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Abstract

The objective of this paper is two-fold: to contribute to the analysis
of tacit collusion in Bertrand supergames with (asymmetric) capacity con-
straints and, from a more applied perspective, to bring a new light on
merger analysis and provide useful guidelines for competition policy, taking
into account dynamic aspects of competition. It is well-known that capac-
ity constraints affect tacit collusion, as they limit both incentives to deviate
(e.g., to undercut rivals) and retaliation possibilities. However, most studies
have so far focused on symmetric situations, where all firms have the same
capacity, which leads to ambiguous and unintuitive results but also con-
siderably limits the scope of application. Studying asymmetric situations
makes it possible to analyze the impact of changes in the distribution of
these capacities (expansions, but also mergers, split-offs, transfers, ...) and
to provide guidelines for competition policy and particularly for merger
policy. These guidelines, which differ substantially from those inspired by
more static analyses, such as the Herfindahl or other standard concentra-
tion tests, are applied to a famous merger that took place in the French
bottled water market, the Nestlé-Perrier merger case.
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1. Introduction

The objective of this paper is to analyse tacit collusion with (asymmetric) capacity

constraints and, from a more applied perspective, to shed more light on merger

analysis, taking into account dynamic aspects of competition.

Capacity constraints play a key role in the analysis of tacit collusion. Firms

can indeed maintain collusive prices if they believe that undercutting their rivals

would trigger a price war and thus harm future profits: the potential short-term

gain from a deviation can then be outweighed by the long-run losses from the

price war. Capacity constraints affect this insight in two ways: they reduce the

incentives to deviate as well as the severity of price wars. Most studies on this

issue have so far focused on symmetric situations, where all firms have the same

capacity,1 or on duopolistic industries, which limits their scope of application. for

example, restricting attention to symmetric situations allows to study the impact

of a demand shock (which affects all firms’ excess capacities) or of a change in the

number of firms,2 but is not very helpful for merger analysis.3

1See e.g. Abreu (1986) for an analysis of symmetric Cournot supergames and Brock and
Scheinkman (1985) for a first analysis of symmetric Bertrand supergames, later extended by
Lambson (1987).

2Brock and Scheinkman (1985) for example show in a linear model that the highest sustain-
able per capita profit varies non-monotonically with the number of firms.

3A relevant analysis must moreover consider industries with at least three competitors (in
the pre-merger situation). Davidson and Deneckere (1984) however provide a first exploration
of the impact of mergers on collusion, using standard trigger strategies and exogenous market
sharing rules, starting from a situation with symmetric capacities.
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Analysing tacit collusion in oligopolistic industries with asymmetric capacity

constraints is unfortunately quite difficult. Lambson (1994), who offers one of the

most advanced analyses in that direction, still only provides partial character-

izations.4 A few studies, however, suggest that asymmetry in firms’ capacities

hurt tacit collusion. Mason, Phillips and Nowell (1992) note that in experimental

duopoly games, cooperation is more likely when players face symmetric production

costs.5 In a Bertrand-Edgeworth setting, Lambson (1996) shows that introducing

a slight asymmetry in capacities hurts tacit collusion; and Davidson and Deneckere

(1984), (1990) and Pénard (1997) show that asymmetric capacities make collusion

more difficult in duopolies.6 We explore this issue in further detail, and show that

the introduction of asymmetric capacities makes indeed collusion more difficult

to sustain when the aggregate capacity is limited — asymmetry may instead help

4Lambson shows for example that the optimal punishments are such that the firm with the
largest capacity gets no more that its minmax profit, while smaller firms get more (except if
firms are very patient) than their respective minmax profits. He also provides an upper bound
on the punishments that can be inflicted on small firms using a particular class of penal codes
(proportional to capacities).

5Relatedly, Bernheim and Whinston (1990) show that, in the absence of capacity constraints,
tacit collusion is easier when firms have symmetric costs and market shares.

6Davidson and Deneckere study the use of grim-trigger strategies in a Bertrand setting, while
Pénard relies on minmax punishments (which can be sustained if the asymmetry is small) in
a linear Cournot setting; both papers also address capacity investment decisions, whereas we
focus on the distribution of exogenous capacities. In a duopoly with sequential capacity choices,
Benoît and Krishna (1991) show that the second mover cannot enhance its gains from collusion
by choosing a capacity different from the first mover’s capacity — however, their analysis relies on
the assumption that firms share demand equally when charging the same price. Gertner (1994)
develops a framework of ”immediate responses”, where firms can react at once to each other’s
price cuts, and shows that asymmetric capacities may prevent firms from colluding perfectly.
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collusion when the aggregate capacity is much larger than the market size.

We also address a distinct issue, which is the impact of changes in the dis-

tribution of capacities (mergers, split-offs, transfers, ...).7 For that purpose, in a

model of repeated Bertrand competition, we ask the following question: given a

distribution of capacities, for which values of the discount factor can firms sus-

tain tacit collusion? As usual, collusion is sustainable when the discount factor

is higher than a threshold, and we analyse the impact of changes in capacities on

this minimal threshold. This analysis provides guidelines for competition policy

and particularly for merger policy, which differ from the guidelines inspired by sta-

tic analyses, such as the reference to Herfindahl or other standard concentration

tests. The analysis also casts some doubts on standard ”remedies” routinely used

by competition authorities, such as transferring some assets of the merged firm

to existing competitors. Finally, we apply those guidelines to the merger between

Nestlé and Perrier — a famous European merger case.

The paper is organized as follows. Section 2 describes the model. Section 3

offers a complete characterization of a particular class of collusive equilibria, where

firms keep constant — possibly asymmetric — market shares.8 Section 4 discusses the

7Fershtman and Pakes (1999) further explore the interaction between collusion and the in-
dustry structure, allowing for entry and exit as well as asymmetric sizes but restricting attention
to a particular class of (markovian) pricing policies.

8These collusive equilibria are as effective as standard trigger equilibria (reversal to the static
Nash equilibrium) or as the proportional penal codes equilibria analyzed by Lambson (1994).
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impact of asymmetry in the distribution (both for this particular class of equilibria

and for the most general one) as well as of various changes in the distribution of

capacities (mergers, split-offs, transfers). Section 5 applies the analysis to the

Nestlé-Perrier merger. Except when otherwise mentioned, proofs are relegated to

the Appendix.

2. The model

We consider a model of Bertrand-Edgeworth price competition with capacity con-

straints between n firms. The demand side consists of a mass M of infinitesi-

mal buyers, each willing to buy one unit as long as the price does not exceed

1. Each firm i has a constant unit cost, normalized to 0, and a limited capac-

ity ki > 0. Without loss of generality, we assume k1 ≤ ... ≤ kn, and denote by

k ≡ (k1, ..., kn) the distribution of capacities, by K ≡
P

i ki the total capacity and

by K−i ≡
P

j 6=i kj the total capacity of firm i’s rivals. For a given distribution of

capacities, firm i’s relevant capacity is k̂i ≡ min{ki,M}: if a firm can serve the

entire market, it does not matter whether it can serve it two or three times; lastly,

K̂ ≡Pi k̂i and K̂−i ≡
P

j 6=i k̂j.

