, they license it to downstream com-
petitors. Those owning the intellectual property (IP) can conduct competi-
tive bidding processes to determine which firms will be able to use the tech-
nology. Often, as is assumed in this section, the IP owner will prefer to
license a technology to one firm, rather than to multiple firms. This will
be the maintained assumption in this section. The question addressed is
whether the technology leader will tend to have an incentive to outbid rivals
with inferior technologies. In other words, if a firm gains access to technology
that is better (e.g., one generation ahead), possibly through an auction, then
will it win an auction for rights to the IP for a next generation technology
that represents an improvement over previous versions?

To capture these ideas, it is assumed that there are two firms, and each
has access to a technology characterized by a single cost parameter. More
specifically, it is assumed that a firm with generation n technology will have
constant unit costs, cn, and that cn > cn+1 for all n. It is assumed that there
are no other costs.5

5Much of this follows [62]. See also [72], and [27].
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First consider a simple two-period model. Each firms starts with a basic
technology, with cost parameter c0, available to any firm. Before each period
there is an auction for the new technology. The first auction is for technology
with costs c1 and the second for technology c2 < c1. It is also assumed
that technology 1 can be used for the second period before the auction for
technology 2 is held, and that technology 2 will have a value derived only
over the second period.

What follows derives the incentives of the technology leader to win the auc-
tion for technology 2. These incentives depend on the nature of the com-
petition between the two firms. First consider the case in which the firms
compete in price, and there are perfect substitutes. If the leader wins the
second auction, it will earn

ΠL = max
[
D(p)(p− c2)|p ≤ c0

]
where D(p) represents market demand at price p. On the other hand, the
lagging firm will earn

Πl = max
[
D(p)(p− c2)|p ≤ c1

]
Therefore, Πl < ΠL, and so the leading firm will tend to win the second
auction.

Now consider the case in which there is a follow-up innovation that would
achieve costs c3 < c2. Then the incentives of the lead firm to win are

ΠL = max
[
D(p)(p− c3)|p ≤ c0

]
and the lagging firm would offer as much as

ΠL = max
[
D(p)(p− c3)|p ≤ c2

]
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in the second auction.6 If there is a sequence of n non-drastic innovations,7

i.e.,

argmax
[
D(p)(p− cn)|p ≤ c0

]
= c0,

then a similar argument implies that the same firm would win each auction.
It is possible to work backwards and calculate the prices in each auction. To
simplify exposition, it is assumed that D(p) = D for all p ≤ p.

The price in the last auction would be [cn−1 − cn]D. In the next to last
auction, the price would be

D
{

[cn−2 − cn−1] + [cn−2 − cn]− [cn−1 − cn]
}

= 2D[cn−2 − cn−1]

A similar calculation can be used to establish the price of the mth-from-
last auction as mD[cn−m − cn−m+1]. So, with equal cost improvements, i.e.,
ck− ck+1 = cj − cj+1 for all j, k, the low-cost firm will always win, and prices
will be decreasing from one auction to the next.

This result has been called an increasing dominance result.8 It is sensitive
to the nature of the competition in the market for products or services using
the technology.

To see this, consider the case in which the firms are Cournot competitors with
constant unit costs c that depend on the vintage of the technology, v, that
each firm has. Suppose that one firm has a base technology c0 and the other
has a newer technology, c1 < c0, and that there is an auction for an improved
technology c2 < c1. Suppose, too, that there is linear demand P = a − bQ,
where Q is the total output of the two firms. Straightforward calculation
shows that when the leading firm wins the auction for technology c2, and the
other firm has technology c0, then the Cournot equilibrium quantities will be

qL =
a− 2c2 + c0

3b
6A similar argument implies that the lead firm would still win if it had costs c2 and

the other firm had costs c1.
7Here drastic means an innovation so large as to make the old technology economically

irrelevant in the market.
8See [72], or [27].
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for the leading firm, and

ql =
a− 2c0 + c2

3b

for the lagging firm. Profits will be (a−2c2+c0)2
9b

for the leading firm and
(a−2c0+c2)2

9b
for the lagging firm. On the other hand, should the lagging firm

win the auction for technology c2, profits would be (a−2c2+c1)2
9b

for the firm

that was previously the lagging firm, and (a−2c1+c2)2
9b

for the other firm. So,
the firm that starts with technology c1 will want to offer

L =
(a− 2c2 + c0)2

9b
− (a− 2c1 + c2)2

9b

and the other firm will offer

l =
(a− 2c2 + c1)2

9b
− (a− 2c0 + c2)2

9b

to win technology c2. Here L can be larger or smaller than l, depending on
the values of c0, c1, and c2. For example, if a = 10 and b = 1

9
and if c0 = 3,

c1 = 2, and c2 = 1, then l > L. But L > l if c0 = 5, c1 = 4, and c2 = 3.

7.5 Auctions for Complementary Inputs with

Imperfect Competition in Downstream Mar-

kets

The above analysis also is useful in examining what happens when there is
an auction for an upstream input that can affect downstream competition.
Spectrum auctions are one example of this. Most spectrum auctions now are
largely for incumbents competing to expand capacity and lower costs. The
technology of spectrum is such that if one firm has more spectrum than its
rival, it can offer service at a lower cost per unit of capacity – and thus, with
higher bandwidth and better quality.

To model this, suppose there are two firms that currently have costs c0j ,
j = 1, 2, and that there is an auction for a single block of spectrum that will
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reduce their marginal cost to c1 < min{c01, c02}. It is also assumed that, as
in the previous subsection, the firms engage in Cournot competition, so that
the price P = a− bQ, where Q is total output of the two firms.

The incremental profit for a firm that wins the additional block is

∆Πi =
(a− 2c1 + c0j)

2

9b
− (a− 2c0i + c1)2

9b

Whether the firm with lower initial costs will be willing to outbid its rival
will depend on whether its incremental profit will be higher. With Cournot
competition in the downstream market, it is possible that either the leading
or the lagging firm can win, as in the previous subsection.On the other hand,
if there is Edgeworth-Bertrand competition, the same firm will win each
auction.

This issue is important in setting policy, because spectrum is regulated by
government agencies that often set caps to ensure that the market does not
become excessively concentrated. These types of models suggest that the
market for wireless services can, under some conditions, become increasingly
concentrated if there is a sequence of auctions that gradually release and
reallocate spectrum over time. This section has merely served to introduce
a framework for assessing the issue, rather than try to provide a complete
analysis.

This section also serves to show that increasing dominance, and therefore
concern about spectrum caps, can – in some, but not all, circumstances – be
justified. The analysis of this issue is incomplete, and will be addressed in
more detail in Chapter 10.

The above only considers sequential auctions. A regulator may have the
option of selling blocks sequentially or in a single auction, and of allowing
a single auction to include many small blocks or only a few (possibly only
one) large ones. A simultaneous auction of all the spectrum blocks, or of
multiple licenses for new technology, can have different outcomes, including
the possibility of leapfrogging.

To see that leapfrogging may occur, consider the case in which there is a
single large block of spectrum available for bid, possibly instead of several
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small blocks. Also, suppose there are two firms bidding: a leader, L, and a
lagging, smaller firm, s. Let ∆πL1 > ∆πs1 > 0 denote the incremental profits
of the two firms. If the leading firm knows ∆πs1, it will bid just a bit more
than this and become more dominant. However, if the leading firm does not
know ∆πs1, then it will wish to maximize [∆πL1 −∆πL0 − bL]× F (bL), where
∆πL0 is the leading firm’s profit if its rival wins, bL is what it bids, and F (bL)
is the probability that this bid wins. This results in a first-order condition
that

∆πL1 −∆πL0 − bL =
F (bL)

F ′(bL)

This necessarily means that leapfrogging can occur.

7.6 Summary

This chapter has considers sequential auctions for complements. One striking
result, which appears quite robust, is that the winner of a first auction for
one of two or more complements does not really face an exposure problem.
Admittedly, these models are highly simplified and abstract, and bidders do
face risks that are not captured by them. However, the initial winner in the
first auction will tend to have an strong advantage, which will tend to increase
in a sequence of auctions for complements. The fact that an initial winner
can lose a subsequent auction does not totally offset the benefits of winning
an initial auction, but may somewhat reduce incentives to bid beyond values
initially in order to win the market.

A second striking result is that prices will not be uniform. The first auction
will tend to attract prices well beyond values, and subsequent auctions will
lack intense competition. So, for example, the initial award of a franchise or
license can be very intense, but the re-auction, or renewal, is then likely to
see much less or almost no competition. Prices in any one auction are not
linked to underlying values for that auction, but to the entire sequence of
auctions.
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These issues arise in many auctions. For example, many auctions of licenses
or franchises have limited durations, and do not necessarily specify all the
renewal provisions in advance. The analysis here suggests that license dura-
tions that exceeds the life of the investment may not be essential. However,
the analysis provides a way of assessing the important role that the renewal
provisions can take in determining bidder incentives and the outcome in the
first of a series of auctions.
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Chapter 8

Single-Product Auctions

M any auctions include identical lots of a single product. Rather than auction
each lot individually, an auctioneer can ask bidders to submit demand (or
supply) curves to express how much each bidder wants at any given price. An
alternative way for an auctioneer to elicit such demand (or supply) is in the
form of a clock auction, in which the auctioneer names a monotone sequence
of prices and asks bidders to indicate how much they want at each price.
This chapter describes such auctions, and shows when a demand-function
(or supply-function) game is strategically equivalent to a clock auction. It
derives equilibria for demand- and supply-function games with and without
uncertainty. It also explores the effect of capacity constraints. Lastly, it
describes a number of applications of demand- and supply-function auctions
and clock auctions.

8.1 Introduction

Often, auctions include many units or lots of an identical product. Indeed,
virtually all auctions in the energy sector allow bidders to submit offers for
one or more lots or blocks. The blocks can be 25 MW entitlements, rights
to 100 MW or 1 MW of transmission rights, or other products. Multi-unit
auctions are found in many other sectors. For example, the agricultural coop-
eratives Fonterra and Ocean Spray each run monthly auctions: In Fonterra’s

127
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auctions bidders can buy any number of full container loads of various forms
of milk products, and Ocean Spray’s auctions are for cranberries and related
products.

An auctioneer wishing to sell, or purchase, many units of a single product
will need to decide whether to include all units in one bid, in a single auction,
or in separate auctions. If multiple or all units are auctioned at one time,
then the auctioneer needs to decide on what form bids should take and how
to elicit information from bidders about how much they want at different
prices. Bids can be demand functions, i.e., separate prices for each unit.
There can be restrictions on the form of demand function. The auction can
allow bidders to submit one price for all units or different prices depending
on the quantity bid. Alternatively, as in a clock auction described below, the
auctioneer can announce a sequence of increasing prices and, at each price,
ask each bidder to indicate its demand.1 The auctioneer may also need
to consider the potential impact of strategic withholding by bidders. This
chapter provides a review of some of the more commonly used multi-unit
auctions and describes their properties.

There are several ways in which multi-unit auctions are typically conducted.
Probably the most common method for auctioning identical units of a prod-
uct is by means of sequential auctions, and one at a time. This type of
auction is easy to organize. But, as what follows should make clear, this may
not always be the best method. Multiple auctions for each available unit can
be held in parallel when the auctions are conducted online.

At times the auction format is influenced by indivisibilities in underlying
production capacity. For example, in the energy sector, supplies are typi-
cally linked to generating units that have fixed capacities. Possibly for this
reason, many reverse energy auctions allow bidders to submit supply func-
tions, and to choose the form of the bid function is based on generation
facility capacities. The auctioneer then aggregates the supply-function bids,
and determines the price and the allocation based on market clearing of the
aggregate supply and requested demand.

The clock auction is another type of multi-unit auction in which all units
are sold at one time. As is explained below, clock auctions are in some cases

1In a reverse auction, the price sequence would be decreasing and the offers would be
supplies at each price.
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strategically equivalent to supply-function auctions. This strategic equiva-
lence fails to hold when bidders are provided information about rival bids
between clock auction rounds. The combinatorial clock auction (CCA) is a
recently developed variant of the clock auction in which bidders can submit
any number of package bids in a final sealed-bid round, and prices are based
on a modified second-price rule.

This chapter examines auctions for multiple identical units of some product.
The next section describes clock auctions. Clock auctions can differ in the in-
formation provided to bidders between rounds, and in the pricing rule. Clock
auctions are compared with sequential auctions. The next section describes
demand- and supply-function auctions under complete information. Then,
the outcome of clock auctions and demand-function auctions are compared.
In all these multi-unit auctions, bidders’ strategic withholding can adversely
affect the outcome.

8.2 Simultaneous vs Sequential Auctions

The analysis of the last chapter indicates that the expected price in a se-
quence of auctions for identical products is a martingale, that is, the ex-
pected price in one auction equals the actual price in the previous auction,
provided bidders’ valuations are the same across auctions at different times.
This result no longer holds when bidder valuations can change. Should bid-
der valuations be static, then, as explained in the previous chapter, the price
and allocation are independent of how many units are sold in each auction.
Indeed, the highest-value bidders win, and all winners pay the same expected
price.

This is no longer the case when bidder valuations can change. In that case,
price can vary from unit to unit across auctions. What this means is that a
higher-value bidder can lose in an early auction to a lower-value bidder, and
fail to win later. This type of outcome would come about due to a possible
miscalculation by the losing higher-value bidder or to an unexpectedly high
level of competition in the later auctions. Unexpected fluctuations in demand
across auctions can be difficult to plan for. However, even with little or
no fluctuation, high-value bidders can lose to lower-value ones in sequential
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auctions. This type of outcome reduces the average bidder surplus as well as
overall auction revenues. Thus, sequential auctions require bidders to make
complex calculations and forecast future demands. As is explained below,
in simultaneous clock auctions such guesses are unnecessary, eliminating the
potential for mistakes.

However, sequential auctions do have advantages when demand across bid-
ders can shift over time. As explained in the previous chapter, overall auc-
tioneer revenues (for a forward auction) will tend to be greater when the
auction volume is split across two or more auctions. If this benefit is small,
then the possible inefficiencies due to bidder miscalculations and bidding
errors can offset the benefits of sequential auctions.

8.3 Clock Auctions

A clock auction is probably the simplest multi-unit auction. In a clock auc-
tion the price starts below market clearing levels, and the auctioneer raises
prices in a series of small discrete steps. After each upward tick of price,
bidders indicate how many units they want to purchase. Prices keep rising
until there is no longer any excess demand. When the clock stops, the re-
maining bidders are the winners, and each bidder is usually asked to pay the
last posted price. Other pricing rules and stopping rules can be used. For
example, all bidders can be required to pay the last price for which there is
excess demand. Another alternative is that the clock price increases until
there is no longer any demand, and each bidder can be required to pay the
price at which it drops out.

The clock auction is essentially a simple adaptation of the classic Walrasian
tatonnement process.2 The main distinction between the clock auction and
the Walrasian auction is that the supply side is absolutely inelastic in the
clock auction, but can respond to price in the Walrasian auction. The set
of clock round offers trace out a demand schedule. The auction thus ends
when the price rises to the point where demand drops to or below supply. In
the remainder of this section, I briefly describe a few properties of the clock

2See [74].
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auction and a few variants.3

The simplest case is where each bidder will purchase at most one unit. In
this case, each bidder should remain in the auction until the price reaches
its value. If a bidder were to drop out before the price reached its value, it
would derive no benefit from doing so – and this can only save rivals money.
There is similarly no point in waiting until after price goes past value, as the
bidder may then overpay. The bid strategy is essentially the same as in a
standard English auction.

If bidders pay the last price for which there is excess demand, then it is a
dominant strategy to bid up to value and then drop out. In other words,
bidders will want to bid value, independently of rivals’ values and bids. On
the other hand, if bidders pay the last price posted, which means the first
price posted for which there is no longer excess demand, then it is possible for
a bidder’s offer to affect how much it pays. In this case, a bidder’s strategy
can depend on the tie-breaking and rollback provisions. Specifically, if at the
next to last price demand exceeds supply, but at the last price there is excess
supply (i.e., there is overshooting), then a bidder may want to drop out a bit
before the price reaches its value. This is especially true if the increments
are large or the bidder believes that overshooting is likely.

Thus, the rule that determines prices can have some effect on the bidders’
strategy. If bidders pay the highest losing offer, then bidding value is a
dominant strategy. If bidders may have to pay the lowest winning bid, then
they can have incentives to drop out early. Note that these differences are
likely to be small if there are a large number of bidders and values are closely
bunched, that is, if the gap between the highest losing offer and the lowest
winning offer is small.

8.3.1 Clock Auctions and Sealed-Bid Auctions

The decision facing a bidder that is seeking to purchase up to one unit in a
clock auction is very similar to the decision facing a bidder in a sealed-bid
auction. Indeed, at times the decisions will be strategically equivalent. When
this is the case, the outcomes of the two types of auctions will be the same.

3Some of what follows is in [54].
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The only differences between a clock auction and a sealed-bid auction are in
the information available to bidders when having to decide on crucial bids.
In the extreme case of a clock auction in which the auctioneer (a) never
reports any information about excess demand and (b) increases price until
there is zero demand, and not just zero excess demand, the decision facing a
bidder is identical in a second-price sealed-bid auction and in a clock auction
in which the bidder pays the high losing bid. A bidder has no information
about rivals’ participation in the clock auction. And so, each bidder is just
choosing a price at which to drop out of the auction. This stopping price
should equal the bidder’s value, and be exactly the same as in the second-
price sealed-bid auction.

Similarly, the strategic decision facing a bidder in a clock auction is the
same as in a sealed-bid auction when (a) the clock auction price is the lowest
winning bid and (b) the bidder pays its bid amount in the sealed-bid auction.
In both cases, the bidder will want to shade its bid, that is, drop out below
value. The less it bids, the greater is its surplus, but the lower the chance
of winning. And, as in the clock auction, the bidder gets absolutely no
information about rivals, so its choice of when to drop out is just based on
when it thinks the next-highest-value rival would drop out.

This strategic equivalence of clock auctions and sealed-bid auctions breaks
down when information is reported to bidders between price increments
(rounds). When, in a clock auction, bidders pay the highest losing bid,
information about rival demand does not affect strategy except to the extent
that this information affects bidder valuations. This means that bidders hav-
ing affiliated values will tend to bid more aggressively in the clock auction
than in the sealed-bid auction.

If the clock auction price is set at the lowest winning bid, then the strategic
equivalence of sealed-bid auctions and clock auctions breaks down, even with
independent private values. When bidders know that there is no excess de-
mand, they can stop bidding. Thus, in a clock auction, bidders won’t always
need to bid up to the point where the benefit of increasing the probability
of winning by offering more just offsets the reduction in surplus. Often, the
auction will end sooner. Thus, there can be some gain to having the addi-
tional information in the clock auction. It is possible that a bidder will choose
the same price at which to stop bidding in a clock auction as it would offer
in a first-price auction, but this would depend on the distribution of bidder
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valuations. Expected revenues would be less, though, as in some cases the
winning bidder would not have to pay as much as it would offer in a first-price
auction.

8.3.2 Clock Auctions, Sealed-Bid Auctions, and Mar-
ket Power

We now consider the case in which a bidder may want to purchase more than
one unit. In this case, its decision to reduce demand can reduce the price
it pays for the units it does purchase. In a second-price auction, that is, an
auction in which winning bidders all pay the highest losing bid amount, it is a
dominant strategy for each bidder to bid its value. However, if some bidders
are seeking to purchase two or more units, each can have an incentive to bid
less than its value in some cases.

A simple example can illustrate the incentives to withhold demand in this
case. Suppose, to start, that there are three bidders, each having values
drawn from a uniform distribution on [0, 1], and that there are two units for
sale. One bidder has a demand for two lots, and the other two bidders only
want one lot each. The top two bidders would win and pay the third highest
bid amount. The expected values in rank order are 4

5
, 3
5
, 2
5
, and 1

5
. Assuming

the large bidder does not shade its bid, the expected price would be 2
5
.

Now consider the incentives of the bidder seeking two units to shade its bid.
The possible rank orders (where L denotes the large, two-unit bidder, and s
one of the two small, one-unit bidders) are LLss (i.e., the two-unit bidder L
has the highest two valuations, and the other two bidders s have the lowest
valuations), LsLs (i.e., L has the highest and third highest valuations), LssL,
sLsL, sLLs, and ssLL.

In the case LLss, the two-unit bidder will win two blocks with an expected
price of 2

5
. This occurs with probability 1

12
. So, this bidder, by bidding 0 for

its second unit, loses, and loses an expected payoff of 1
5
× 1

12
. On the other

hand, bidding 0 for the second unit will allow this bidder to pay on average
1
5

instead of 2
5

in the cases LsLs, which occurs with probability 1
6
, and sLLs,

which occurs with probability 1
12

. In the other three cases, underbidding does
not affect this bidder’s expected payoff. So, this bidder gains an expected
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net return of 1
6
× 1

5
= 1

30
by strategic underbidding. This type of strategic

demand reduction has been noted as possible both in spectrum auctions4 and
in the energy sector.5

Note that if bidders pay the lowest winning bid, then the outcome will gen-
erally be the same as in the case where bidders pay the highest losing bid,
assuming each bidder is seeking to win only one unit. When bidders are
seeking multiple units, they will also have some incentive to underbid.

8.4 Supply-Function Auctions

This section considers reverse auctions in which bids are in the form of supply
schedules. More specifically, each bidder informs the auctioneer how much
it is willing to supply as a function of the price it is paid. Thus, the bidder
may offer a quantity q0 at price p0 and a quantity q1 ≥ q0 at price p1 >
p0. These supply-function bids are a common way for power to be offered
in energy auctions.6 The reason for the use of supply functions is on the
technical side: the offers can be matched to the characteristics of the plants
providing energy7 (although, in many cases, energy offers are in the form of
financial contracts – the supplier guarantees a spot price determined by a
grid operator). As Green and Newbery [32] noted, the reliance on supply-
function bids may have the unintended consequences of resulting in higher
(i.e., less competitive) transaction prices.

A very simple example of a supply-function game is one in which two plant
owners, say having M = M1 = M2 MW of capacity, can offer to sell it
in to the grid operator a price pj for operator j = 1, 2. Suppose too that
the needed supply, S, satisfies M

2
< S < M. For example let S = 100 and

M = 60. Also assume that the grid operator, who serves as the auctioneer,
will cover the fuel costs, and so bids are just for rights to use the capacity.
The grid operator is assumed to have a reserve price R, which for purposes
of this example we take to be 100. It is also assumed that operators receive
their bid price.

4See [18] and [34] and [18] .
5See [36], [75] and [13] .
6See [32] , [9], and [48] .
7See [9] for a discussion.
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It is clear that no operator would ever accept a price less than S−M
M
× R,

or 662
3

in this example, the reason being that the bidder can always sell
S −M at the reservation price. However, when one bidder chooses a price
strictly above S−M

M
× R, its rival will have incentives to undercut. Thus,

there is no pure strategy equilibrium. It turns out that choosing a probability
distribution function F (p) such that each rival earns the same expected profit,
independent of the price the rivals choose between S−M

M
×R and R, is a mixed

strategy equilibrium. This is the case if

Mp[1− F (p)] + (S −M)pF (p) = k

or

F (p) =
M − k

p

2m− S
.

It can also been seen that k = M
[
S−M
M
× R

]
. In the numerical example,

F (p) =
60− 4000

p

20
for 66.67 ≤ p ≤ 100.

More generally, consider the case of two firms bidding into a market (auc-
tioneer) demand function Q = D(p).8 Let Sj(p) denote the supply schedule
offered by firm j = 1, 2. What follows is a description of some of the neces-
sary conditions for an equilibrium set of offers S∗1(p), S∗2(p) and resulting
equilibrium price p∗ and quantity Q∗. The assumption that the auctioneer
incurs all variable costs, as is often the case in energy markets, is maintained.

Note if there is an equilibrium, unique or otherwise, then D(p∗) = S∗1(p∗) +
S∗2(p∗), that is, supply must equal demand. If there is no equilibrium, it is
assumed that neither firm earns any profit. Now, consider any pair of firm
quantities (q1, q2), such that the price p satisfies

p = D−1(q1 + q2)

What follows derives supply functions for the each of the two firms that can
support these prices as an equilibrium outcome. Notice that given Si(p),
firm j will want to maximize p

[
D(p)−Si(p)

]
with respect to p. This implies

that the following first-order conditions need to be satisfied:

8This section is loosely based on [43].
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[D(p)− Si(p)] + p
[
D′(p)− Si′(p)

]
= 0 (8.1)

But (8.1) is satisfied whenever9

Si
′
(p) = D′(p) +

D(p)− Si(p)
p

= D′(p) +
qj

p
(8.2)

However, multiple values of the price will satisfy (8.2). Thus, there will be
multiple equilibria. For example, if demand is linear [D(p) = A− Bp], then
linear supply schedules S(p) = s×p will satisfy (8.2) whenever s = A

p
−2B.10

Suppose there is uncertainty, e.g., suppose D(p) = A − Bp + ε, where ε is
a nondegenerate random variable, that is, the demand has a random com-
ponent. In this case, the supply schedule each bidder chooses has to satisfy
the first-order conditions in (8.1) for any realization of the random variable.
This means that a pair of supply functions that are an equilibrium for one
particular realization of demand need not still be one for others. It can be
shown that there will be a unique pair of supply functions that will be an
equilibrium for all realizations of demand.

8.5 Conclusions and Applications

This chapter has reviewed clock auctions and supply-function auctions. The
two are very similar, and, as explained in Section 3, are identical when there is
no information reported to bidders until bids go to zero in the clock auction.
When bidders see when rivals drop out, or have some aggregate measure of ri-
val offers, then the clock auction allows bidders to bid a bit more aggressively
than in a sealed-bid supply-function auction.

In practice supply-function (or demand-function) auctions are common in
some sectors, most notably the energy sector. There are often restrictions

9If marginal costs are positive, the first-order condition becomes [D(p)− Si(p) + (p−
C ′((D(p)− Si(p))]

[
D′(p)− Si′(p)

]
= 0.

10As long as demand is concave and costs are convex increasing, the second-order con-
ditions will also be satisfied.
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on the form of bids, e.g., bidders can submit only step function bids or
piecewise linear schedules. These restrictions tend to reduce the complexity
of the bidding process.

A key issue is how well clock and supply-function auctions work. Note that
bidders can have market power in these auctions. This is most clearly seen
in the simple capacity example of Section 8.3.2, in which each of two bidders
offers its capacity to a grid operator. This result can be generalized; more
specifically, it can be shown that in cases in which bidders can be pivotal,
bidders’ offers will always be bounded away from their competitive levels.
This possibility was noted in [32] , seen in practice, and proven in theory.11

The logical question is what are the alternatives to these type of auctions.
One of the key issues in auction performance in multi-unit auctions is the
incentives of bidders to make offers close to marginal values. The auctioneer
can choose to reduce volume if offers are insufficiently competitive, and this
can serve to elicit more competitive auctions from bidders.12 However, this
may only delay the inevitable. If bidders know that the auctioneer has to
conduct another auction for what is left over, they will want to wait for the
re-auction. If the conditions of Weber’s martingale theorem hold, that is,
bidders’ values are static, then the re-auction will not help. On the other
hand, if the bidders’ values can increase or decrease, then, as explained in
Chapter 6, the auctioneer would be well served by reserving the option of
deferring some purchases or sales to a later auction, and making this decision
endogenous, that is, based on the bids.

11See [48].
12See [51].
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Chapter 9

Simultaneous Auctions

A novel approach to auctioning multiple objects began when the United States
Federal Communications Commission (FCC) conducted the first simultane-
ous ascending multiple-round (SMR) auction in 1994. This approach allowed
bidders to link their offers for different objects – they could arbitrage substi-
tutes and limit the risk of winning one of a set of complementary objects
in SMR auctions. In other words, the SMR auction was probably the first
type of auction that allowed bidders to make simultaneous decisions for a set
of objects whose values were related. Prior to this, these decisions had to
be made independently, creating all sorts of difficult decision problems for
bidders. The technology for auctioning multiple objects with interdependent
values is still improving. This chapter provides an introduction to the theory
and practice of multi-object auctions.

9.1 The SMR Auction

It might not be hyperbole to state that the adoption of the simultaneous
multiple-round (SMR) auction by the US Federal Communications Commis-
sion (FCC) was the single most significant event in the application of game
theory to address practical decision problems. This auction format was de-
veloped de novo to help the FCC, a governmental agency, more efficiently
allocate an extraordinarily valuable resource, generating over $10 billion in

139
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nominal auction revenues in the first few years. The problem facing the
FCC was to develop an auction mechanism that would efficiently allocate
spectrum licenses, that is, licenses to use specific frequency channels over
different geographic areas. The licenses could be substitutes, as where there
are two or more similar or identical blocks covering the same geographic ar-
eas, or complements, as where a bidder is seeking different bands covering
the same area for different needs, or in different areas (where coverage is an
issue).

This allocation presented several challenges. One is that in parallel or se-
quential auctions substitutes for identical products often sell for different
prices. In such cases a losing bidder for one lot can have a higher willingness
to pay than a winning bidder for an identical lot. This also means that the
outcome of the auctions is necessarily inefficient. Reallocation through after-
market transactions cannot be relied upon to correct for such inefficiencies
unless transaction costs are low. This same logic extends to close but imper-
fect substitutes; it is possible that a higher-value lot will sell for less than a
lower-value one.

Another challenge is the exposure problem: a bidder entering separate bids
for two or more complements may end up overpaying if it wins part, but
not all, of its desired package. For example, if one block is worth 10, but
two blocks are worth 50, a bidder that offers 20 per block may win only one.
Allowing bidders to submit all-or-nothing package bids is one approach to this
exposure problem. However, package bidding introduces other complexities,
as is explained in more detail in Chapter 10. And auction rules that help
one bidder address the exposure problem can create a bias in favor of a large
package bidder over bidders seeking smaller packages.