The monopoly price is pm = 1. Throughout the paper we refer to a competi-

tive stage game, where firms simultaneously set their prices, which are perfectly
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observed by all buyers and firms; then, buyers go to the firm with the lowest price

and decide whether or not to buy; if they are rationed they go to the next lowest

priced firm, and so forth, as long as the price offered does not exceed their reserva-

tion price.9 If several firms charge the same price, consumers divide themselves as

they wish between those firms. We denote by πi the profit obtained by firm i. We

assume that competition is effective, i.e., in any Nash equilibrium expected aggre-

gate profits are strictly lower than the monopoly profit, Πm; this is the case if and

only if the aggregate capacity of the firms is strictly larger than the market size

(K > M),10 in which case Πm =M . Lastly, we denote by πi ≡ max{0,M −K−i}

firm i’s minmax profit.

To analyse tacit collusion, we consider the infinite repetition of this game,

where all firms use the same discount factor δ ∈ (0, 1) and maximize the expected

sum of their discounted profits
P

t≥1 δ
t−1πti, where π

t
i denotes firm i’s profit at

date t. To define collusion, we will refer to the (per period) value of an equi-

librium, defined as the normalized expected sum of discounted profits that firms

obtain along the equilibrium path: V = (1− δ)E
£P

t≥1 δ
t−1P

i π
t
i

¤
/Πm. A collu-

9Since buyers are identical, we do not need to be more specific about the rationing scheme.
10Firms’ profits add up to Πm only if firms charge pm = 1 with probability 1. If this is the

case in equilibrium, then each firm must obtain a profit equal to πi = ki, which it can secure
by slightly undercutting its rivals; but this cannot be true for all firms when the total capacity
exceeds the market size. Conversely, when the total capacity does not exceed the market size,
charging the monopoly price is a dominant strategy for each firm.
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sive equilibrium is a subgame perfect equilibrium of the infinitely repeated game

whose value is strictly higher than the expected aggregate profit generated by any

Nash equilibrium of the stage game, and we will say that collusion is sustainable

when there exists a collusive equilibrium. We will also say that perfect collusion

is sustainable if there exists an equilibrium with a value equal to the monopoly

profit Πm. Our goal is to characterize, for any distribution of capacities k, the

lowest discount factor δ(k) for which (perfect) collusion is sustainable.

Characterizing the set of collusive equilibria is a difficult task, mainly because

the maximal punishments also depend on the capacity distribution. One simple

case is when small firms are not ”too small”, namely K−n ≥M . In that case, any

subset of (n− 1) firms can serve the entire market; the static Nash equilibrium

yields zero profits and obviously constitutes the optimal punishment. Denoting

by αi the share of the market served by firm i,11 collusion can then be sustained

if and only, for each firm i = 1, ..., n:

αi ≥ (1− δ)k̂i.

Hence collusion is sustainable if and only if δ ≥ 1−maxi{αi/k̂i}. This implies

that the market shares that are most favourable to collusion are proportional to

11That is, αi is the volume served by firm i. If the entire market is served, Σiαi = M .
For simplicity we refer to αi as firm i’s market share, even though it represents a number of
customers rather than a proportion of the market.
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the relevant capacities12 and, for those market shares, collusion is sustainable if

and only if:

δ ≥ δ(k) = 1− M

K̂
. (2.1)

The sustainability of collusion then only depends on the aggregate relevant

capacity, not on its distribution.13

3. α-equilibria

The analysis is more difficult when small firms are indeed ”small” (K−n < M).

Therefore, we will focus in this section on a particular class of equilibria, where

firms follow the same strategy and maintain constant market shares: for any

distribution of market shares α = (α1, . . . , αn) satisfying 0 ≤ αi ≤ ki and
P

i αi ≤

M , an α-equilibrium will be such that in any equilibrium path, each firm i obtains

a share αi of the market.14

We provide below a characterization of the lowest discount factor eδ(k, α)
for the existence of a collusive α-equilibrium, as well as the minimal thresh-

old δ∗(k) = minαeδ(k, α) for the existence of at least one collusive α-equilibrium

(throughout this section, ”equilibrium” will stand for “α-equilibrium”). We will

12maxi{αi/k̂i} is smallest when αi/k̂i is the same for all firms, i.e., αi = k̂iM/K̂.
13A redistribution of capacity may however affect the sustainability of collusion if it modifies

firms’ relevant capacities — see Sections 4 and 5.
14The restriction applies to equilibrium paths (including those that follow a deviation), not

to possible deviations.
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focus on capacities such that K−n < M , which implies k̂i = ki < M for i < n (for

K−n ≥ M , as well as for symmetric capacities, δ∗(k) = δ (k) — see Comment 1

below).

3.1. Necessary and sufficient conditions for collusion.

The following Lemma identifies necessary and sufficient conditions for collusion:

Lemma 3.1. Fix α = (αi)i=1,...,n satisfying 0 ≤ αi ≤ ki for i = 1, . . . , n andP
i αi ≤M .

i) If there exists a collusive α-equilibrium, there exists a per period value V

satisfying, for i = 1, ..., n:

αiV ≥ πi, (Pi)

αi ≥ (1− δ)k̂i + δαiV. (Ei)

ii) If there exists V satisfying conditions {(Ei) , (Pi)}i=1,...,n, then there exists

an α0-equilibrium with value V 0 for any value V 0 ∈ [V, 1] and any market shares

α0 = (α0i)i=1,...,n satisfying αi ≤ α0i ≤ ki for i = 1, . . . , n and
P

i α
0
i ≤ M . In

particular, perfect collusion (V 0 = 1,
P

i α
0
i = M) is sustainable with any such

market shares α0.

By construction, in a collusive α-equilibrium, firm i’s continuation payoff is

proportional to its constant market share and thus of the form αiV , for some
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continuation value V . Condition (Pi) asserts that firm i’s continuation payoff

cannot be worse than its minmax, while condition (Ei) asserts that the threat

of being ”punished” by αiV deters firm i from deviating from the collusive path.

These conditions are clearly necessary, but Lemma 3.1 establishes that, together,

they ensure that the value V (and any larger value) can be sustained as an α-

equilibrium.

Lemma 3.1 implies that the set of equilibrium values associated with a profile

of market shares α is an interval of the form [V (K,α, δ) , 1], where V (K,α, δ) is

the smallest value satisfying conditions ((Pi) , (Ei))i=1,...,n. In particular, perfect

collusion (V = 1) is sustainable whenever some collusion is sustainable; in the

following, we will thus focus on the sustainability of perfect collusion.

3.2. Collusion for given market shares

Building on Lemma 3.1, we can easily characterize the sustainability of perfect

collusion:

Proposition 3.2. Fix a distribution of market shares α = (αi)i=1,...,n satisfying

0 ≤ αi ≤ ki for i = 1, ..., n and
P

i αi =M ; perfect collusion is sustainable as an α-

equilibrium if and only if δ ≥ eδ(k, α), where the threshold eδ(k, α) is characterized
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by eδ
1− eδ = eγ

1− eV , (3.1)

where eγ (k, α) ≡ maxi nk̂i/αi

o
− 1 and eV (k, α) ≡ maxi{πi/αi}.