The chapter starts with a brief description of the SMR and clock auction
formats. A simultaneous clock auction differs from an SMR auction in that
bidders name only quantities based on prices set by the auctioneer in each
round. This chapter reviews properties of the SMR auction format. Then it
provides a review of the experience with SMR and simultaneous clock auc-
tions. In particular, it presents both good and bad experience with the SMR
auction. Finally, it explains how the performance of an SMR auction (that
is, how close it comes to achieving an efficient outcome) and the revenue
raised can be surprisingly sensitive to seemingly minor decisions about auc-
tion configuration and parameter settings. Some guidance is provided about
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how to ensure that an auction outcome is more likely to be efficient, and to
counter bidder efforts to exert market power.

9.2 Introduction to the SMR Auction

9.2.1 A Brief History of the SMR and Clock Auctions

In 1994 the US FCC faced a Congressional mandate to allocate and assign
various combinations of regional and national spectrum licenses using auc-
tions.1 Because of incumbent users on the spectrum, the new licenses would,
in some cases, be awarded to firms competing with existing licensees, and
in other cases, existing licensees would be seeking to add to their frequency
holdings. In addition, both bandwidth and geographic efficiencies meant that
in some instances a pair of licenses covering the same or adjoining regions
could be substitutes or complements. The FCC’s mandate included efficiency
and the promotion of deployment of advanced telecommunications services
as primary goals, with revenue a secondary goal.2

Thus, the FCC faced a difficult auction design problem – it wanted an auc-
tion that would efficiently allocate licenses that could be complements or
substitutes. This meant that the auction should allow efficient arbitrage in
the case of substitutes. And, in the case of complements, the auction should
allow bidders to effectively manage the exposure problem when bidding for
a package of complementary licenses. Moreover, the FCC would not want to
allow bidders to win too much spectrum so as to create market power. An
additional complication was that there were different options for dividing the
spectrum bandwidth with respect to geographic partitioning of the US and
its territories.

1See http://wireless.fcc.gov/auctions/ and [47]. Note that for spectrum auctions, the
term allocate is usually reserved for the type of use of the spectrum (television, mobile
communications, public safety, etc.), and the term assignment is used for the process
whereby individuals or firms are awarded rights to use the spectrum.

2See [47].
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9.2.2 SMR Auction and its Variants

This section provides a very brief description of the basic SMR and simultane-
ous clock auction rules. As noted above, the first SMR auctions, introduced
by the US Federal Communications Commission, were initially introduced
for the sale of a number of lots, some of which could be substitutes and some
could be complements in a single auction. In any SMR or clock auction there
are multiple units or blocks available in a single auction. And bidding occurs
in a sequence of rounds.

Prior to the start of an SMR or clock auction, the auctioneer posts some ap-
plication and eligibility requirements. One component of the initial eligibility
requirements includes the application for eligibility points, either based on
the scale of activity or set by the auctioneer for the lots available. Bidders
must include in their application some indication of how many points they
want to be able to bid for. A bidder is never allowed to win more points than
it indicated in its application. This is a component of auction rules designed
to encourage increasingly serious bids as the auction progresses.

In the first round of any SMR or clock auction, a bidder is allowed to enter
bids for any combination of lots whose total activity points do not exceed that
bidder’s initial eligibility. If a bidder fails to meet its activity target, which is
some fraction, up to 100%, of its eligibility, it will see its eligibility decrease
in the next round. For example, if a bidder’s eligibility is 200 activity points,
the required activity percentage is 80%, and this bidder is active on 64 points
in the first round, its eligibility for round 2 will fall to 80 = 64

80%
. And once

a bidder loses eligibility, it can never regain it.

After the first round and each subsequent round, the auctioneer will post
– possibly partial – information about the bids in the previous round. At
a minimum, the auctioneer will publish the minimum required bids for the
following round, and usually some measure of the excess demand for each
lot. In most of the first SMR auctions, the auctioneer would report all bids
and bid amounts.3 Also after each round, the auctioneer informs each bidder
of the lots for which it has a provisional winning bid.

3As discussed in more detail below, concerns about signaling and collusive bidding led
the FCC and other regulatory agencies to adopt limited-disclosure bidding. See [18] and
[15]. Also, [50] discuss bidder collusion in SMR auctions.
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In contrast, in many SMR auctions, a bidder can submit jump bids, that is,
bids above the minimum required amounts. This can serve to influence the
rate at which prices of different lots increase during the auction, as well as
the relative prices. A bidder may wish to do so when there are complements
and the bidder seeks to determine its ability to win one lot before having to
commit to another.

In each round after the first, bidders that were topped on any lot can improve
their offer, switch their points to other lots, or reduce eligibility. A bidder
failing to maintain its required activity in one round will lose eligibility in
the next. Note that, typically, a bidder does not have to increase its offer
on a provisional winning bid to have that bid count toward activity.4 As
prices rise,5 bidders will find the cost of keeping eligibility increases, and so
will have incentive to reduce activity, and eligibility. Also, if the auction
starts with less than a 100% activity requirement, the activity requirement
will tend to increase toward 100%. So, as the auction progresses, bidders will
tend to drop points and demand. The auction ends when there is no longer
excess demand on any lot.

There are many variants of the SMR auction format. Perhaps the most
fundamental variant is the simultaneous clock auction, in which bidders do
not name prices, and only indicate which lots they want at the announced
clock prices. As there is often little incentive for bidders ever to bid much or
anything above minimum required bids, the simultaneous clock auction6 is
really not much different than the SMR. The inability of bidders to submit
jump bids, that is, increase offers above the minimum required bids, has two
effects. One is that there is less scope for signaling in the clock auction than
in an SMR auction. The other is that relative prices are controlled by the
auctioneer. The lack of signaling can produce more competitive outcomes.
The fact that bidders have less influence on relative prices in a clock auction
means that decisions may be sequential – the activity rules require decisions
on large lots to occur before decisions on smaller ones, making the auction
sequential, which can result in inefficiencies and price anomalies.

SMR auctions vary in many other respects. As noted above, the activity re-

4The Indian 3G auction in 2010 was an exception.
5This section assumes a forward auction. In a reverse auction, prices start high and

then fall.
6See [49] for a description of a simultaneous descending clock (reverse) auction.
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quirements and information reported to bidders are auction design features.
The effect that these design features can have on the auction outcome is
explained below. SMR and clock auctions can be run for multiple units of a
single product, single units of multiple products, and multiple units of mul-
tiple products. Simultaneous auctions have also been used for procurement.

9.3 SMR Auction Properties

The SMR auction is quite a bit more complicated than a standard English
auction or a sealed-bid auction. The question arises as to what value is there
in using an SMR or a clock auction format. The SMR auction can, under
circumstances described in what follows, effectively allow bidders to arbitrage
price differentials. This ensures that the outcome is efficient, unlike the case
in sequential auctions.

9.3.1 Straightforward Bidding in SMR Auctions

As has been discussed above, sequential auctions, or simultaneous auctions
for substitutes or complements, can result in difficult decisions for bidders
and in inefficiencies. The SMR auction gives bidders the ability to arbitrage
price differences between substitute products. In other words, a bidder can
shift activity from lots for which the value-price differential is low to one
for which it is high. Thus, a bidder can bid straightforwardly. Note that
this requires that bid increments be small, and the activity rule provides
flexibility to make them so. For example, suppose lots A and B are very
close substitutes for a bidder, but that lot A has more activity points than
B. If the prices are about the same, a bidder may prefer A to B.

If price of A is a fixed amount, ∆, more than B, the bidder would prefer B. If
the prices start the same, this bidder may start bidding for lot A. However,
if the price of A rises faster than that of B, the bidder would want to and
can switch to B. Now if, later in the auction, the price of B rises to catch up
with, and perhaps pass, A, this bidder would want to switch back. But an
activity requirement of 100% (or more than the ratio of the points for B to
the points for A) would not permit this.
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When such arbitrage can occur during the SMR auction bidding rounds,
then, on the margin, a bidder will be indifferent between two lots only when
the price-value differential is the same across the two. As all bidders can shift,
the auction should end where the marginal bidder is just indifferent. This is
a standard criterion for efficiency in competitive markets. More specifically,
assuming bidders always bid on the set of blocks that maximize surplus in
each round, the outcome of an SMR or clock auction should be both efficient
and a competitive equilibrium. In other words, at the final prices, excess
demand is zero for all lots, which is the criterion for a set of prices to be a
competitive equilibrium.

Summarizing, this logic implies the following result [54] (p. 270), which
applies to a simplified SMR auction format in which bidders continue to bid
on all they want until they have decided to drop eligibility in each round, and
in which activity rules allow switching consistent with revealed preferences.

Theorem 3 Straightforward bidding is a feasible strategy for bidder j for all
initial prices, all fixed increments, and all feasible price paths iff all goods are
substitutes for bidder j.

This theorem does not apply when, as discussed above, the auctioneer does
not assign close substitutes the same number of activity points, thus limiting
bidders’ opportunities for arbitrage. Note, too, that if goods can be comple-
ments, and there are two packages, and a bidder gets topped on some, but
not all, lots in a package, then it may lack the eligibility to switch to what
is a higher-surplus package at the current round’s prices. This can happen
when, for instance, prices on the lots in one package increase, reducing the
surplus that bidders can derive from it, while prices in another package do
not. The fact that bidding converges to a competitive equilibrium, which is
also an optimum, follows from the fact that straightforward bidding means
all bidders are able to arbitrage price differentials. So, if one bidder val-
ued one unit of one product more than a rival who won it, it would always
have the opportunity to outbid that rival, and so the auction could not end
with a suboptimal allocation, and the prices could never be other than those
corresponding to a competitive equilibrium. Summarizing:

Theorem 4 ([54]). Assume that all goods are substitutes for all bidders and
that all bidders bid straightforwardly. Then the auction ends within a finite
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number of rounds. The final provisional winning bids and allocation of goods
are a competitive equilibrium for an economy in which bidder valuations are
within some small ε > 0 of the bidders’ true valuations for all bidders. The
final assignment maximizes total welfare within a single bid increment.

Notice too that an SMR auction must converge in a finite number of rounds,
assuming fixed increments. This follows from the fact that there is only
room for a finite number of rounds before all prices would exceed all bidders’
values. Thus, given any initial prices, any SMR auction converges to some
limit. Further, given the arbitrage condition with substitutes, this limit must
be a competitive equilibrium, assuming all lots are substitutes and bidders
bid straightforwardly. Thus, a competitive equilibrium always exists for the
case of substitutes.

9.3.2 Strategic Withholding in SMR Auctions

The above subsection shows how SMR and simultaneous clock auctions are
efficient when bidding is straightforward and all the lots are substitutes. This
subsection looks at the incentives for straightforward bidding and suggests
some measures that can improve those incentives.

To illustrate why an individual bidder may not always want to bid straight-
forwardly, consider an auction in which two bidders are competing for two
lots. The first bidder has a valuation for two lots, and the second bidder
only wants one. Other bidders are assumed to have lower valuations. Sup-
pose when prices rise to 50, this two-lot bidder, which values each lot at say
100 or more, sees it can win one lot. If this bidder believes it can win both
lots for a price not much higher than 50, then it will want to keep bidding.
However, if this bidder may have to bid nearly 100 to win both lots, or may
not be able to win the second lot at all, then it will want to drop its demand
for the second lot as soon as it sees it can lock down the first lot. Even if this
two-lot bidder believes it is just as likely to be able to win the second lot at
50 as at 100, it will have no incentive to continue bidding. In other words,
this bidder will wish to withhold demand.

This logic readily extends to situations commonly encountered in SMR spec-
trum auctions in which two bidders are competing in several geographic areas.
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If each were to accommodate the other, then the auction could end at a low
price; on the other hand, should they keep bidding, the auction could end
at a high price for the same allocation that might have occurred had the
two each reduced demand. Early SMR auctions allowed bidders to submit
arbitrary bid amounts. So, a bidder could submit a very large bid, and add
a few dollars or euros to bids on some lots over others. This type of bidding,
that is, adding a few “trailing digits,” can be interpreted as giving signals.7

Regulatory authorities now usually specify a limited set of allowed bid in-
crements. Thus, in some auctions, a bidder can only bid a fixed increment,
and in other auctions a bidder can choose among a fixed set of increments
(e.g., 10,000, 20,000,. . . , 50,000 above the provisional winning bid. These
nondiscretionary increments limit the possibility of signaling. Of course,
overt collusive agreements among bidders are never allowed. So, in the end,
signals are never more than cheap talk. But the cheap talk can, at times,
affect the outcome.

Moreover, by not reporting the exact demand after each round, the auction-
eer can further reduce bidder incentives to withhold demand. In the first
example, if the two-lot bidder does not know that there is exactly one lot
of excess demand, it cannot know that by reducing demand it can end the
auction. Thus, it is now common for auctioneers to limit the information
reported between rounds about excess demand.

These limited-disclosure rules can come at a cost. Recall that in a common-
value auction, aggregate information about rivals’ demand can reduce uncer-
tainty about a bidder’s own value forecasts. This reduction in uncertainty can
result in higher auction revenues. Thus, an auctioneer risks reducing auction
revenues when it reports no information about excess demand to any bid-
ders between rounds. At times, auctioneers will report approximate excess
demand. For example, rather than indicating that there is only one block
of excess demand, the auctioneer can indicate that there are fewer than five
blocks of excess demand. Such information can alleviate the winner’s curse
in common-value auctions. Indeed, if the information reported is sufficient,8

in the sense that any additional information would not help bidders improve
their value forecasts, then full disclosure will have no additional benefits. In

7See [18] and [15] for a discussion.
8[24] is an early reference for the concept of sufficient statistics.
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such cases it may be possible to provide adequate information to bidders
to take full account of the winner’s curse without having to risk increasing
incentives for strategic withholding.

Along these lines is the decision that the FCC and other regulators have taken
to limit bidder discretion in setting bid increments. In most of the early SMR
auctions, bidders were allowed to submit bids in any amount, and the last few
digits of bids may have been used in efforts at covert signaling.9 In one case,
signaling resulted in a post-auction conviction of a bidder who attempted to
collude during an auction with another bidder. Most recent auctions allow
a limited number of bid increments. In some cases, the auctioneer allows
only yes or no bids for a fixed increment, which turns the auction into a
simultaneous clock auction.

One other approach has been used to offset bidder incentives to strategically
withhold demand. In the above example, in which there are two lots available
in the auction, the two-lot bidder will have less incentive to withhold demand
if the auctioneer can decide to only sell one lot. For example, the auctioneer
can decide, in advance, to sell only one lot to any single bidder unless that
bidder is willing to pay at least 75 or at least 50% more than a rival is
willing to pay for the second lot. In this case, the large bidder can still
withhold demand, and may still have an incentive to do so, but its incentive
is reduced.10 This can be effective when the auctioneer does not have to sell
its entire inventory, and can carry it over to another date. This approach has
been used in energy procurement auctions.11 When the auctioneer does not
have the ability to carry over the inventory to another date, or other outlets,
then this type of volume reduction will not be effective. In some cases, there
may not even be the option of just keeping the unsold inventory.