Proof. From Lemma (3.1), perfect collusion is sustainable if and only if there

exists V satisfying {(Ei) , (Pi)}i=1,...,n, which can be rewritten as (note that (Ei)

implies αi > 0):
V ≥ maxi πi

αi
= eV (k, α)

(1− V )
δ

1− δ
≥ max

i

k̂i
αi
− 1 = eγ (k, α)

Combining these two inequalities implies

δ

1− δ
≥ eγ (k, α)
1− V

≥ eγ (k, α)
1− eV (k, α) ,

or δ ≥ eδ(k, α). Conversely, if δ ≥ eδ(k, α), then V = eV (k, α) satisfies the two sets
of inequalities.

eV (k, α) is the lowest V satisfying (Pi). For δ ≥ eδ(k, α), it also satisfies (Ei); the

set of α−equilibrium values is therefore [eV (k, α), 1],15 so that ³1− eV (k, α)´M =P
i αi

h
πm − eV (k, α)i can be interpreted as the largest aggregate punishment that

can be sustained.
k̂i − αi

αi
represents firm i’s proportional gain from deviating, and

eγ (k, α) is the largest such gain.
15That is, V (k, α, δ) is independent of δ for δ ≥ eδ (k, α).
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3.3. Collusion for endogenous market shares

We now characterize the optimal market shares for collusion, which minimize

eδ(k, α) and thus eγ(k, α)/(1− eV (k, α)). The denominator in the latter expression is
maximal when eV (k, α) is minimized, which is obtained for market shares that are
proportional to minmax profits. The numerator eγ (k, α) is instead minimal when
market shares are proportional to (relevant) capacities. Since minmax profits are

not in general proportional to capacities, there is a conflict between decreasing

eV (k, α) (punishment concern) and decreasing eγ (k, α) (deviation concern).16 The
following Proposition asserts that the deviation concern is the dominant one and

characterizes the minimal threshold for collusion:

Proposition 3.3. If K−n < M , the threshold eδ(k, α) is minimized for α = α∗ (k)

defined by

α∗i (k) ≡
k̂i

K̂
M

and:

δ∗(k) ≡ eδ(k, α∗ (k)) = k̂n

K̂
.

16Given K−n < M , the only instance where this conflict disappears is when firms have the
same capacity (symmetric configuration).
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Proof. The proof builds again on the necessary conditions outlined in Lemma

(3.1). Adding-up (Pn) and (En) yields:

αn ≥ (1− δ)k̂n + δ(M −K−n) (3.2)

or:

δ ≥ k̂n − αn

K̂ −M
. (3.3)

Similarly, adding-up (Pn) , (E1) ... (En−1) and using V ≥ M −K−n
αn

yields:

M − αn ≥ (1− δ)K−n + δ (M − αn)
M −K−n

αn

⇐⇒ Mδ [αn − (M −K−n)] ≥ αn [αn − (M −K−n)]

⇐⇒ Mδ ≥ αn, (3.4)

since (3.2) implies αn > M −K−n. Combining (3.3) and (3.4) yields:

δ ≥ max
(
αn

M
,
k̂n − αn

K̂ −M

)
. (3.5)

Since
³
k̂n − αn

´
/
³
K̂ −M

´
decreases with αn and equals k̂n/K̂ for αn =

k̂nM/K̂, the right-hand side of (3.5) is at least equal to k̂n/K̂. And this lower

bound is achieved if and only if δ = αn =
³
k̂n − αn

´
/
³
K̂ −M

´
, i.e., if (3.3)

and (3.4), and thus all conditions (Ei)i=1,...,n, are satisfied with equality, implying

α = α∗ (k).
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To conclude it suffices to check that conditions (Pi)i=1,...,n−1 are also satisfied

when α = α∗ (k). They are trivially satisfied if K̂−i > M (since firm i’s minmax

is then zero). Otherwise, when α = α∗ (k), (Pi) can be written as

δ
M

K̂
≥ M − K̂−i

k̂i
= 1− K̂ −M

k̂i
.

Since the right-hand side increases with i, (Pi) follows from (Pn).

The optimal market shares α∗i thus minimize eγ (k, α), the largest proportional
gain from deviating, even if this does not maximize the punishment 1− eV (k, α).17
Comment 1: Restriction to α-equilibria Focussing on α-collusive equilibria

a priori restricts the scope for collusion by limiting the punishments that can

be inflicted on deviating firms. The punishments achieved with α-equilibria are

however at least as effective as those generated by reverting to a Nash equilibrium

of the competitive stage game, since those profits, πNi , necessarily satisfy:
18

πNi ≥ α∗i (k)eV (k, α∗(k)) = (M −K−n)k̂i/k̂n.

Thus the threshold δ∗(k) is —weakly— lower than for standard trigger-strategy

equilibria.19

17eγ is not differentiable at α = α∗; any change away from α = α∗ thus generates a first-order
increase, which dominates any possible benefit from a higher punishment 1− eV (β, α).
18The largest firm gets at least M − K−n > 0 by charging pn = 1 with probability 1 and

will thus never charge a price below p = (M −K−n)/k̂n. But then, by charging a price slightly
below p any firm i < n can sell at full capacity and get (M −K−n)ki/k̂n = (M −K−n)k̂i/k̂n.
19In the case of a duopoly (n = 2), the punishment profits used here, α∗iV

∗ =
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Furthermore, a firm can never be punishmed below its minmax; therefore,

δ∗(k) ≥ δ (k) ≥ δ(k), where δ(k), the threshold for collusion if minmax profits

were implementable, is characterized by

δ(k)

1− δ(k)
=

K − 1
1− π(k)

,

where π(k) ≡Pi πi (k) denotes the ”aggregate” minmax profit. There are two in-

stances, however, where minmax profits can be implemented through α-equilibria;

this is when: (i) firms are symmetric (ki = K/n); and (ii)K−n ≥M , in which case

πi (k) = 0 for all i = 1, ..., n.
20 Therefore, in both instances δ∗(k) = δ (k) = δ(k),

that is, the restriction to α-equilibria does not limit the scope for collusion.

Comment 2: Symmetric capacities As just mentioned, for symmetric capac-

ities our analysis characterizes the best collusive equilibria, using minmax profits

as punishments. If ki = K/n > M , there are no effective capacity constraints and

a small change in market size or a uniform increase in capacity has no effect on

(M −K−n) k̂i/k̂n, actually coincide with the Nash equilibrium profits. In the case of a tri-
opoly (n = 3), for K−3 < M < K Nash equilibrium profits coincide with the punishments used
here if k3 = M or K−1 ≤ M whereas, if k3 < M < K−1, they coincide for i = 2, 3, but
πN1 > α∗1V ∗ = (M −K−3)k1/k3 (proof available upon request), so that α−collusive equilibria
are strictly more effective for collusion than trigger strategies based on reversal to Nash.
20For the symmetric case, it suffices to note that the ”best” collusive α-equilibrium (achieved

for αi = k̂i/K̂) punishes the largest firm by its minmax profit; this therefore applies to all
firms when they are symmetric. For the latter case (K−n ≥M), it suffices to note that the
collusive equilibrium characterized in the previous section, where all firms charge zero price
after a deviation, can be constructed as an α-equilibrium (market shares being irrelevant when
prices are zero).
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collusion: δ (k) = δ∗ (k) = 1 − 1/n. If instead ki = K/n < M , each firm faces

a capacity constraint and a decrease in the market size or a uniform increase in

capacity increases the gains from deviating, but may also enhance punishments

when K−n = (n− 1)K/n < M . We must therefore distinguish two cases (see

Figure 1):

Place Figure 1 here
Figure 1

Critical level for the discount factor for symmetric firms
n: number of firms, K: total capacity, M : market size