9See [18]. Also, see [23] for a different analysis of the impact of information disclosure
provisions.

10See [51] for a more formal analysis for the case in which the auctioneer does not have
to sell both, or all, lots.

11See [49].
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9.4 SMR Auction Experience

The first few auctions were intended to assign rights to narrowband and
broadband personal communications services (PCS) licenses. Narrowband
PCS was intended for one-way and two-way paging and messaging services.
The broadband PCS was for first digital (or 2G) mobile voice and data
service. One part of the auction process was to determine the geographic
area of coverage and the bandwidth associated with each license. In the first
narrowband PCS auction, the FCC divided up the narrowband spectrum into
ten national licenses of different bandwidths. In the second, it divided the
spectrum into six bands in each of five geographic regions. The broadband
PCS was initially scheduled to occur in a sequence of three auctions. The
first, FCC Auction 4, included two 30 MHz licenses in each of 51 major
trading areas (MTAs). The second, for designated entities (small businesses,
minority- and women-owned businesses, and rural carriers), was for another
30 MHz in each of 493 basic trading areas (BTAs), which were finer than the
MTAs. The third auction was for three 10 MHz blocks in each of the 493
BTAs.

The very first SMR auction – FCC Auction 1, Figure 9.1, for data com-
munications services – appeared quite successful in that it apparently facil-
itated arbitrage. The frequencies were divided into three types – five two-
way licenses with 50 kHz uplink and downlinks, three two-way licenses with
asymmetric 50 kHz downlink channels and 25 kHz uplink channels, and two
one-way 50 kHz licenses. Each license with a particular bandwidth sold for
essentially the same price as every other license of that type.

The second SMR auction (Figure 9.2) – (which was actually the 3rd FCC
auction12 – included six licenses in each of five regions. Again, the out-
come strongly suggests that the SMR auction is an effective mechanism for
assigning spectrum licenses. Note that in this case the regional blocks were
likely complements. The activity rules apparently provided bidders adequate
flexibility to solve their exposure problems.13

12The FCC’s second spectrum auction was not an SMR auction
13A bid withdrawal in the South region resulted in one of the blocks selling for a sig-

nificant discount with respect to the others. However, if one adds back the withdrawal
penalties that needed to be paid, the total price for this block was very similar to that for
the others.
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Figure 9.1:

FCC	  Auc'on	  #1	  –	  Na'onal	  
Narrowband	  PCS	  

Name Type Final Bid Minority 
Credit 

Winner Round 

N-1 50-50 80,000,000 0 Pagenet 37 
N-2 50-50 80,000,000 0 Pagenet 37 
N-3 50-50 80,000,000 0 McCaw 33 
N-4 50-50 80,000,000 0 McCaw 33 
N-5 50-50 80,000,000 25% MTel 37 
N-6 50-12.5 47,001,001 0 AirTouch 24 
N-7 50-12.5 47,505,673 0 BellSouth 25 
N-8 50-12.5 47,500,000 25% MTel 24 
N-10 50-0 37,000,000 0 Pagenet 45 
N-11 50-0 38,000,000 25% Pagemart 46 
Total   671,006,674       
 

Figure 9.2:

FCC	  Auc'on	  #3	  –	  Regional	  
Narrowband	  PCS	  

Band/Region  Northeast South Midwest Central Western US Total 
50 x 50 kHz $17,500,000 $18,400,000 $16,810,000 $17,340,000  $22,549,020  $92,599,020 
50 x 50 kHz* $14,850,000 $18,780,000 $17,360,401 $17,136,000 $22,800,000 $90,926,401 
50 x 12.5 
kHz 

$9,471,082 $11,800,007 $9,291,000   $8,250,000 $14,857,003 $53,669,092 

50 x 12.5 
kHz 

$8,949,543 $11,543,007 $10,057,004 $8,791,001 $14,281,111 $53,621,666 

50 x 12.5 
kHz 

$8,675,000 $8,000,013 $9,500,000 $8,262,000 $14,281,001 $48,718,014 

50 x 12.5 
kHz* 

$10,251,000  $11,262,003  $10,251,001 $10,488,000 $10,920,600  $53,172,604  
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Figure 9.3:

UK#3G#Auc)on#Results#

License# High#Bidder# Final#Price#£m#

A# TIW(Hutchison)# 4,348.70#

B# Vodafone# 5,964.00#

C# BT3G# 4,030.10#

D# One2One# 4,003.60#

E# Orange# 4,095.00#

The SMR auction format has been used by regulatory authorities for a great
many auctions for spectrum and other products and assets across the world
since the mid-1990s. For the first wave of European spectrum auctions, the
SMR format was used in Austria, Germany, Italy, the Netherlands, Switzer-
land, and the UK. In virtually every case, similar licenses sold for similar
prices, and larger licenses sold for more than smaller ones. All these auctions
included 120 MHz of paired UMTS spectrum, which could be divided into 4,
5, 6, or 12 lots.

The UK and Italy decided to divide the spectrum into three lots of 20 MHz
and two lots of 30 MHz. One of the larger lots was reserved for an entrant.14

The UK was the first European country to conduct a 3G auction. That auc-
tion attracted the four incumbents (BT, Vodafone, Orange, and One2One)
and nine potential entrants. Each firm could bid for one license and had to
remain active to remain in the auction. The four incumbents each won a
license (and Vodafone won the larger, 30 MHz license). H3G won the license
reserved for the entrant. The auction results were as in Figure 9.3.

14The 120 MHz was actually split into separate uplink and downlink channels, and so a
20 MHz license typically included a 10 MHz uplink and a 10 MHz downlink channel, and
is sometimes written as 2×10 MHz, or 10 MHz for short. In addition, the UK and Italian
auctions included some other, less valuable spectrum for what are called time division
duplex (TDD) applications.
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German 3G Auction 

Blocks	   Bidder	  Name	   DM	   USD	  

1	   Viag	  Interkom:	   DM8.3104	  billion	   $3.86	  billion	  
2	   Mobilcom	  MulDmedia:	   DM8.17	  billion	   $3.79	  billion	  
3	   Mannesmann	  Mobilfunk:	   DM8.33	  billion	   $3.87	  billion	  
4	   Group	  3G:	   DM8.3046	  billion	   $3.85	  billion	  
5	   Mobilcom	  MulDmedia:	   DM8.2	  billion	   $3.81	  billion	  
6	   Viag	  Interkom:	   DM8.2066	  billion	   $3.81	  billion	  
7	   T-‐Mobil:	   DM8.3043	  billion	   $3.85	  billion	  
8	   E-‐Plus	  Hutchison:	   DM8.2743	  billion	   $3.84	  billion	  
9	   T-‐Mobil:	   DM8.2779	  billion	   $3.84	  billion	  

10	   E-‐Plus	  Hutchison:	   DM8.1439	  billion	   $3.78	  billion	  
11	   Mannesmann	  Mobilfunk:	   DM8.1438	  billion	   $3.78	  billion	  
12	   Group	  3G:	   DM8.1414	  billion	   $3.78	  billion	  

Figure 9.4:

The German 3G auction was designed differently. The same 120 MHz that
was also available in the UK was divided into 12 blocks of 10 MHz. Each
bidder was allowed to bid for two or three blocks. A bidder that was the high
bidder on one block at the end would not win, nor would it owe anything,
and the unsold block would be immediately re-auctioned. The regulator did
not report all bids, but only the identity of standing high bids at the end of
each round.

There were seven bidders that applied to participate in the German auction:
the four incumbents – T-Mobile, Mannesmann (Vodafone), Viag (O2), and
E-Plus – as well as three potential entrants. The auction did not reserve any
blocks for entrants, and indeed was criticized beforehand for allowing the
incumbents to foreclose entrants. The auction thus allowed for four, five, or
six winners.

One of the entrants, Debitel, dropped out when the price reached DM15

4,897 million per block in round 121. This was not common knowledge for
all the bidders, as only high bids, and not all bids, were reported by the
regulator after each round. However, bidders could guess after a few rounds
that Debitel had dropped out. Once it had done so, the other bidders could
settle right away for 20 MHz, or keep bidding, hoping to win 30 MHz and
face less competition in the market after the auction.

15The Deutschemark was worth about 0.5 euros. It was soon phased out.
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Mannesmann and T-Mobile elected to keep going for another 53 rounds,
until prices reached DM 8,330 million. At that time T-Mobile found it more
prudent to drop out, and risk ending with two blocks and a six-player market,
than keep going. Had Mannesmann won three blocks, there would have been
one unsold block, which T-Mobile could have tried to acquire in a second
auction.16

The results of the German auction are in Table 9.4. Each of the six winning
bidders won two blocks.

This was not the real end of the process. Neither of the entrants that won
spectrum, Mobilcomm (backed by France Telecom) and Group3G (back by
Telefonica) ever elected to roll out service. Both abandoned their licenses,
and for no refund or other considerations. Germany was left with a four-
player market.17

The Italian auction (Figure 9.4) used the UK design; it apparently also
achieved a reasonably efficient outcome despite the very limited competition
– there were six bidders for five licenses.

The Austrian auction copied the German design, but there were six, rather
than seven, bidders to start. That auction settled in seven rounds.

The SMR and simultaneous auction format has now been used in dozens of
auctions for spectrum – almost all the spectrum auctions in both North and
South America, Australia, and parts of Asia, including India, Singapore, and
Taiwan. It has also been used for a number of energy auctions; perhaps the
first successful application was the simultaneous descending clock auction

16[41] account is a bit different. He indicated that T-Mobile and Mannesmann should
have either dropped out two blocks earlier or kept going until one of the entrants dropped
out. This would have been a sound pre-auction recommendation if T-Mobile and Mannes-
mann had both believed that the entrants were either weak or quite strong. As it was, each
bidder faced a great deal of uncertainty about rivals’ valuations, and as the two strongest
incumbents, neither T-Mobile nor Mannesmann wanted to be the first to cede the third
block, and possibly lose market share. Only when prices rose so high that a re-auction
could be expected to result in lower prices for the unsold extra block did T-Mobile find it
advantageous to reduce eligibility.

17These four blocks were re-auctioned 10 years later for a total of EUR 350 million,
or less than 2.5% of the earlier auction price. Moreover, Telefonica spent approximately
EUR 1 billion on network buildout before deciding to walk away.
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Italian 3G Auction 

3rd day

23rd 
October 

2000
11th 

Round
Start: 
9,30 Finish: 9,50

Remaining Expression
 Lirex1.000 Euro Waivers of interest*

1 OMNITEL 4.740.000.000 2.448.005.702 ........3 ......
2 IPSE 4.730.000.000 2.442.841.133 ........3 .....yes
3 WIND 4.700.000.000 2.427.347.426 ........3 ......
4 ANDALA 4.700.000.000 2.427.347.426 ........3 ......yes
5 TIM 4.680.000.000 2.417.018.288 ........3 ......
6 BLU 4.490.000.000 2.318.891.477 ........2 ....

Bid 
order Bidder

Bid

Figure 9.5:

(SDCA) used for energy procurement in New Jersey,18 and then Italy, Ohio,
Illinois, and elsewhere, and for various other energy products in Austria,
France, and Germany.19

9.5 SMR Auction Configuration

Experience with the SMR auction format has not been uniformly successful.
What follows provides some examples of outcomes that appear inefficient – in
some cases larger and more valuable lots sold for less than smaller lots. This
section explains why at times different bidders pay different prices for iden-
tical aggregate amounts, and why bidders winning more can even pay less.
In general the auction prices and allocations appear to leave some bidders
overpaying relative to others and suggest that misallocations or inefficient
allocations occurred.

Here are several examples of how auction configuration (and in particular
activity rules are implemented), and in combination with bidding strategy,
can affect the outcome of an auction.

18See [49].
19See [6].
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Reliant South TXU South ∆ %∆
1 year base load $7.32 $10.59 $3.27 45%
2 year base load $6.59 $10.33 $3.74 57%
1 year base cyclic $0.75 $1.79 $0.95 127%

Table 9.1: Texas capacity auctions: Fall 2001

9.5.1 The Texas Capacity Auctions

Perhaps the most glaring example of what can go wrong is seen in a few
auctions for generation capacity in Texas in 2001 (Table 9.1 and 2002 (Table
9.2).20 The first capacity auction included one-year and two-year contracts.

These auctions were for 25 MW blocks of capacity for specific durations. The
capacity was owned by three companies: CPL, Reliant, and TXU. These
generation companies were under a regulatory mandate to sell off a fraction
of their capacity, which they did in a series of quarterly auctions starting in
2001. The tables here are for the first two auctions.

In the Fall 2001 auction, the Reliant and TXU capacity was for identical
blocks from the same physical base load generators jointly owned by Reliant
and TXU. These blocks were sold in an SMR auction. In that auction, Reliant
and TXU separately managed the starting prices and bid increments, and
assigned separate eligibility points for each “auction.” Reliant started with a
lower price, but TXU set lower increments. The result was that the Reliant
part of the auction cleared first. When the TXU price subsequently passed
the Reliant price, bidders that had stopped bidding on the Reliant product
were stuck. There was no provision in the auction rules to allow bidders to
switch back and forth.

The second capacity auction was for monthly contracts. A similar pattern
arose in that subsequent Spring 2002 auction. Again, the CPL and Reliant
products were identical. The bids were for capacity, but fuel costs were added
in separately. Bidders failed to adapt in the second Texas capacity auction.
Eventually, the Texas Public Utility Commission mandated that a switching

20See http://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.

381/24492adt.pdf

http://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.381/24492adt.pdf
http://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.381/24492adt.pdf
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Reliant South CPL South ∆ %∆
June base load - capacity only $13.13 $6.85 41.3%
June base load - capacity + fuel $22.57 $18.76 $3.81
July base load - capacity only $6.76 $10.60 45.3%
July base load - capacity + fuel $22.57 $18.76 $3.06
August base load - capacity only $16.76 $9.85 55.6%
August base load - capacity + fuel $26.86 $22.79 $4.07

Table 9.2: Texas capacity auctions: Spring 2002

rule be introduced.21

9.5.2 The Spanish 4G Auction (2011)

The 2011 Spanish 4G auction provides another striking example of what
problems can arise with the activity requirements in SMR auctions which
include both regional and national licenses.

This auction (Figure 9.6) included nine bands within the 2.6 GHz band.
Seven were for national licenses (four each of 2 × 10 MHz, and three each
of 2 × 5 MHz), and the other two were divided into 19 regions (one license
of 2 × 10 MHz and one of 2 × 5 MHz in each region). The three largest
bidders each won 2 × 20 MHz. However, there were many ways for this
outcome to emerge. What happened was that Vodafone won a combination
of national 2×5 MHz and regional 2×5 MHz licenses, whereas the two other
incumbents, Orange and Telefonica, each won national licenses. The main
decision facing these operators in this auction was when to switch from the
national to the regional licenses. The activity requirements made it almost
impossible to switch back. Until one switched to regionals, there would also
be little competition to cause prices to increase. So the decision to switch had
to based on an estimate of how hard the regional operators would compete to
get the 2×5 MHz blocks in each region. The outcome suggests that Vodafone,
which ended up switching first, guessed incorrectly, as it paid almost 30%
more than its rivals. (See Table 9.3)

21See http://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.