• If K/n < M < (n− 1)K/n, any (n− 1) firms can cover the market and

punishments are maximal (zero profits); a decrease in the market size or

a uniform increase in capacity thus only increases the aggregate gain from

deviations, making collusion more difficult: δ (k) = δ∗ (k) = 1−M/K.21

• If M > (n− 1)K/n, a decrease in the market size or a uniform increase in

capacity also enhances punishment possibilities, by increasing the total (rel-

evant) capacity of any (n− 1) firms; this favourable effect on punishments

exactly offsets the adverse effect on gains from deviations: δ (k) = δ∗ (k) =

1/n, independently of M or K.22

21The first case cannot occur in a duopoly situation.
22The favourable effect on punishment possibilities could however dominate if the demand

was downward sloping — see for example Brock-Scheinkman (1985).
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Comment 3: Market shares For a discount factor δ = δ∗(k), collusion may

only be supported for market shares equal to α∗(k) and firms with a larger capacity

thus obtain a larger share of the market. As the discount factor increases, the

range of market shares for which collusion can be supported increases. To fix

ideas, consider for instance the case of a duopoly where M ≥ k2 > k1 > M/2

(that is, the smaller firm could still potentially get the largest market share). The

range of market shares that allow for perfect collusion are of the form {(α1, α2),

α1 ∈ [α1(δ), ᾱ1(δ)], α2 =M − α1}, where α1(·) and ᾱ1(·) are given by:

Proposition 3.4.

ᾱ1(δ) = M − k2 + δ(K −M) for δ∗(k) ≤ δ ≤ 1,

α1(δ) =

 (1− δ)M for δ∗(k) ≤ δ ≤ bδ(k) ≡ M − k1
2M −K

(< 1) ,

k1 − δ(K −M) for bδ(k) ≤ δ ≤ 1.

For δ∗ = δ∗(k), the range reduces to α∗i = α1(δ
∗) = ᾱ1(δ

∗), but as δ increases

from δ∗(k) to 1, the range expands on both sides. In the limit case δ = 1, ᾱi = ki:

either firm can sell at full capacity, implying that the smaller firm can have a bigger

share than the other one; however, as long as δ < (k2 −M/2) / (K −M) (< 1),

the smaller firm necessarily gets a smaller share (i.e., ᾱ1(δ) < M/2). Figure 2

represents the evolution of the range of collusive market shares as δ varies.
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Place Figure 2 here
Figure 2

Range of market shares allowing collusion

4. Asymmetric capacities, mergers and collusion

This section draws the implications of the above analysis for merger and com-

petition policy. We mainly focus on α−collusive equilibria, which entails a loss

of generality since transfers across firms are constrained and punishments harder

to sustain. However, using consistently the same class of equilibria allows us to

analyse variations of the threshold in response to changes of capacities. We also

explore the analysis of the most general class of collusive equilibria; although we

do not provide a full characterization of the threshold δ(k), two partial character-

izations confirm the qualitative insights derived from the analysis of collusive α

-equilibria.

Using Proposition (3.3) and since δ∗ (k) = δ (k) is given by (2.1) when K−n ≥

M , the threshold δ∗ can be written as (with K̂−n ≡
P

i<n k̂i):

δ∗(k) = 1− M

k̂n + K̂−n
if K−n > M,

k̂n

K̂
=

k̂n

k̂n +K−n
if K−n ≤M.
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4.1. Increase in one firm’s capacity

When small firms are not too small (K−n ≥ M), δ∗ (k) = δ (k) only depends on

the aggregate relevant capacity: punishment possibilities are maximal (zero prof-

its) and independent of the distribution of capacity. Capacities thus only affect

the incentives to deviate, and any increase in a firm’s relevant capacity harms

collusion. When instead small firms are indeed small (K−n < M), punishment

possibilities are limited and the distribution of capacity matters. The proof of

Proposition (3.3) shows that the only relevant condition (Pi) is (Pn): that is, the

main problem for collusion is to prevent the largest firm from deviating; collusion

is easier when the large firm’s incentive to deviate (its relevant capacity k̂n) de-

creases, and when small firms’ retaliation power (their aggregate capacity K−n)

increases (see Figure 3).23

23When small firms have very little capacity, the total industry (expected) profits are close
to the monopoly level even in the static Nash equilibrium — and collusion is therefore not a
very relevant issue. Assuming that perfect collusion is sustainable when small firms are not
too small, the description of the best ”collusive” (expected) price, as a function of the capacity
of the small firms, is as follows: the best collusive expected price remains at pm = 1 as long
as small firms are not too small, and drops to the level of the static Nash equilibrium, which
however increases when the capacity of the small firms decrease (and gets back to pm = 1 when
small firms disappear).
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Place Figure 3 here
Figure 3

Critical level for the discount factor for asymmetric firms
kn: total capacity of the largest firm,
K−n: total capacity of the smaller ones,

M : market size.

4.2. Variations in demand

When small firms are not too small (K−n ≥ M), a reduction in demand hurts

collusion.24 In contrast, when small firms are really small (K−n < M), a reduc-

tion in demand either has no impact on collusion (if kn < M , since the demand

reduction then does not affect firms’ relevant capacities: k̂i = ki for every firm i),

or is beneficial to collusion (if K−n < M < kn, since then the demand reduction

still does not affect small firms’ retaliation ability but reduces the large firm’s

incentive to deviate: k̂i = ki for i < n but k̂n =M).

4.3. Capacity transfers

Capacity transfers affect collusion only if they involve the largest firm. The fol-

lowing table recalls the effect on δ∗ of a decrease in ki and of an increase in kn,

and presents the overall impact of the transfer ki → kn from firm i < n to firm n:

24Except if k1 ≥M , in which case there are no capacity constraints: K̂ = nM and δ∗ (K) =
δ (K) = 1− 1/n.
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Place Table 1 here
Table 1

Impact of changes in capacity

When small firms are really small, transferring capacity from a small firm to

the largest one hurts collusion (δ∗ increases): it reduces small firms’ retaliation

ability (since ki < M) and, moreover, exacerbates the large firm’s incentive to

deviate if kn < M . In contrast, when small firms can cover the entire market

(K−n > M), only the incentives to deviate matter. A similar transfer then cannot

hurt collusion since it cannot increase the aggregate relevant capacity: it is neutral

if ki < kn < M (since k̂i + k̂n = ki + kn is not affected by the transfer) and may

even make collusion easier if the largest firm has excess capacity (ki < M < kn),

since in that case it reduces the small firm’s relevant capacity without increasing

the large firm’s one ( k̂i = ki but k̂n =M).

The next Proposition builds on the above observations and addresses the fol-

lowing question: For a given total capacity K and a given number of firms n,

what are the distributions of capacity that most facilitate collusion? The answer

depends on the comparison between the market sizeM and the maximal capacity

of the n− 1 smaller firms, n− 1
n

K:

Proposition 4.1. Best capacity distributions for collusive α-equilibria.
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For any K and n ≥ 2, the set K∗(K,n) of distributions that minimize δ∗ (k)

is given by:

i) If the total capacity is sufficiently small
¡
K ≤ n

n−1M
¢
, then:

K∗(K,n) =
©
kS ≡ (K/n, ...,K/n)

ª
.

ii) If instead the total capacity is large
¡
K > n

n−1M
¢
, then:

• If K ≤ 2M or n = 2, K∗(K,n) consists of all distributions that allow the

n− 1 smallest firms to cover the entire market (K−n ≥M).

• If K > 2M and n ≥ 3, K∗(K,n) consists of all the asymmetric distributions

that give a total capacity K−n =M to n−1 small firms and the entire extra

capacity to a large firm (kn = K −K−n > M).