381/24492adt.pdf .

 http://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.381/24492adt.pdf
 http://www.puc.texas.gov/agency/rulesnlaws/subrules/electric/25.381/24492adt.pdf
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Figure 9.6: Spanish 4G auction (2011)

Coverage Winner
Price	  of	  2	  x	  10	  
MHz

Price	  of	  2	  x	  5	  
MHz Totals

National Orange 22,214,958€	  	  	  	  	  	  	   €	  45,096,364
National Orange 22,881,406€	  	  	  	  	  	  	  
National Telefonica 21,791,816€	  	  	  	  	  	  	   €	  44,438,132
National Telefonica 22,646,316€	  	  	  	  	  	  	  
National Vodafone 9,811,904€	  	  	  	  	  	  	  
National Vodafone 9,789,654€	  	  	  	  	  	  	  
National Vodafone 10,150,457€	  	  	  	   €	  59,095,246
Regional Vodafone 29,343,231€	  	  	  	  

What is also striking in the Spanish auction is that in each of the three most
expensive regions, Catalunya (including Barcelona), Madrid, and Pais Vasco,
the price of the 2×5 MHz license was more than the price of the 2×10 MHz
license.

Table 9.3: Spanish 4G auction - 5 MHz vs 10 MHz prices in 3 large regions
Region Population Price of a 2x10 MHz license Price of a 2x5 MHz license
Cataluña 7,512,381 e4,239,078.48 e5,888,062.90
Madrid 6,545,684 e3,818,047.06 5,043,280.86
Pais Vasco 2,178,338 e2,417,683.79 3,186,291.36

This was also a result of the limitations imposed by a combination of the
activity rules and spectrum caps. The activity rules did not allow a bidder
to easily arbitrage between the prices of the national and regional licenses.
And there were spectrum caps that did not permit a bidder to bid for 2× 10
MHz when 2× 5 MHz was more expensive.
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Table 9.4: FCC Auction 66: Final prices paid by 6 largest winners
MPOPs POPs PWB total Ave $/MPOP

Cricket + Denali 2,201,624,760 176,183,964 $ 985,082,750 $0.447
Spectrumco 5,287,189,470 267,387,437 $2,337,609,000 $0.451
Cingular 2,436,458,880 198,768,198 $1,334,610,000 $0.558
T-Mobie 6,638,718,070 474,718,308 $ 4,182,312,000 $0.630
Cellco(VZW) 3,840,952,220 192,047,611 $ 2,808,599,000 $0.731
MetroPCS 1,445,444,020 144,544,402 $1,391,410,000 $0.963

9.5.3 The Mexican PCS Auction

Another quite striking example of how activity rules can limit arbitrage across
difference size licenses, in this case of 10 MHz and 30 MHz licenses in the
Mexican 2G auction (Figure 9.7). The activity rule specified that the 30
MHz licenses counted for five times as many points as the 10 MHz licenses.
This made switching difficult in one more way: a bidder dropping from 30
MHz to 10 MHz might not be able to switch back. The next effect was that
in one region, 7, the 30 MHz licenses sold for more than the 10 MHz licenses.

Activity points that had permitted bidders to more easily arbitrage the price
differentials between the 10 MHz and 30 MHz licenses would have prevented
this type of anomaly from occurring. It is not clear that there was a benefit
in assigning more points to the 30 MHz blocks than the 10 MHz ones in any
region. The goals of the activity rules include facilitating efficient arbitrage
and also compelling bidders to mark increasingly serious offers. Assigning
a larger number of points to the larger regions probably accomplishes this
goal.

9.5.4 US FCC Auction 66 – Advanced Wireless Ser-
vices

The US AWS auction, Auction 66, was another auction in which activity
rules limited arbitrage (Table 9.4).

In that auction, the FCC allocated six bands of spectrum partitioned geo-
graphically in three ways: one 20 MHz block was allocated in each of 734
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Figure 9.7: Mexico 2G Auction Results

Region Population A(30) B(30) D(10) E(10)
1676Baja 26,216,35066 $161,544,000 $162,523,000 $152,400,000 $137,870,000
2676Sonora 4,375,5936666 $29,560,000 $31,642,000 $15,000,000 $14,870,000
36Chihuaua 4,978,4646666 $101,656,000 7 $70,100,000 $70,000,000
4676Monterrey7,493,2856666 $616,877,000 $588,488,000 $363,300,000 $353,252,000
5676Campeche8,256,7496666 $9,000,000 7 $6,800,000 $6,700,000
6676Guadalajara10,934,90866 $289,699,000 $286,811,000 $89,650,000 $81,077,000
7676Agau/Guanajato10,339,97766 $70,876,000 $75,941,000 $82,800,000 $82,121,000
8676Oaxaca 18,382,18166 $20,397,000 $20,160,000 $6,300,000 $6,400,000
9676DF 23,742,92666 $892,500,000 $941,506,000 $485,100,000 $479,160,000

Block6(MHz)
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cellular market areas (CMAs), one 20 MHz and one 10 MHz in each of 176
economic areas (EAs), and one 20 MHz and two 10 MHz licenses in each of
12 regional economic area groups (REAGs). The average prices were highest
for the REAG licenses22; they were over $0.10 (20%) more than for the CMA
and EA licenses. Also, the average price by bidder varied quite a bit. Auc-
tion 66 had such a range of licenses that assigning points to prevent activity
traps very difficult. To address this issue some recent (combinatorial clock)
auctions (“CCA”s), a revealed preference activity rule has been imposed. A
reveal preference rule requires bids in any one round be consistent with those
in previous rounds.23

While each bidder won a different footprint, some comparisons can be made.
T-Mobile won 20 MHz licenses in approximately 80% of the top 100 markets.
In contrast, Spectrumco covered essentially all of the top metro areas and
paid approximately 25% less than T-Mobile. Cellco and Cingular combined
to cover the entire US; Cricket and MetroPCS also covered all the major
metropolitan areas.24 Clearly, as in the Spanish 4G auction, the choice of
whether to purchase the larger REAGs or the smaller EAs or CMAs affected
the average price. In contrast with Spain, the prices in this auction for the
large regions were higher.

The outcome of Auction 66, while perhaps difficult to predict, can be ex-
plained at least partly by the bidding strategies. The two parties achieving
the lower average prices (the Cricket-Denali consortia and Spectrumco) were
apparently better able to determine when to switch from the larger REAGs
down to the smaller - $0.451 for Spectrumco and $0.630 for T-Mobile. There
were two approaches used to make this determination.25 Spectrumco em-
ployed jump bids to try to assess the budgets of at least marginal bidders. In
many auctions, the total exposure – that is, the sum of the values of all bids,
both high bids and bids that have been topped – can peak long before the

22See http://wireless.fcc.gov/auctions/default.htm?job=auction_

summary&id=66
23 This type of rule is an application of the logic of the axiom of revealed preference

(see [66] ).The CCA is discussed in more detail below.
24See also [16] for a discussion of the bidding strategy that recognized the flaw in the

activity rule. Bulow et al. did not include Cricket in their report. Salant [65] also provides
an example of how a bidding strategy can be adapted to take advantage of rivals’ budget
limitations and limited arbitrage opportunities in an auction.

25See [16] for a discussion of Spectrumco’s strategy. I advised Cricket.

 http://wireless.fcc.gov/auctions/default.htm?job=auction_summary&id=66
 http://wireless.fcc.gov/auctions/default.htm?job=auction_summary&id=66
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auction closes. This peak can be used to provide an estimate of the budgets
of all bidders in the auction.

If one bidder knows its rivals’ budgets, then it can use this information to
achieve a better allocation and lower prices.26 Consider the following example
(9.5.4):

Two budget-constrained bidders and three lots

Bidder/Value for Lot 1 Lot 2 Lot 3 Budget
Bidder A 100 100 100 100
Bidder B 100 100 100 100

Table 9.5: Two bidder and three lots

In this example there are two bidders and three lots. Each bidder has values
for each lot of 100 (or more) but is quite budget constrained, having a total
budget of 100. If one bidder can get its rival to bid 50 or more for one lot,
it can win the other two lots. And the more it can get that rival to sink in
the one lot, the lower will be the price it has to pay for the other two. The
multi-round structure of an SMR auction allows for this type of strategy. It
is the type deployed by Spectrumco in Auction 66.

This budget-based strategy has some risks. It can be difficult to forecast
budgets. And even the ability to forecast budgets is no guarantee of retaining
the flexibility to take advantage of it. Moreover, it is unusual for all bidders
to face effective budget constraints.

Another approach in Auction 66 and in the Spanish auction is to try to
forecast the conditions under which the small blocks will sell for less than
the larger blocks. This is the approach taken by Cricket and Denali. If
there are both large bidders seeking larger regional licenses and small bidders
seeking only a few licenses, then the large bidders will want to stay on the
larger blocks until they get to be more expensive than the sum of the smaller
blocks. At some critical premium, the large-block bidders will want to shift
to regional blocks, anticipating that they will end up being a better value.
When this should occur will depend on the relative amounts of competition

26See [65] for a more detailed discussion.
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for the larger blocks and the smaller blocks. To some extent, this can be
observed during an SMR auction.

9.5.5 Arbitrage in SMR Auctions

The above examples indicate that arbitrage opportunities can be limited
in SMR auctions. These examples raise two immediate questions. One is
whether there is harm – that is, whether there is a loss of revenue for the
auctioneer, or bidders are harmed. The other is what measures can be taken
to prevent any such harm.

Proposition 2 Consider an SMR auction with at least two bidders and two
lots in which activity rules do not allow bidders to switch between substitutes,
at least in some stages of the auction. Then, for some preference profiles,
this auction will necessarily result in inefficient outcomes even with straight-
forward bidding.

Proof: Suppose there are at least two lots, or combinations of lots, and
at least two bidders, and that one bidder that was topped on one block is
no longer eligible to switch to the other. If the auction were to end, then
there would be an alternative allocation in which this bidder would get the
other block and the bidder with the second block would not. This alternative
allocation would result in higher bidder payoffs and revenues whenever the
bidder that should not win has a lower value for that second block than the
bidder that should win. �

Recall Milgrom’s result that the SMR auction with straightforward bidding
will result in an efficient outcome. This results in certain conditions about
activity requirements. What the above proposition means if that the activity
rules do not permit arbitrage, then the outcome can be inefficient.

Now, there are many ways in which the activity rules can limit arbitrage
possibilities.

1. Switching rules. The Texas capacity auctions did not allow any
switching. Once Texas introduced switching rules, the price discrepan-
cies disappeared.
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2. Abstract blocks. Other auctions, e.g., the Spanish and German 4G
auctions and the German 3G auctions, assign separate labels and auc-
tion prices to various identical abstract blocks. Clearly, combining
offers for all identical abstract blocks (assuming an SMR auction or
having a single price for all the blocks in a simultaneous clock auction)
can only improve efficiency.

3. Starting prices, bid increments and activity parameters In si-
multaneous clock auctions, relative prices are determined by the auc-
tioneer. The starting prices and bid increments determine how fast the
prices of different lots increase. What often happens is that the larger
lots tend to clear first. This tends to turn a simultaneous auction into
a sequential one, as bidders’ decisions are essentially sequential.27

For example, in FCC Auction 66 there were three types of geographic
licenses with 20 MHz and covering New York City: a 20 MHz Northeast
REAG had a bit less than 48,000,000 bidding units, the 20 MHz New
York EA had just over 24,000,000 bidding units, and the 20 MHz New
York CMA had approximately 16,000,000 bidding units. An activity
requirement of 60% would not permit switching from the New York
CMA to the New York EA license, but one of two-thirds would. And
this would also allow switching from New York and either the Boston or
the Philadelphia EA to the Northeast REAG covering those EAs. Thus,
the choice of activity requirements can facilitate or hinder arbitrage.

4. Activity points As the above makes clear, the way activity points
are set, in combination with the activity requirement percentage, can
affect auction efficiency. Generally, when a number of small blocks
combine to make one large block, then the small blocks should have
a combined number of activity points equal to that of the larger one.
Such a provision allows a bidder to switch from a sent of small blocks to
a large block with same bandwidth and geographic coverage. And this
facilitates arbitrage. The above suggests that the way points are as-
signed to the small blocks, in combination with the activity percentage
requirements, will affect auction efficiency.

27 The Regulatory Authority managing the auction can try to set increments based on
activity, as the FCC does a variable price increment rule, that is, one in which the size of
the increment is based on bidding activity. See [18] for a discussion.
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5. Size of licenses and blocks When there are both regional and na-
tional licenses in the same auction, it will not usually be the case that
the sum of the regional prices will equal the price of a national license.
Similarly, when there are smaller and larger blocks, such as 10 MHz
and 20 MHz licenses, it will not usually be the case that the price of the
smaller blocks sum to exactly the price of the larger one. Any activity
rule, except for one allowing

package bids or one based purely on revealed preferences, will limit ar-
bitrage possibilities, The latter would require that bidders be consistent
in how they switch.28

9.6 Conclusion

This chapter describes perhaps one of the most significant contributions
economists have made – the simultaneous multiple auction. This auction
format has the potential to offer significant improvements both in auction
revenues and for bidders, by facilitating better matches of bidders and lots.
However, there are a number of ways in which an SMR or simultaneous clock
auction can be misapplied and result in an undesirable outcome. This chap-
ter has provided some description of the main SMR auction pitfalls, and some
suggestions for avoiding them. The SMR auction is best suited for auctions
of substitutes and some types of complements.

Package bidding options are described in Chapter 10.

28Variations of such rules have been tried in some recent combinatorial clock auctions,
which are discussed in the next chapter.



Chapter 10

Combinatorial auctions

Summary

This chapter looks at package bidding, or combinatorial, auctions. Bidders
in multi-object auctions will at times be bidding for substitutes and/or com-
plements. This gives rise to significant additional complexity for both bidders
and the auctioneer. When bidders are considering substitute licenses or pack-
ages, they will want to obtain the best package for the best price. This need
not happen, and both bidders and the auctioneer can suffer. When there are
complements, a bidder seeking a large package may find itself facing an expo-
sure problem, that is, it may end up winning part of the desired package and
pay more than it is worth. This problem can deter bidders from bidding close
to value. And when a small bidder is competing against a package bidder,
the auction rules can tilt the outcome toward the package bidder or the small
bidder.

10.1 Introduction

This chapter looks at package bidding, or combinatorial, auctions. Bidders in
multi-object auctions will at times be bidding for substitutes and/or comple-
ments. This gives rise to significant additional complexity for both bidders
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and the auctioneer. As seen in the previous chapters, the SMR and clock
auctions are very well suited for achieving efficient outcomes when all bid-
ders view all objects as substitutes. However, these auctions can still leave
bidders facing some difficult decisions when there are complements, at least
for some lots and some bidders in the auction.

When bidders are considering substitute licenses or packages, they will want
to obtain the best package for the best price. This need not happen, and
both bidders and the auctioneer can suffer. When there are complements,
a bidder seeking a large package may find itself facing an exposure problem,
that is, it may end up winning part of the desired package and pay more
than it is worth. This problem can deter bidders from bidding close to value.
And when a small bidder is competing against a package bidder, the auction
rules can tilt the outcome toward the package bidder or the small bidder.

To better illustrate the issue, suppose there are two lots, and that there are
one large bidder and several small bidders for each of the lots. And suppose
these two lots are being sold in an SMR or a simultaneous clock auction.

Let L denote the large bidder’s value for the two lots, let sj1 denote the
highest value among the small bidders for lot j = 1, 2, and let sj2 denote the
second highest value. Suppose that the large bidder has zero value for one
lot.

If L > s11 + s21, then the large bidder should always win. But this may not
happen if, for example, the difference between L and s11 + s21 is not very
large or if the large bidder is very reluctant to risk winning only one lot. This
is a simple example of the exposure problem. Absent package bids, the large
bidder has to take a risk to have any chance at winning.

A more complex case arises with three bidders and three lots (Table 10.1):

Table 10.1: Three-bidder, three-lot auction
Bidder/Value for Lots 1&2 Lots 2&3 Lots 1&3
Bidder A 1 0 0
Bidder B 0 1 0
Bidder C 0 0 1

Bidder A only wants the package of lots 1 and 2, B only wants the package
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of lots 2 and 3, and C only wants the combination of lots 3 and 1.

In the first, two-unit example, if the auctioneer were to call out prices for
lots 1 and 2, p1 and p2, for which L ≥ p1 + p2 and for which pj > sj1 for
j = 1, 2, then the large bidder would be willing to purchase both lots, and
the small bidders would not be willing to purchase any lots. In this case,
these prices would be a competitive equilibrium in that, when all bidders act
as price takers, demand exactly equals supply.

In the second example, with three lots and three bidders, there is no com-
petitive equilibrium. To see this suppose the contrary. Let pj, j = 1, 2, 3, be
such an equilibrium. Then, the following conditions must hold:

pj ≥ 0 (10.1)

for all j = 1, 2, 3. This says that prices cannot be negative. Also,

pj + pk ≤ 1 (10.2)

for j 6= k, j, k = 1, 2, 3. This says that no bidder will pay more than value.
But for there not to be any excess demand, (10.2) has to equal 1 for all
bidders But this cannot hold for any pair of bidders.

Package bidding allows bidders to place all-or-nothing bids on a set of lots.
Thus, in the above example, bidders can place a single all-or-nothing bid on
a pair of lots. Bidder A can place a bid of 1 for the package of lots 1 and 2,
B can bid 1 for 2 and 3, and C can bid 1 for 3 and 1. This is an equilibrium,
with one bidder randomly winning its bid.

However, package bidding is not a perfect solution. First, if there are small
bidders whose values add up to more than that of a large bidder, then these
small bidders might need to find a way to coordinate their bids. This is
the threshold problem. To be more specific, consider the case in which L <
s11 + s21, and there are separate bids for lot 1, lot 2, and the package of
both lots. If the standalone “winning” bids for lots 1 and 2 together add
up to less than L, then the small bidders would each need to raise their
“winning” bids to top L. However, each small bidder would want the other
to raise its bid more, and absorb a larger share of the gap. This free-riding
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problem might prevent the small bidders from winning even when they have
the higher valuations.

Package bidding also is inherently more complex than restricting auctions to
those in which there is a price for each lot, or product, in the auction. If
there are n lots available, there will be 2n−1 available packages. Other than
for very small numbers of lots, or when the types of complementarities are
well understood and limited, package bidding can quickly become computa-
tionally infeasible. The process for expressing preferences (how can a bidder
communicate values for all such packages?) and then finding the winning set
of offers can be overwhelming.

This does not mean that package bidding is never helpful. What follows
provides some specific types of package auctions, some of which have been
used in practice.

10.2 Hierarchical Package Bidding

Perhaps one of the simplest forms of package bidding is one in which bids
are allowed on individual lots and on a few predefined packages. This has
been called hierarchical package bidding (HPB).1 The US Federal Communi-
cations Commission (FCC) conducted one HPB auction, Auction 73,2 that
raised over $18.9 billion. In Auction 73, the C block band was divided into
12 regional economic area group (REAG) licenses. Bidders could bid on
individual REAG licenses or the package of all 12 REAGs.

The HPB auction was otherwise virtually the same as an SMR auction.
Licenses were assigned points. Bidders had to establish initial eligibility by
placing upfront deposits for their maximum desired number of points prior
to the auction. The HPB auction imposed similar activity requirements:
high bids plus new bids had to exceed a given fraction of the eligibility, or
the bidder lost eligibility in proportion to the gap between actual activity
and the activity target. Prices increased from one round to the next for all
licenses for which there was excess demand. And the activity requirement

1See [29].
2See http://wireless.fcc.gov/auctions/.
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was increased in stages as prices rose and aggregate eligibility dropped during
the course of the auction. The closing rule was also the same: the auction
would only close on all licenses at the same time and only when there was
no excess demand for any license or package.

There were a few differences. First, a bidder could place a bid on a license
and on a package which contained that license. However, such a bidder
would not get credited with double the activity. Secondly, if there was more
bidding activity on the packages than on the component licenses, it was
possible that the provisional winning bid amounts after a round for a package
exceeded the sum of the provisional winning bids for the individual licenses
in the package. In this case, some rule was needed to determine minimum
required bids for the component licenses, especially where there was no excess
demand for some of those components. And bidders bidding for packages
were not permitted to bid the component prices if those were lower. The FCC
developed a formula for allocating the gap in determining minimum required
bids for the component licenses.3 Finally, a bidder who had stopped bidding
on one of the component licenses might find that, after several rounds of
bidding in which other components in the package prices increased, their old
previously losing bid could turn into part of a provisional winning bid. That
bidder might have lost eligibility, or used that eligibility for other licenses.
The SMR rules were modified to allow that bidder to resume bidding on that
component, but not otherwise increase eligibility.

[29] conducted laboratory experiments, with Caltech students acting as bid-
ders, comparing the SMR, HPB, and unconstrained package auctions. In
their experiments they found that the HPB allowed bidders in some cases
to solve the exposure problem, and therefore achieved greater efficiency and
revenues than the SMR auction. Note that the efficiency measure was based
on the difference between the actual sum of the values of the final assign-
ment and the maximum possible sum. They also found that unconstrained
package bidding offered no additional benefits.

These experiments assumed a particular structure of complementarities. They
did not allow for arbitrary or random complementarities. Nor did they iden-
tify when the threshold problem might become more significant than the
exposure problem. What these experiments do suggest is that where there

3See [29] for details.
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is a well-defined exposure problem, i.e., different bidders have similar views
of the complementarities, then the HPB seems to be an effective and effi-
cient mechanism. In the actual auction the package bidder won the national
license.

[29]’s experiments were conducted on behalf of the FCC in advance of FCC
Auction 73. The FCC had previously conducted experiments on a differ-
ent form of package bidding, called the simultaneous ascending auction with
package bidding (SAAPB).4 The results of those experiments showed im-
provements over the SMR auction similar to those with the HPB. However,
the SAAPB did take significantly longer to run than the SMR. Perhaps be-
cause SMR auctions can already be quite long (commonly several weeks,
but sometimes over four months), the FCC elected to use the HPB over the
SAAPB. No tests were run to compare how many rounds an SAAPB takes
on average compared to the HPB.

10.3 VCG Auction Properties

The multi-object version of the VCG auction introduced in Chapter 4 is one
type of package auction. As was explained in Chapter 4, the VCG has the
property that bidders will always have incentives to report true values. Thus,
the outcome of a VCG auction should be efficient. However, as is explained
in this section, the VCG auction has a number of other features that could
block its adoption.5

This section also provides a few examples illustrating these undesirable prop-
erties. Note that bids in a VCG auction need to convey to the auctioneer the
bidders’ valuations for all possible combinations of lots. Thus, an individual
bid is a set of reported values for each package, or combination of lots, that is
available in the auction. In general, this list can be quite large – with n lots,
the number of packages is 2n − 1. So, the VCG auction may be somewhat
impractical if the number of lots is large. But, as the following examples
illustrate, the VCG has other drawbacks even where there are few lots for
sale (Table 10.2).

4See [59].
5Much of this section is from [20] and [19].
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10.3.1 Revenues in VCG auctions

One difficulty with VCG auctions is that they may fail to generate much
revenue. To see this, recall that bids in a VCG auction are all-or-nothing
offers for packages. The winning bids are those mutually consistent bids that
maximize the sum of the offers, and not necessarily the auction revenues. The
reason is that the price a bidder pays is the difference between the sum of the
rivals’ reported offers for what they would have won without this bidder, and
their reported offers for what they actually do win. The following examples
illustrate how revenues are determined, and in some cases, can be zero.

First, consider the following example (Table 10.2) in which there are two
objects and three bidders. In this example, it is assumed that bidders can
place bids for one and/or both lots:

Table 10.2: Three-bidder, two-lot VCG auction
Bidder/bid for 1 lot 2 lots
Bidder B1 100 100
Bidder B2 100 100
Bidder B3 0 50

In this example, bidders B1 and B2 each have only one of the two lots
available. They are each willing to pay 100 for it. Bidder B3 only wants
both lots or none, and will pay up to 50. As both B1 and B2 individually
block B3 – that is, B3 loses even if either B1 or B2 does not bid – then the
VCG prices for B1 and B2 are each zero. So, low revenue can be a feature
of VCG auctions.

Simple variations of this example indicate that the VCG has other not so
appealing features. First, consider the case in which values are now lower for
B1 and B2 (Table 10.3):

Now, B3 wins both lots. So, if B1 and B2 were really weaker than B3, but
both overbid (or colluded to do so), then they could win both lots for much
less than their value. [20] also explained how the outcome is sensitive to
mergers and demergers. If, for example, bidders B1 and B2 were to merge
and to be treated as one bidder which wants both lots, then the merged
entity would win both lots at a price of 50 rather than 0. So, a merger works
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Table 10.3: Three-bidder, two-lot VCG auction
Bidder/bid for 1 lot 2 lots
Bidder B1 20 20
Bidder B2 20 20
Bidder B3 0 50

to increase the amount that a bidder may have to pay, and a demerger can
reduce it. Indeed, rather than splitting into two entities, a combined B1-B2
bidder can enter a second shill bidder. By doing so, B1-B2 can reduce the
price it has to pay. This also raises the question whether the auctioneer would
want to stop the shill from bidding. In most auctions, more bidders result
in higher prices paid. But this need not be the case with VCG auctions.
Competition can lower price.

10.3.2 Fairness in VCG auctions

The VCG auction may result in efficient but unfair outcomes. Arguably,
one bidder might be troubled if it wins less than a rival bidder but pays
more. The following examples show that this can happen in theory and has
happened in practice.

Consider the case of two bidders and three lots (Table 10.4 ):

Table 10.4: Two-bidder, three-lot VCG auction
Bidder/bid for 1 lot 2 lots 3 lots
Bidder B1 100 200 280
Bidder B2 100 120 130

The Vickrey price a bidder pays will be the difference between the value its
rivals get at the final allocation and what the rivals would have won had
that bidder never submitted a bid. In the above table, there are three lots
for sale, and two bidders. Each bidder submits bids for one, two, or three
lots. In this example, bidder B1 wins two lots and B2 wins one. The value
of the two lots to B1 is 200. B1 also indicated that all three lots together
were worth 280. B2 wins one lot worth 100, but would have paid 120 for two
lots and 130 for all three.
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Thus, B1’s VCG price is 30, as B2 only offered an additional 30 for the two
lots that B1 wins. And B2’s VCG price is 80. This is clearly a bit odd, and
B2 may view it as unfair. VCG auctions will not generally have the property
that a bidder winning more than a rival pays less. Indeed, the reverse can
occur. Notice too that that the outcome is efficient in that it maximizes the
sum of the bidder values across all feasible allocations.

Figure 10.1 shows that this unfairness is not just a theoretical possibility. It
shows the outcome of a Swiss spectrum auction.

The first four categories (800 MHz, 900 MHz, 1800 MHz, and 2100 MHz)
were the most valuable, and the 800 MHz and 900 MHz were more valuable
than the 1800 MHz or the 2100 MHz. Each block was 10 MHz, and there
were six in the 800 MHz, seven in the 900 MHz, the equivalent of fifteen in
the 1800 MHz, and twelve in the 2100 MHz category.6 While this was not
a one-shot sealed-bid auction, in that it permitted multiple bids in multiple
rounds plus a separate set of sealed bids (as will be explained in more detail
below), it used the VCG pricing rule, with a reservation price. As can be
seen in the example, Swisscom won more blocks and paid more than 30%
less than Sunrise. Orange paid the reservation price.

10.3.3 Budgets in VCG auctions

The VCG auction is particularly poorly suited to cases in which bidders face
budget constraints. The following example has three bidders and three lots,
and assumes budgets are binding for all bidders:

Three-bidder, three-lot VCG auction

Bidder/bid for 1 lot 2 lots 3 lots
Bidder B1 100 100 100
Bidder B2 100 100 100
Bidder B3 100 100 100

In this example, each bidder wins one lot and pays zero. Now, if one bidder

6One of the 1800 MHz blocks was 20 MHz, and the blocks were not all identical.
However, Swisscom won better blocks than Sunrise.
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Figure 10.1: Swiss 2012 Auction

Frequency 
band Orange Sunrise Swisscom
800 MHz 20 MHz 20 MHz 20 MHz
900 MHz 10 MHz 30 MHz 30 MHz
1800 MHz 50 MHz 40 MHz 60 MHz
2.1 GHz 40 MHz 20 MHz 60 MHz
2.1 GHz TDD 0 MHz 0 MHz 0 MHz
2.6 GHz 40 MHz 50 MHz 40 MHz
2.6 GHz TDD 0 MHz 0 MHz 45 MHz
Amount paid 
(CHF)   154'702'000  481'720'000  359'846'000
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has entered a bid of 101 for two or three lots and zero for one lot, then that
bidder could win two lots for 100.

This auction has one type of unstable pure strategy equilibrium. This would
have one bidder offering 200 (or more) for all three blocks, and the other
bidders offering zero each. Of course, the other bidders could offer more
than zero, and the bidder making the large offer would then want to revise
its offer. But there will be no set of offers which constitute a stable (perfect)
Nash equilibrium.7

To see this, suppose there were bids for each bidder constituting a Nash
equilibrium. In this example, each bidder will want to allocate its budget
among the three blocks. If each of two bidders allocates its budget of 100 to
one block, then, as above, a rival can win two lots by offering 101 for two
lots, and zero for other combinations. If only one bidder allocates its budget
to one lot, then the other two bidders will be competing for the remaining
two lots. And the only possibility is that they each allocate their budgets to
one lot. A similar analysis would establish that there is no way for the three
bidders to each allocate their budgets to the three lots so that no one bidder
would not want to revise its allocation.8

The experience in many spectrum auctions indicates that even in very large
auctions with large publicly traded firms, budgets can be constraining.9 So
this example can be quite relevant.