Proposition 4.1 is driven by two principles: to facilitate collusion, 1) the retal-

iation possibilities of the smallest firms should be maximized, i.e. the aggregate

capacity of the smallest firms should be increased, up to market size if possible; 2)

among the distributions of capacities that maximize retaliation possibilities, the

gains from deviating should be minimized.

When the total capacity is small (
n− 1
n

K ≤ M), the smallest (n − 1) firms

cannot cover the market; in that case, the main problem is to discipline the largest

firm; starting from any asymmetric situation, transferring some capacity from
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the largest firm to a small one then both enhances the small firms’ retaliation

power and limits the large firm’s incentives to deviate: the best distribution of

capacities is therefore the symmetric one, kS. When instead the total capacity is

large enough (
n− 1
n

K > M), retaliation possibilities are maximized whenever the

small firms can cover the market (K−n ≥M) and the main residual problem is to

limit the aggregate incentives to deviate, i.e., to reduce the total relevant capacity

K̂. When K > 2M and n ≥ 3, this is achieved only when K−n is precisely equal

to the market size, whereas when K ≤ 2M or n = 2, all distributions satisfying

K−n ≥M yield the same relevant capacity (K̂ = K when K < 2M and K̂ = 2M

in the duopoly case).

While Proposition 4.1 restricts attention to collusive α-equilibria, the next

Proposition shows that the main insights remain valid when considering more

general collusive equilibria:

Proposition 4.2. Best capacity distributions for general collusive equilibria.

FixK and n. Then the set K(K,n) of distributions of capacities that minimize

δ (k) is such that:

i) If K > 2M , K(K,n) = K∗(K,n).

ii) If K < n
n−1M , K(K,n) ⊃ K∗(K,n) =

©
kS
ª
. Moreover, if δ = δ∗(kS), for
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any distribution k satisfying:

k1 < (1− 1/n)kn,

perfect collusion cannot be sustained: k /∈ K(K,n).

When K > 2M , collusive α-equilibria allow for maximal punishments (zero

profits) and the optimal distributions of capacities are unchanged when consider-

ing more general collusive equilibria. When K ≤ n
n−1M , an asymmetry between

the capacities of the firms makes collusion more difficult to sustain. The intuition

there is that punishing a firm with a low capacity puts an upper bound on the

prices other firms may charge. Hence the other firms have to suffer from the

punishment they impose on this particular firm. But then, a firm with a large

capacity might be reluctant to participate in such a punishment.25

4.4. The impact of mergers on tacit collusion

We now apply our analysis of collusive α-equilibria to the study of mergers

and break-ups. The conventional wisdom is that divestitures foster competition,

whereas mergers raise antitrust concerns. One argument may be that tacit collu-

sion requires firms to agree on how to support it, and that reaching such a (tacit)

25Kühn and Motta (2000) obtain a similar insight in a context where firms differ in the range
of varieties they offer. There again, and for a similar reason, an asymmetry in the distribution
of varieties among the firms makes collusion more difficult to sustain.
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agreement may be more difficult when the number of firms is larger (e.g., firms

may find it more difficult to agree on market shares). Compte and Jehiel (1996)

supports this intuition in the context of a non-cooperative bargaining model. We

will abstract from such issues here, and focus on the sole impact of the distribution

of capacities on collusive (α-)equilibria.

Our analysis emphasizes two distinct elements. On the one hand, a merger

reduces the number of competitors, which tends to facilitate collusion: This well-

known effect dominates when capacity constraints are not too severe. On the

other hand, a merger exacerbates the asymmetry in capacities when it involves

the largest firm. This tends to hurt tacit collusion, and this effect dominates when

the capacity constraints are more severe or their distribution is very asymmetric.26

In the absence of any capacity constraint (ki ≥M , and thus k̂i =M , for each

firm i), collusion can be sustained as long as δ ≥ 1−M/K̂ = 1−1/n. The standard

result then applies: any merger facilitates collusion because it reduces the number

of competitors, whereas any break-up of a firm makes collusion more difficult to

sustain, since the aggregate relevant capacity necessarily increases.27 The same

26Note that when K−n ≥ M , the analysis applies to the most general class of collusive
equilibria as well as to the class of symmetric ones. When K−n < M , the discussion that follows
is based on the analysis of α−equilibria; however, Proposition 4.2 suggests that even for more
general collusive equilibria a merger involving the largest firm, which exacerbates the asymmetry
in the distribution of capacities, is still likely to hurt collusion.
27If for example firm i is broken-up into two firms i and i0 with capacities k0i and k0i0 , then

k0i + k0i0 = ki > M implies k̂0i + k̂0i0 > M = k̂i.
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argument carries over to situations where firms are capacity-constrained but not

too much so (K−n ≥M). In that case, the maximal punishment (zero profits) can

still be imposed on any firm, and only the incentives to deviate matter, summa-

rized by the total relevant capacity K̂; perfect collusion can be sustained as long

as δ ≥ 1−M/K̂ (but K̂/M may now be lower than n). Since a merger can only

decrease the total relevant capacity, it can only facilitate collusion: more precisely,

any merger leading to the creation of a firm ”large enough” to cover the entire

market facilitates collusion, while the other mergers have no impact on collusion.

Conversely, forcing any such large firm to divest part of its capacity always makes

collusion more difficult to sustain (provided that the divested capacity is not given

to a firm already large enough to cover the market), while the break-up of a small

firm that cannot initially cover the entire market has no impact on collusion.

In contrast, when capacity constraints are more severe (K−n < M), any merger

involving the largest firm hurts tacit collusion. The reason is that, as already em-

phasized, the key issue for tacit collusion is then to prevent this large firm from

deviating: but such a merger precisely reduces small firms’ ability to retaliate (by

transferring some of their capacity to the largest firm), and may moreover exacer-

bate the large firm’s gains from deviation if it was initially capacity-constrained.

In contrast, forcing the large firm to divest part of its capacity kn might facilitate
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collusion.

Policy implications. This analysis suggests merger guidelines that substantially

differ from those inspired by static analyses. In particular, for a given number of

firms, the Herfindahl or other standard concentration tests tend to predict that

a more symmetric configuration is more likely to be competitive (the Herfindahl

index is minimal for a symmetric configuration). Similarly, the static Nash equi-

librium industry-wide profits often decrease with symmetry.28 The above analysis

instead suggests that asymmetry may be pro-competitive, as it may hurt tacit

collusion. A sufficiently asymmetric configuration may even more than compen-

sate for a reduction in the number of firms: If K−n < M , any merger involving

the large firm hurts collusion and may thus benefit competition since, although it

reduces the number of competitors, it exacerbates the asymmetry between them

(the Herfindahl test would in contrast advise that the pre-merger situation is more

favourable to competition). The above analysis also casts some doubt on standard

merger remedies, which consist in divesting some of the capacity of the merged firm

and transferring it to other competitors: Such remedy, which tends to maintain

a reasonable amount of symmetry between the competitors, avoids the creation

28Suppose for example that a capacityK is distributed among n firms who play the static price
competition game described above. Each firm i gets max

©
0,M − n−1

n K
ª
if the distribution is

symmetric and at least max
n
0,
³
M − K̂−n

´
k̂i/k̂n

o
otherwise (see footnote 18). The industry-

wide profits are thus mimized when the capacity K is distributed evenly among the n firms.
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of a ”dominant position” but may help tacit collusion. The above analysis thus

suggests that merger policy should treat very differently ”single dominance” cases

and ”collective dominance” cases. The following discussion of the Nestlé-Perrier

case illustrates these issues.