10.4 Core-Selecting Auctions

This section addresses some of the issues raised above. First, it describes
conditions under which the final prices are not so low that a losing bidder
would be willing to offer more than the winners have to pay. When an
auction has this property, then the auction outcome is said to be in the

7For a discussion of stable and perfect equilibria see [69] or [45].
8See ([67]) for an analysis of this type of auction with two bidders in a first-price

sealed-bid auction. They find that there is an equilibrium in mixed strategies.
9See [16] and [65].
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core.10 More generally, the auction outcome is in the core when there is no
group of bidders that can bid together and exclude other bidders, and that
together would then each have a better outcome which the auctioneer would
also prefer, i.e., would result in higher auction revenues.

Notice that, in the above examples, when an auction results in a non-core
allocation, at least one bidder viewed the lots as complements. More specifi-
cally, the value of a second lot was higher than that of the first. In this case,
bidders B1 and B2 each individually blocked B3. So, when B1’s and B2’s
bids were each high enough to block B3, then B1 and B2 will each have a
zero Vickrey price. So if the lots were also complements for B3, so that the
value of the second lot was no higher than the first, the outcome would be in
the core. B1 and B2 would each to pay the value of the first lot to B3. Given
that the value of the first lot for B3 was more than the value of the second,
what B1 and B2 pay in total (twice B3’s value of the first lot) is necessarily
more than B3’s value of both lots. So, B3 no longer blocks the outcome, and
the allocation is in the core.

More generally, it has been shown11 that when all goods are mutual substi-
tutes, the auction outcome will be in the core. Thus, the Vickrey auction
outcome is in the core.12 As the above discussion and examples demonstrate,
this need not be the case when the goods are complements. The reason is
that when one bidder’s offers for a set of lots is larger than the sum of its
offers for the individual lots, or for non-intersecting subsets, then two or more
rivals can individually prevent that bidder from winning. So, if each of those
rivals offers enough to block the bidder with complements, then their Vick-
rey prices will not reflect the value of the losing bid. This type of situation
cannot arise when the lots are always substitutes for all bidders.

One additional property of core-selecting auctions is that the outcome does
not change if bidders merge, or if a bidding consortium breaks up. The
logic is fairly straightforward. Suppose some set of bidders could earn more
bidding as one bidder than if they split up into separate bidders. More
specifically, let S1 and S2 be disjoint subsets of the set of all bidders, N ,
and suppose S2 consists of shills, so that w(S2) = 0, where w(S) denotes the

10The notion of the core is discussed in [28]. Also, [21] discussed a solution which is
essentially the core in the context of a simple exchange economy.

11See [8]
12Also, the ascending proxy auction is in the core.
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amount that the coalition S ⊂ N can guaranty for its members when bidding
together in the auction when bidding together. Suppose w(S) > w(S1).
Note that efficiency of core allocations implies w(T ) + w(S) = w(N) and
w(S1)+w(S2)+w(T ) = w(N), where T = N \S. This implies that w(S2) = 0,
i.e., the set S2 of shills get nothing on their own. On the other hand, consider
the merging of S1 and S2 into S. Then w(S) + w(T ) = w(N). But, also,
w(S1) + w(S2) + w(T ) = w(N). So w(S1) + w(S2) = w(S). Thus, mergers
never increase profits. Summarizing:

Proposition 3 ([54] ). An efficient direct auction mechanism has the prop-
erty that no bidder can ever earn more than its Vickrey payoff by disaggre-
gating and bidding with shills if and only if it is a core-selecting auction
mechanism.

10.5 Ascending Package Auctions and the Com-

binatorial Clock Auction

The combinatorial clock auction (CCA) is a form of ascending package auc-
tion that specifically addresses the low revenue of VCG auctions, and can
lead to a core outcome. An ascending package auction is a simultaneous
auction in which prices rise from round to round, as in an SMR auction, but
all bids are package bids. When bidding is straightforward, as when using
surplus-maximizing proxy bidders, [8] have shown that the final allocation of
an ascending package auction is in the core. This section describes the CCA.

The Swiss auction described in the previous section was a CCA. The CCA
has also been used for selling spectrum licenses in a number of other coun-
tries, including Austria, Denmark, Ireland, and the UK, and is planned for
Australia and Canada.

The CCA differs from an SMR auction in a number of important respects:

• Before a CCA (as before an SMR auction), the available lots are as-
signed points, and bidders must specify how many points of initial
eligibility they want. Applying for more points usually requires larger
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financial guarantees, which can provide some disincentive for applying
the maximum number of points.

• In each round a bidder has to submit new bids that meet its activity
target. In other words, the activity must meet the activity target. In
most CCAs, a bidder’s activity target is 100% of its eligibility. If a
bidder’s bids fall short of this target, its eligibility is reduced in all
future rounds to the new, lower activity.13

• All bids are package bids. This is unlike an SMR auction, in which
some lots bid in a round can become provisional winning bids.

• Any bid from any round can become a winning bid.

• The clock phase ends, as in SMR auctions, when there is no longer any
excess demand for any product.

• The clock phase does not end the auction. Bidders can submit bids in
a “supplementary round” of bidding. The bids in the supplementary
round must improve, in some sense, on bids made during the clock
rounds, and be consistent.14

• All bids are mutually exclusive. While a bidder can submit different
package bids which do not overlap, a bidder can only win one bid. So,
if a bidder wants to submit an offer for two different packages A and
B, it might want to submit separate offers for A, B and A combined
with B.

• At the end of the supplementary round, winners are determined by
maximizing the sum of bidder offers across all feasible combinations
of bids made during the clock rounds and during the supplementary
round. The prices paid are the VCG prices except when these prices
are not in the core – in which case some rule is applied to adjust prices
to ensure that they are in the core.15

13In some CCAs bidders can at times bid on earlier-round packages whose points exceed
eligibility when the relative price of the larger package has decreased. See [7].

14A revealed preference type activity rule is used to ensure consistency.
15See [22] for a discussion of alternative core adjustments.
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We have summarized the main elements of the CCA rules. CCAs have now
been used in perhaps a dozen or more auctions. The rules differ across auc-
tions, especially in regard to the core adjustment and to how improvement
and consistency in the supplementary round are implemented. What is gen-
erally required is that the offers in the supplementary round satisfy a version
of a revealed preference rule.

What follows is an example illustrating a revealed preference activity rule.
Suppose, for example, a bidder was bidding for x units of product A and y
units of product B. Further suppose that during the clock phase this bidder
always bid on two units of A and two units of B when the price of A was no
more than ∆1 larger than price of B, and never bid on more than one unit
of A when the price differential reached ∆2 > ∆1, i.e.,

D(pA, pB) =


(2, 2) if pA − pB ≤ ∆1

(1, 3) or (2, 2) if ∆1 < pA − pB < ∆2

(1, 3) if pA − pB ≥ ∆2

In this case, the bidder has indicated that it would prefer the second lot of
product A over a third lot of B when the price differential is less than ∆1,
and would prefer the reverse when the price differential exceeds ∆2. Precisely
where this bidder would switch is not necessarily revealed during the auction.

A revealed preference rule would require that supplementary round offers for
the package (2,2) never exceed the offer for (1,3) by more than ∆2 or less
than ∆1. The implementation of the revealed preference rule, often called a
relative cap rule or RCR, requires a number of decisions about how to resolve
potential inconsistencies during the clock rounds, as is discussed below.

What follows is a brief review of some properties of the CCA, and a few
examples from actual auctions.

10.5.1 Complexity

The CCA allows bidders to submit bids on any or all packages of lots available
in the auction. The number of combinations can be astronomically large –
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if there are N objects for sale, then there are 2N − 1 possible combinations.
Finding winners and determining prices requires choosing, from among all
mutually consistent sets of offers from all the bidders (that is, offers for which
total demand does not exceed supply), the set that maximizes the sum of the
reported values. Further, solving for prices requires recalculating the optimal
solution when each bidder is excluded. If the are nj offers from bidder j,
j = 1, 2, . . . , J, then there are n1×nj×· · ·×nJ possible combinations of bids
to compare. Unless these numbers are very small, bidders cannot possibly
submit bids for all combinations, nor can the auctioneer calculate winners
and prices.

This complexity problem is of some practical concern. For example, in the
Swiss auction described above, there were ten categories of licenses (across
seven bands). There were over 60 million possible packages for each of the
three bidders, and over 2×1023 possible combinations in all.16 Auctioneers are
forced to limit the number of combinations, and bidders cannot fully express
preferences. So, as a practical matter the CCA is not a useful mechanism for
eliciting information from bidders about preferences.

Nor is the CCA the most efficient way of eliciting information about values.
For example, suppose there are four products, and a bidder wants at least
1 unit of each product and a total of 6 units. The bidder may also want to
purchase up to 4 units of each product. The CCA would require the bidder to
submit values for 256 combinations. In practice the bidder may have a value
for the base package of one unit of each product, and then an incremental
value for each additional unit. If that is the case, the bidder would really
need to submit only 13 values.

10.5.2 Bidder incentives

While the CCA is complex, it does provide bidders with some incentives
to report true values – in that it uses Vickrey pricing. So, what follows
examines where bidder incentives may differ from those in a standard Vickrey
auction.17 The main differences between a VCG auction and a CCA arises

16There were some limitations (e.g., spectrum caps) that reduced this number somewhat.
17The CCA differs from the ascending proxy auction of [8] in that there are no proxies

in the CCA, and in the use of a second-price rather than a pay-as-bid rule.
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when bidders payoffs depend not just on the price they pay but also on what
rivals pay, and when there is a core adjustment.

Fairness

In the Swiss auction, Sunrise won fewer blocks and paid much more than
Swisscom. Reportedly, Sunrise complained to the regulator. Unfortunately
for Sunrise, the Swiss regulator, Bakom, had been made aware of this possi-
bility and had indicated it was not relevant for its decision to proceed with the
CCA.18 But a firm’s decision-makers and their advisers are evaluated based
on relative performance. Thus, inequitable outcomes may be economically
inefficient when bidders’ preferences include relative performance.

The first two large multi-product CCA auctions both resulted in some bidders
paying more than rivals that won more spectrum. The discrepancy in the
Swiss auction was quite large. There was also a smaller but quite direct
discrepancy in the Dutch 4G auction (Figure 10.2). In that auction KPN
won the same number of abstract blocks in the 800 MHz, 900 MHz and 1800
MHz bands as did Vodafone. However, KPN also won 25 MHz of additional
spectrum in the 2600 MHz band. Yet, KPN’s base price was e30 million
less than Vodafone’s. To avoid relatively poor performance in a CCA,
bidders may need to deviate from bidding based purely on economic surplus
as measured by their business models.

Bidding Long

In a CCA, as in Vickrey auctions, what rivals offer affects the amount any
given bidder will pay. The CCA differs from a Vickrey auction in that there
are multiple bidding rounds, and bidders are provided information about
rivals between the rounds. The relative cap rule means that at the end of
the clock phase a bidder may not have to offer full value to ensure what
it wants in the auction. By not bidding full value, a bidder can improve
its relative price. However, a bidder can be forced by a rival to bid more

18 Bakom had been provided examples of this possibility in meetings I had with them
prior to the auction.
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Figure 10.2: Dutch 4G Auction Results

Band/Bidder KPN Vodafone T-Mobile Tele 2 
800 MHz 2 x 10 MHz 2 x 10 MHz 2 x 10 MHz
900 MHz 2 x 10 MHz 2 x 10 MHz 2 x 15 MHz
1800 MHz 2 x 20 MH 2 x 20 MH 2 x 30 MHz
2100 MHz 2 x 5 MHz 2 x 5 MHz
1900 MHz 14.6 MHz
2600 MHz TDD 25 MHz 25 MHz

Base Price € 1,349,851,000 € 1,380,793,000 € 910,582,000 € 160,813,000
Assignment round delta € 2,001,000 € 7,000 € 99,000

Total price paid € 1,351,852,000 € 1,380,800,000 € 910,681,000 € 160,813,000

Dutch	  4G	  Auction	  Results
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Round Price/Bidder Bidder 1 demand Bidder 2 demand Bidder 3 demand B1 bid amount B2 bid amount B3 bid amount
1 45 4 2 2 180 90 90
2 50 4 2 2 200 100 100
3 55 4 1 1 220 55 55
4 60 2 1 1 120 60 60
8 80 2 1 1 160 80 80

Table 10.5: Bid Long

for what it wants, when the rival keeps the clock phase from closing. The
following example (Table 10.5.2) assumes three bidders seeking four lots.19

If the auction were to end after round 4, then, assuming no supplementary-
round bids, bidder B1 would win two lots, and B2 and B3 would each win one.
B1 would pay 80, because B2 and B2 had, in round 3, offered a combined 200
for the four lots, but only won one lot each, worth a combined 120. However,
if the clock phase were to end four rounds later at a price of 80, then B1
would only pay 40. Note that B2 and B3 can offer up to 110 each in the
supplementary round for two lots (as the maximum allowed offer is based on
the price at which the bidder reduced eligibility). So, B1 may not necessarily
benefit so much from extending the clock rounds, and will risk winning all
the blocks. But there are clearly incentives to depart from straightforward
bidding.

Budget Constraints

When bidders have fixed budgets, a CCA and a VCG present very challenging
decision problems for the bidders. The first example is a variation of the
chopsticks problem analyzed by [67].20 Suppose there are two bidders and
three lots. Further suppose each bidder has a budget of 1, and has to enter
a separate bid for each of lots 1, 2, and 3.21 Suppose, too, that the amount
a bidder pays is the amount the rival bidder would have paid for its lots.
Further, suppose that the value of each lot exceeds a bidder’s budget. If a

19This example was suggested by Jon Levin and Andy Skrzypacz. See also [1] and [37]
for discussion of bidding strategy in CCAs.

20Rosenthal and Szentes’s [67] paper was motivated by Rosenthal’s work on a sealed-bid
spectrum auction planned in the Netherlands in 1998.

21If the bidders indicate an offer for one lot, two lots, or three lots, and the lots are
identical, the analysis will differ, but there still won’t be an equilibrium in pure strategies.
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bidder’s total offers ever exceeds its budget, the Vickrey price can also exceed
its budget. So, if a bidder is not allowed to take any such risks, the bids for
one or any combination of the three lots can never exceed 1 in total. But
this means that each bidder is virtually certain to pay less than 1, and will
have money left over. There will never be a pure strategy equilibrium in this
game – the only possible equilibria involve randomization.

Now, consider the same bidders in a CCA. The bidders will tend to bid up
to their budgets, and then drop. If bidders always behave in this manner,
their winning offers and their maximum offers will equal their budgets. Then
the Vickrey prices are always zero.22 In experiments and in practice, it does
appear that bidders may have flexible budgets or take some risks. The data
in actual auctions is confidential, and so it cannot be verified to what extent
bidders risk exceeding budgets. Experience suggests, however, that such
behavior does indeed occur

Experimental data suggest bidders will take very limited risks.23 In a CCA,
bidding above budget can be nearly riskless, as prior-round bids make the
probability of those risky bids’ winning essentially zero. Nevertheless, it does
appear that bidders cannot easily assess risks, and they bid cautiously. The
net effect is that payments will tend to be below budgets.