5. An analysis of the Nestlé-Perrier merger

On February 25 1992 Nestlé, which manufactures and sells food products and

is active in the French bottled water sector with two major brands (Vittel and

Hepar) notified to the EEC commission a public bid for 100% of the shares of

source Perrier SA which is mainly active in the manufacture and distribution of

bottled waters. The Commission decision29 mentions that in 1991, before the

merger, the total annual volume of the French bottled water market was 5.25

billion litres. At the time of the merger Nestlé sold annually 900 million litres on

the French bottled market (market share: 17.1%), Perrier sold 1.885 million litres

( market share 35.9%), BSN sold 1.207 million litres (market share 23%). Other

suppliers sold 1.258 million litres (total market share 24%).30 In the rest of our

29Nestlé/Perrier, Commission Decision of 22 July 1992, Case N◦IV/M190.
30For confidentiality reasons, the decision does not indicate individual market shares and

production capacities. However, these shares and capacities can be roughly estimated for each
of the main suppliers, using information provided in different recitals of the decision — see
Compte-Jenny-Rey (1997). Due to space constraints the method used is not detailed here and
only the results are mentioned.
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analysis we will ignore the smaller producers.31

According to the EUmerger regulation a concentration which creates or strength-

ens a dominant position as a result of which effective competition would be signifi-

cantly impeded in the common market or in a substantial part of it is incompatible

with the common market. There is little doubt, when one considers the case law

and the importance that the Commission attaches to the distribution of market

shares in merger cases, that the parties to the merger thought that the Commis-

sion was likely to oppose the takeover of Perrier by Nestlé on the ground that it

created a dominant position for the merging parties.32

However, Nestlé and Perrier had also agreed, subject to Nestlé acquiring con-

trol of Perrier, to transfer Volvic (a major still mineral source of Perrier) to BSN.

With this transfer taken into consideration the post merger situation would have

been a balanced duopoly33 and the merging parties may have hoped to avoid the
31Indeed in recital 129 of its decision the Commission notes: ”Local spring and mineral waters

are too small and dispersed to constitute a significant alternative to the national waters. As
examined (above), none of these companies constitutes a sufficient price-constraining competitive
force (...).”.
32In recitals 132-134, the Commission stated that such a merger would have led the merging

firms to have approximately 53% ( by volume) of the bottled water market, more than twice
the market share of the next biggest competitor. It added that the merged entity would have
had capacities exceeding the volume of the total bottled water market, would have had a major
advantage over its main competitor in terms of the number of major sources held both on the
still and on the sparkling mineral water segments and would not have been constrained either by
local spring water sources, by retailers or wholesalers or by potential competition. It concluded
that ”the reduction from three to two suppliers (duopoly) is not a mere cosmetic change in the
market structure. The concentration would lead to the elimination of a major operator who has
the biggest capacity reserves and sales volumes in the market.”
33Cf. recital 123: ” After the merger , there would remain two national suppliers on the

29



risk of having the Commission block the takeover since after the merger neither

one of the two remaining major operators could be considered to hold a dominant

position.

However, the Commission which for a while had sought to expand the scope

of the EU merger regulation used this takeover as a test case to put forth a new

interpretation of the merger regulation. It claimed that the regulation should be

construed not only as prohibiting mergers which create or strengthen a dominant

position for the merging firms but also as prohibiting mergers which create or

strengthen an ”oligopolistic dominance”. For the Commission such a creation

or strengthening would occur if ”there is already before the merger weakened

competition between the oligopolists which is likely to be further weakened by a

significant increase in concentration and if there is no sufficient price constrain-

ing competition from actual or potential competition coming from outside the

oligopoly”.

The Commission then reasoned that competition had been weak on the bottled

water market even before the merger. It based its conclusion on three main facts

”the high degree of market parallelism over a long period of time, the very high

market which would have similar capacities and similar market shares ( symmetric dupoly)”.
Indeed the sales of Nestlé+Perrier-Volvic, on the one hand, and of BSN + Volvic, on the other
hand, would have been roughly equal to 2 billion liters each and each would have had a market
share of 38%.
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production-cost margin, and the large gap between ex-works price of national

mineral waters and local spring waters”. It further stated that ”the reduction

from three to only two national suppliers would make anticompetitive parallel

behaviour leading to collective abuses much easier”. This last assessment was

based on two main types of considerations, namely:

- the two players remaining in the market would be similar in size and nature

and neither one would enjoy a significant cost advantage over the other; technology

was mature and R&D played no major role;

- the major mineral water suppliers had developed instruments allowing the

controlling and the monitoring of each other’s behaviour; furthermore demand

for mineral water was relatively price inelastic, fringe firms or retailers did not

constitute an effective competitive constraint and barriers to entry were high;

thus a tacit coordination of pricing policies between BSN and Nestlé would be

easily achieved;

Thus, in its decision, the Commission explicitly ruled out allowing the takeover

with the transfer of Volvic to BSN (to avoid the strengthening of an oligopolistic

dominance) or allowing the merger without the transfer of Volvic to BSN (to avoid

single firm dominance for the merged entity). It thus was faced with two choices,

either blocking the merger altogether or allowing it subject to divestiture. During
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the proceedings, Nestlé, aware of the fact that the Commission was likely to oppose

the merger on the basis of the fact that it was incompatible with the Common

Market, agreed to meet the requirements of the Commission by committing itself

to selling various well known brands (among them Vichy, Thonon, Pierval, Saint

Yorre) and three billion litres of water capacity to a third party so that this third

party could become an active player on the market. Subject to the compliance

with this commitment, the Commission did not oppose the takeover of Perrier by

Nestlé and the subsequent transfer of Volvic to BSN.

This decision raises several questions in relation with our previous discussion of

the impact of mergers on tacit collusion. Contrary to what our analysis suggested,

the Commission spent relatively little time discussing the consequences of the

distribution of capacity obtained through the various solutions on the possibility

of collusion among the firms. Similarly, the Commission did not compare the

situation created by the commitment it imposed to accept the merger with the

pre merger situation. Yet if both situations entail the same number of major actors

( three in both cases) they seem to be characterized by different distributions of

capacities.

Drawing from the indications given in the decision and our own estimates,

it seems that the distribution of capacity before and after the merger were the
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following (sales and capacities are in million litres, whereas ki/M is the ratio of

capacity over market size):

a) Before the merger:

Sales Capacity ki/M
Nestlé 897 1, 800 0.34
Perrier 1, 885 (>)13, 700 > 1
BSN 1, 208 1, 800 0.34

b) After the merger (without the resale of Volvic):

Sales Capacity ki/M
Nestlé+Perrier 2, 782 > 15, 500 > 1

BSN 1, 208 1, 800 0.34

c) After the merger (and the resale of Volvic to BSN):

Sales Capacity ki/M
Nestlé+Perrier-Volvic 1, 995 > 9, 800 > 1

BSN+Volvic 1, 995 7, 500 > 1

d) After the merger, the resale of Volvic to BSN and the divestiture to create

a new third player:

Sales Capacity ki/M
Nestlé+Perrier-Volvic-New firm ? > 6, 800 > 1

BSN+Volvic 1, 885 7, 500 > 1
New firm ? 3, 000 0.57
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Using the estimated figures of capacity in relation to the total market size

in the different situations, we can compute the minimum discount factor δ∗ that

allows a collusive equilibrium in each case:34

Place Table 2 here
Table 2

Conditions for collusive equilibrium

Several conclusions can be drawn from these figures:35

1) The proposed takeover of Perrier by Nestlé with the resale of Volvic to BSN

maximises the scope for collusion: the minimum discount factor for a collusive

equilibrium is lower than for any other configuration, including the pre-merger

situation.

2) The situation that minimises the scope for collusion is the solution in which

34The analysis would yield similar results if the total market for bottled water was defined as
the sum of the output of the three producers (i.e. 3990 million litres) rather than the sum of the
output of the three producers plus the output of the small producers (i.e. 5250 million litres)
— see Compte-Jenny-Rey (1997). The results are also very robust to reasonable changes in the
assumptions set out above. In particular, capacities would remain substantially higher than the
market size in all the cases below where ki/M > 1.
35We are interested here in the ranking of the threshold δ∗ in the various situations, not in its

absolute value. Many other factors may affect the actual threshold for collusion. For example,
if firms observe or change prices only ”every τ periods”, α−collusion would be sustainable only
if δτ ≥ δ∗ (k), that is, if

δ ≥ δ∗τ (k) ≡ [δ∗ (k)]1/τ > δ∗ (k) .

This factor alone would thus increase the threshold needed for collusion, without altering the
comparisons between the situations considered here. The above insights — and the comparisons
that follow — are furthermore likely to be robust to the introduction of these other factors:
whenever the industry structure opposes a firm with a large excess capacity to firms with rather
limited capacities, collusion is likely to be difficult to sustain since the large firm would derive
large gains from undercutting its rivals, and the other firms have little retaliation power.
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Nestlé and Perrier merge but do not transfer Volvic to BSN: with this transfer,

the minimum discount factor jumps from .50 to .75. This finding is at odds with

the Commission decision which states (recital 134): ”It cannot be expected that

BSN would effectively compete against Nestlé/Perrier since both suppliers would

have a strong common interest and incentive to jointly maximize profits”. The

Commission did not apparently take into consideration that the merged firms

(Perrier and Nestlé) would then be able to compete with BSN without fear of

large scale retaliation because of the capacity constraint faced by BSN.

The fact that the merger (without the resale of Volvic to BSN) would make a

collusive equilibrium more difficult to sustain might also explain why the merging

firms planned to resell Volvic to BSN. The (advertised) desire of the merging firms

to avoid the creation of a dominant position may have been consistent with their

(unadvertised) desire to facilitate collusion.

3) The third conclusion is that the solution chosen by the Commission (i.e.,

allowing the merger with the resale of Volvic to BSN and additional commitments

to spin off capacities equal to 3000 million litres to an independent operator) is

intermediate, from the point of view of the sustainability of a collusive solution,

between the proposed merger (which maximises the scope for collusion) and the

acceptance of the merger without the resale of Volvic (which minimises this scope).
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Even though in the latter case there would have been only two main firms, they

would have had a more difficult time sustaining collusion than the three firms

(Nestlé, BSN and the new player created by the Commission) will have. The

basic reason for this is, first, that in the solution preferred by the Commission

neither one of the two largest firms can depart from the collusive equilibrium

without exposing itself to retaliation from the other. Since each one of them

has a considerable capacity compared with the size of the market, neither one

of them can take the risk of retaliation lightly. Second, the new entrant has

limited capacities compared to the other two firms and compared to the market

and therefore cannot expect to gain by threatening to force competition on them.

Altogether, in this solution, the incentives to depart from the collusive solution

are not strong.

One of the questions raised by the decision is why did the Commission allow

a solution which appears less attractive from the point of view of competition

than allowing the merger to proceed without the transfer of Volvic to BSN. There

are two possible answers to this question. The first possible answer is that the

Commission recognized that the transfer of Volvic to BSN was likely to facilitate

a collusive solution but also realized that if it prevented such a transfer, Nestlé

might challenge the decision (by taking its case to the European Court of Jus-
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tice) on the basis that the merger regulation did not apply to the creation or

strengthening of oligopolistic dominance. Because the Commission did not want

to face such a challenge, it may have deliberately promoted a solution which was

less favourable from point of view competition than what could be achieved but

satisfied Nestlé sufficiently so that it would not pursue the matter. Indeed neither

Nestlé, although it voiced strong objections against the extensive interpretation

of the merger regulation used by the Commission, nor BSN, for obvious reasons,

challenged the decision. The second possible answer is that the Commission did

not take into account the impact of the distribution of production capacity on

the sustainability of collusion and focused instead solely on the number of major

players.
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A. Proofs

A.1. Proof of Lemma 3.1

i) By definition, in a collusive α-equilibria, after any history of prices ht, all firms

charge the same price p(ht) and firm i’s market share is equal to αi. This implies

that after any history, firms’ continuation values remain proportional to their

original market shares, and are thus of the form αiV (h
t) for some value V (ht).

Consider the lowest continuation equilibrium value, V ≡ inf V (ht). After any

history ht, firm i’s per period continuation equilibrium value αiV (h
t) cannot be

lower than its minmax payoff πi, which it can secure by charging the monopoly

price forever; this implies (Pi).

Now consider the equilibrium path of prices {pt}t≥0. At any date t on the

equilibrium path, player i’s continuation value is equal to αiV
t where36

V t = (1− δ)
X
s≥0

δspt1pt≤1. (A.1)

At any date t for which pt ≤ 1, if firm i deviates and slightly undercuts the price

pt, it gets k̂ipt in the current period and at least αiV in the following ones. Ruling

out such a deviation imposes:

αiV
t ≥ (1− δ)k̂ip

t + δαiV, ∀t such that pt ≤ 1.
361pt≤1 equals 1 if pt ≤ 1 and 0 otherwise.
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Taking the supremum over the dates t for which pt is no greater than 1 on the left

side, then on the right side, yields

αiV̄ ≥ (1− δ)k̂ip̄+ δαiV. (A.2)

where V̄ = supt,p0≤1 V
t and p̄ = supt,p0≤1 p

t. Equation (A.1) implies V̄ ≤ p̄, which

combined with (A.2) further implies

[αi − (1− δ)k̂i]p̄ ≥ δαiV. (A.3)

Since V is non-negative and since p̄ ≤ 1, (A.3) also holds for p̄ = 1, which proves

that condition (Ei) holds.

ii) Note first that adding conditions (Ei) implies:

δ (1− V )
X
i

αi ≥ (1− δ) (K̂ −
X
i

αi),

and
P

i αi ≤M < K̂ thus implies V < 1. We now prove that V is an equilibrium

continuation value.

If V = 0, conditions (Pi) imply that πi = 0 for all i = 1, . . . , n. In that case,

pi = 0 is a Nash equilibrium of the static game, which in turn implies that V = 0

is sustainable.

If V > 0, we construct the following punishment path (pt denotes the price
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charged in the tth period of the punishment):

pt = 0 for t = 1, ..., T,

pt = p for t = T + 1,

pt = 1 for t = T + 2, ...,

where T ≥ 0 and p ∈ [0, 1] are chosen so that V ≡ δT ((1 − δ)p + δ). Such T

and p always exist since V ≤ 1. Assuming that deviations from this punishment

path are themselves ”punished” by returning to the beginning of the punishment

path, we now show that no such deviations are profitable. As usual, it suffices

to consider one-period deviations and, moreover, since conditions (Ei) rule out

deviations in the periods t > T + 1, we may restrict our attention to the first

T + 1 periods of the punishment path.