10.6 Comparing the Performance of the CCA

and Other Auctions

There are now a large number of papers comparing the performance of the
different auction formats.24 What follows is a basic analysis of the differences.
To compare a CCA and an SMR auction, suppose there are ten lots available,
one large bidder that will purchase all ten lots, and two small bidders each
seeking one lot.(Table 10.6)

If this auction were to be conducted as an SMR or clock auction, in which
bidders paid their bid amounts, bidder B1 would win, but must pay a round

22 [8] have also noted the decision problem posed by budget constraints.
23See [44].
24See [8] for some discussion. See also [12] .
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Round Price/Bidder Bidder 1 demand Bidder 2 demand Bidder 3 demand B1 bid amount B2 bid amount B3 bid amount
1 45 10 2 2 450 90 90
2 50 10 2 2 500 100 100
3 55 10 1 1 550 55 55
4 60 10 0 0 600 60 60

Table 10.6: Comparing CCA and SMR auctions

Figure 10.3: UK L Band Auction

4 price of 60 for each lot, for a total of 600. On the other hand, in a CCA
this bidder would have to pay only 200, or at most 220, for all ten lots. Thus,
the CCA appears to provide an advantage to the large bidder. And if a large
bidder wants to foreclose the small one, the costs of doing so may be much
less in the CCA than in the SMR auction.

This is not just a theoretical example. One of the first CCA auctions was
one for the UK L band (Figure 10.3) in May 2008.25 That auction included
17 lots: 16 small ones, and one large one, which was roughly equivalent to
three small lots.

The last clock-round prices were £871,000 per lot, or more than £16,500,000
in aggregate. However, QUALCOMM, which won all the lots, paid £8,334,000
for all 17 lots. QUALCOMM’s final-round bid was even higher, £20,000,000.
Revenue equivalence does not hold in this case. Revenue equivalence does
not tend to hold when bidders are bidding for multiple lots. To date, the
theoretical, empirical, and experimental evidence on CCA vs SMR auction

25See ofcom.org.uk for the details.
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revenues is inconclusive.

10.7 Conclusion

This chapter has examined some forms of package bidding. Package bidding
is potentially a significant practical concern for bidders. VCG auctions, a
form of package bidding, have some unfortunate properties, though they
do provide bidders incentives to bid truthfully, and they achieve efficient
outcomes. These properties have appeared in actual auctions.

The problem of low revenues can be addressed through core selection auc-
tions. However, predefined packages may be more appropriate in certain
cases, as has been seen in some of the experimental literature.

One other type of package bidding that has been proposed is menu auctions.26

In a menu auction bidders are asked to report values for different packages.
For example, if bidders can win any number k of blocks with k ≤ k ≤ k,
then a bid is an amount offered for each such possible k. This type of auction
provides bidders incentives to bid true incremental values – even in a pay-
as-bid, i.e., first-price, auction.

The reason that menu auctions have this property is that the bidding level
determines the overall discount that a bidder applies, and then each bid-
der will have an incentive to only bid incremental values for incremental
blocks. However, menu auctions may have multiple equilibria.27 However,
they present a faster and simpler sealed-bid approach to package bidding.28

A version of the menu auction was used in the French 4G auctions (Figure
10.4 ). There were two auctions, one for the 800 MHz bands and one for

26See [11] Also, see [42] which discusses how similar ideas can be applied to other types
of assets, such as financial ones with different ratings.

27See [11] .
28 The following example, from [11], illustrates this point. Suppose there are two bidders,

A and B, and two blocks, X and Y .
Block Value for Bidder A E1 bid E2 bid E3 bid E4 bid
X 6 5 0 7 0
Y 5 0 3 6 0
Z = X ∪ Y 8 7 6 5 3
∅ 0 0 0 0 0
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Figure 10.4:

Band Bouyges Free Orange SFR
Total amount 
paid (€M)

2600 MHz € 228 € 272 € 287 € 150 € 937

Blocks won 2x15MH 2x20MH 2x20MH 2x15MHz
800 MHz € 683    € 891 € 1,065 € 2,639

Blocks won 2x10MHz nono 2x10MHz 2x10MHz

Bidders in French 4G menu auction
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the 2600 MHz bands. In each case bidders were asked to indicate demand
curves for a range of 2 to 6 blocks, and for particular blocks in case they
were not equivalent. The winning bids were based on the set of offers that
maximized the sum of the total values (with some weights used to reflect
other objectives of the auctioneer, such as coverage). Bidders were required
to pay bid amounts.

Block Value for Bidder A E1 bid E2 bid E3 bid E4 bid
X 5 0 2 7 0
Y 6 3 0 6 0
Z = X ∪ Y 7 3 0 5 0
∅ 0 0 0 0 0

In this example, the strategies E1, E2, E3, and E4 are each equilibria. The revenues are
respectively 7, 6, 5, and 3. The multiplicity arises from de facto coordination of the bids.



Chapter 11

Final Remarks

Summary

This chapter provides an overview of the main points explained in the pre-
ceding chapters. The intent is to provide some guidelines to what aspects of
auction theory and experience may be relevant in any particular situation.

11.1 Introduction

This book is intended as a primer and not an encyclopedic guide or a survey
of auction theory and practice. The intent is to provide some guidelines
to what aspects of auction theory and experience may be relevant in any
particular situation. This chapter highlights some of the key issues for the
various types of auctions encountered in practice.

11.2 Game theory and bidder incentives

Any analysis, whether from the bidder or from the auctioneer perspective,
needs to start with the incentives and constraints of the bidders. Forgetting

189
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to take account of incentives will result in surprises for both the bidder and
the auctioneer. It is all too common for an auction design to fail in this
way. The standard on-line English auction with a fixed closing rule creates
large incentives for bidders to wait unit the last second. This makes the final
outcome quite random.

In multi-attribute auctions, scoring rules can create incentives to distort val-
ues, leading to very perverse outcomes. This is what happened in the Cali-
fornia QF auction, in which the suppliers were paying to supply energy, even
during high-demand hours. In multi-object auctions, the structure of the
auction can limit arbitrage opportunities or even present bidders with incen-
tives to distort demand. There are many examples in which this occurred
– the New Zealand spectrum auctions in the 1980s were one. But even the
Google ad auctions for position limit bidders’ ability to arbitrage price differ-
entials for substitutes. This was also the case in the Mexican 2G auctions, in
which activity rule parameters forced bidders to make sequential decisions;
the result was that in some regions, larger and more valuable licenses sold
for less than smaller licenses.

Budget constraints in multi-object auctions can confront bidders with impos-
sible decision problems. For example, in a multi-object, sealed-bid auction,
whether pay-as-bid or Vickrey, a bidder will be required to predict final
prices in determining how to bid. This is part of what happened in the New
Zealand auction for radio stations, cited above. But the auction design can
be modified to make bidding decisions much simpler. For example, bidders
can be allowed to submit demand schedules rather than separate bids for
each object.

11.3 Bidder incentives and revenue equiva-

lence

Perhaps the most fundamental insight of auction theory is the revenue equiv-
alence theorem (RET). The form of the pricing rule affects bidder incentives
– at times, in such a way that two seemingly quite different auctions can
result in the same outcome. The debate about whether to use a pay-as-bid
or a second-price auction often fails to take account of the RET.
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This is not to say that one can always rely on the RET to say that auction
design and bidding strategy do not matter. The RET applies only in some
situations, and it is more limited in its applicability to multi-object auctions
than to single-object auctions. Moreover, even when the RET applies, the
decision problem facing a bidder need not be the same in two different auc-
tions that should result in the same outcome. For example, in a second-price
auction for a single object, bidding value is a dominant strategy. The decision
problem facing a bidder is relatively straightforward. However, even in the
case of independent private values, where the RET does apply, a bidder in
a first-price sealed-bid auction has to solve a complex optimization problem
to determine its optimal bidding strategy. So, while theory would predict
outcome equivalence, bidder decisions are more straightforward, and, as a
result, it would appear that the outcome should be more predictable in a
second-price auction than in a first-price auction.

11.4 Single-object vs multi-object auctions

Bidders face inherently more complex decisions in multi-object auctions than
in single-object ones. When there are substitutes, bidders will need to decide
what objects to bid more aggressively for. When there are complements,
bidders face exposure problems. The form of the auction, including the na-
ture of the bid, the pricing rule, and other provisions, has an enormous effect
on the decision problem facing bidders, and therefore the auction outcome.
Auctioneers want to carefully consider options for the auction format and its
influence on bidding behavior as well.

One of the most significant successes in putting economic theory into prac-
tice has been the development of the SMR auction and other simultaneous
auctions that simplify decision problems facing bidders. Simplifying deci-
sion problems can result in more efficient outcomes, higher revenues for the
auctioneer, and more surplus for the bidders.

Package bidding, or combinatorial auctions, can be utilized for situations
in which bidders face complementarities. In those cases in which there are
known complementarities that are the same for many bidders, and little con-
flict over which packages are best, using predefined packages can be desirable
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in an SMR auction. However, this requires that the auctioneer have some
knowledge about bidder preferences, and that is not always the case. The
Vickrey pricing rule appears particularly unattractive for combinatorial auc-
tions, especially when bidders have budget constraints. Package bidding can
also introduce significant complexity into the bidding process. The complex-
ity itself can result in more bidding errors and adversely affect the outcome.

11.5 Sequential auctions

Many times, auctions are not one-time events: similar or identical objects
are auctioned at different times. This means that bidders in an early auction
will want to forecast prices in deciding how to bid. One very central result of
auction theory, the martingale theorem, states essentially that the expected
price in one auction is the realized price in the previous auction. However,
when bidders’ opportunities and values can change over time, this result
needs modification. In that case, the decision how to bid can matter. And
the decision about how much to auction at each date can affect the outcome
for the auctioneer.

Sequential auctions can occur for complements too. In this case, the early
winner will tend to have an advantage in subsequent auctions. This is espe-
cially true in auctions for renewing franchises where there are complementary
sunk and durable investments. In that case, prices in the first auctions will
tend to be above values, in subsequent auctions below values; they will not
provide much direct information about true underlying values.

11.6 Bidding behavior

Most of the analysis in this book has assumed, explicitly or implicitly, that
bidders act rationally to maximize their expected payoffs. This assumption
is clearly unrealistic in many situations, even in very large auctions with very
sophisticated bidders. However, starting with this benchmark is also useful.

Perhaps most useful is working through the decision problems facing bid-
ders. Referring again to the comparison between first-price and second-price
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auctions, it is clear that bidding strategy is generally simpler in a second-
price auction – at least for single-object auctions. This is not to say that
behavior does not matter. In experimental settings bidders at times can sys-
tematically depart from rational play.1 At other times, the outcome may not
be so sensitive to deviations.2 Where there is a lot at stake, bidders have
time to analyze the decisions, and the decision problems are straightforward,
then the assumption of rational bidding is likely to be most valid. How-
ever, it should also be clear from this primer that an analysis of the decision
problem facing a rational bidder can also be useful even where bidders lack
the ability, resources, incentives, or time to come up with optimal bidding
strategies. Indeed, at times the decision costs of coming up with an optimal
decision can far outweigh the potential benefits.

When a bidder faces very random outcomes, then the decisions are especially
difficult. Some auctions, which rely on outguessing rivals, have intrinsic ran-
domness, in that they only have mixed equilibria. In some cases it is possible
to design an auction to avoid this randomness. This type of uncertainty can,
in most cases, only result in worse expected outcomes for both the bidders
and the auctioneer.

11.7 Optimal auctions

A fundamental contribution to auction theory is Myerson’s [57] (1981) paper
“Optimal Auction Design.” Auctions inherently involve some informational
asymmetries: bidders know their own values, which are unknown to the
auctioneer and possibly to each other. While bidders may end up revealing
values in any optimal auction, this does not mean that when asked to report
values, bidders will necessarily do so. Moreover, even in Vickrey auctions, in
which bidders have strong incentives to report true values, the auctioneer will
not necessarily maximize its expected revenues. Indeed, the optimal auction
from a seller’s perspective will necessarily include a reservation price.

Thus, the optimal auction – for example, the one that maximizes seller rev-
enues – will necessarily leave some surplus for the bidder. This is due to the

1See [39] .
2See [14] .
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underlying informational asymmetries – asymmetries that leave information
rents to the bidders. Thus, the goals of eliciting truthful valuations from
bidders and maximizing auction proceeds can conflict, even if bidders always
end up bidding in a way that can be used to infer true values.

11.8 Auction design, management, and strat-

egy

Putting the principles described in this primer to use involves many decisions.
These decisions can be very complex. The goal in this primer is not to
provide a checklist to allow a bidder or an auctioneer to decide on the best
bidding strategy or best auction format. Rather, this primer is intended to
provide the bidder or the auctioneer with a way of starting an analysis of
its decision problem. The basic tools of game theory, in Chapter 2, should
be applied. And the analysis of auction design or strategy will depend on
whether there is a single object or multiple objects (which can be substitutes
or complements), and on whether each bid will include a single lot or multiple
lots. However, good design and management decisions and good bidding
strategies will almost always require some analysis based on the tools given,
though no formula can be applied in all situations. And even where formulas
can be applied, care is needed to avoid misuse.

11.9 Participation

As a final remark, auctions don’t work without bidders. Not only must
there be bidders, the bidders need to submit competitive and meaningful
bids. Auction rules and management can make bidder decisions difficult,
which discourages bidders from making meaningful bids. This is true in even
simple auctions, such as simultaneous sealed-bids. But, it is also true in
more complex auctions, such as Combinatorial Clock Auctions, bidders can
be confronted with impossibly difficult decisions. Auctions can fail if bidders
fail to be informed of the opportunity, or if bidder qualification criteria or
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payment rules are too lax.3

11.10 Auctions and markets

This Primer is intended to illustrate some pitfalls, but more important ex-
plain how bidder incentives need to be factored into any analysis of auction
design and bid strategy. This Primer explains how the auction design can
affect bidder incentives, which, in turn affect the auction outcome.

Auctions are a form of market mechanism. Auctions differ from other types
of markets in that they have formal rules governing offers, allocations and
pricing. An auction is particularly well suited for one-off or intermittent
transactions with relatively few bidders. Higher frequency transactions typ-
ically occur in other types of markets and exchanges.

That auction design, management and strategy can have a large impact on
the final allocation and prices suggests that auctions are not reliable nor
predictable. This Primer should make it clear, however, that auctions, if
managed well, can be a useful and efficient type of market mechanism for
pricing and making allocation decisions.

3The Nextwave bankruptcy tied up a significant fraction of the available cellular fre-
quency for over five years. See FCC V. NEXTWAVE PERSONAL COMMUNICATIONS
INC. (01-653) 537 U.S. 293 (2003) 254 F.3d 130.
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