At the start of period t ≤ T of the punishment path, firm i’s continuation

value is δ−(t−1)αiV . By deviating in one of the first T periods, firm i cannot get

more than πi in the current period. Hence such deviations are deterred if:

δ−(t−1)αiV ≥ (1− δ)πi + δαiV (A.4)

The most restrictive of these conditions is obtained for t = 1 and coincides

with (Pi).
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In the (T + 1)th period of punishment, the best deviation consists in either

charging the monopoly price (if p is low) or in undercutting the rivals (if p is high,

namely, if αip > k̂i). In the former case, the no-deviation condition is given by

(A.4) with t = T + 1 and is thus implied, too, by (Pi). In the latter case, the

no-deviation condition is:

(1− δ)αip+ δαi ≥ (1− δ)k̂ip+ δαiV

Because αi ≤ k̂i, it is most restrictive for p = 1, in which case it is equiva-

lent to (Ei). Hence, under conditions (Pi) and (Ei), the continuation value V is

sustainable.

For any other value V 0 ∈ [V, 1], we can construct a price path similar to the one

defined above, with T ≥ 0 and p ∈ [0, 1] now chosen so that V 0 ≡ δT ((1−δ)p+δ),

and use the continuation value V to punish any deviation from this path. The

left-hand side of (A.4) becomes δ−(t−1)αiV
0, and is a fortiorisatisfied. The rest

of the argument is unchanged and shows that V 0 is sustainable. To conclude the

proof, it suffices to check that conditions {(Ei) , (Pi)}i=1,...,n are always relaxed by

an increase in the market shares α. This is obvious for condition (Pi), and is also

true for condition (Ei) since δV ≤ V < 1.
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A.2. Proof of Proposition 3.4

Fix δ ≥ δ∗ (k). α1 is the value of the following program:

min
α1,V

α1
(P1) , (P2) , (E1) , (E2)

First, at least two of the four constraints must be binding: if only one of

them was binding, it would be possible to slightly decrease α1 and adapt V so

as to keep satisfying this condition and improve on the objective. Second, (E2)

cannot be binding: Since (α∗1 (k) , V
∗) satisfies all constraints, necessarily α1 ≤

α∗1 (k), which implies k1/α1 ≥ k2/α2, and thus, since (Ei) can be rewritten as

(1− δV ) / (1− δ) ≥ ki/αi, (E1) implies (E2).

Suppose that (P2) is not binding. Given the two above remarks, the solution

is then given by (P1) and (E1) written with equality, that is:

α1 = (1− δ) k1 + δ (M − k2) (A.5)

= k1 − δ (K −M) , (A.6)

V =
M − k2

α1
.

But then (P2) is equivalent to:

[M − k1 + δ (K −M)]
M − k2

k1 − δ (K −M)
≥M − k1
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which itself is equivalent to δ ≥ bδ = M−k1
2M−K .

Similarly, if (P1) is not binding the solution is given by (P2) and (E1) written

with equality, that is:

α1 = (1− δ)M, (A.7)

V =
M − k1
δM

.

(P1) is then equivalent to:

1− δ

δ
(M − k1) ≥M − k2,

or δ ≤ bδ. Hence, α1 is given by (A.7) for δ ≤ bδ and by (A.5) for δ ≥ bδ.
The analysis is similar for α1 = M − α2, reversing the indexes 1 and 2: α2

is equal to (1− δ)M when δ ≤ bδ0 ≡ M−k2
2M−K and to k2 − δ (K −M) for δ ≥ bδ0;

however, the critical threshold bδ0 is always lower than δ∗ (k), so that only the case
δ ≥ bδ0 is relevant, and α1 is always given by α1 =M −α2 =M − k2+ δ (K −M).

A.3. Proof of Proposition 4.1

i) Assume n−1
n
K > M . For any distribution of capacities k satisfying K−n < M

consider the distribution k0 such that k0n = kn and k0i = K 0
−n/ (n− 1) for i < n.

Since this modification only affects the capacities of the small firms, δ∗(k) = δ∗(k0).

The condition n−1
n
K > M > K−n = K 0

−n moreover implies k
0
i < k0n for i < n, and
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thus a small capacity transfer from the largest firm to a small one would decrease

δ∗(k0) (see Table 1).

The best capacities thus satisfy K−n ≥ M , and the threshold δ∗ thus only

depends on K̂, which must be minimized. When K ≤ 2M or n = 2, the total

relevant capacity K̂ is the same for any distribution of capacities k satisfying

K−n ≥ M : when K ≤ 2M , kn = K − K−n < M , hence ki = Ki and K̂ = K;

when n = 2, k̂1 =M = k̂2, hence δ
∗(k) = 1/2.

Assume nowK > 2M and n > 2. For any distribution of capacities k satisfying

K−n = M and kn = K −K−n > M , K−n = kn = M , hence K̂ = 2M , whereas

K̂ 0 > 2M for any distribution k0 such that K 0
−n > M : Either k0n < M , in which

case k̂0i = ki for all i and thus K̂ 0 = K > 2M , or k0n ≥ M , in which case k̂0n = M

and K̂ 0 =M +K 0
−n > 2M since K 0

−n > M and n > 2 imply K 0
−n > M .

ii) n−1
n
K ≤ M implies K−n ≤ M ; hence δ∗(k) = k̂n/K̂, which is equal to

1/n for the symmetric distribution kS and strictly higher for any asymmetric

distribution.

A.4. Proof of Proposition 4.2

Assume that perfect collusion can be sustained. Let vi denote firm i’s equilib-

rium profit. By definition of a perfect collusive equilibrium, all firms charge the

44



monopoly price on the equilibrium path, and we must have:

X
i

vi =M (A.8)

Providing firm i the incentives to charge the monopoly price requires:

vi ≥ (1− δ)k̂i + δπi (A.9)

since the harshest punishment that can be imposed on firm i in equilibrium cannot

be worse than its minmax πi. Adding the inequalities (A.9) gives a lower bound

on δ(k):

δ(k) ≥ δ(k) ≡ K̂ −M

K̂ − π(k)
(A.10)

i) Assume K > 2M . First, observe that δ(k) ≥ 1/2 and that δ(k) = 1/2 if

and only if kn =M and K−n ≤M :

• If kn < M , then k̂i = ki for i = 1, ..., n and thus K̂ = K > 2M , which,

together with π(k) ≥ 0, yields δ(k) > 1/2.

• If kn > M and K−n > M , then π(k) = 0 and K̂ > 2M , and thus δ(k) =

1−M/K̂ > 1/2.

• If kn > M and K−n ≤M , then π(k) =M −K−n and thus:

δ(k) =
K̂ −M

K̂ − π(k)
=

K−n
2K−n

=
1

2
.
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Second, note that the distributions in K∗(K,n) are those satisfying kn =

K−n = M and that they yield δ∗ (k) = 1/2. Hence, since δ∗(k) ≥ δ(k) ≥ δ(k),

we have: K∗(K,n) ⊂ K(K,n); moreover, all distributions in K(K,n) must yield

δ(k) = δ(k) = 1/2 and must thus satisfy kn > M and K−n ≤M .

Assume now that a distribution satisfying kn > M and K−n < M belongs to

K(K,n), and thus satisfies δ(k) = δ(k) (= 1/2). It must then be the case that

condition (A.9) is binding for each firm i, and thus that the minmax profits can

be sustained as equilibrium values. But this is not possible since kn > M > K−n

implies πi(k) = 0 for i < n and πn(k) > 0: To implement πi, firm n should thus

set its price equal to 0 in every period, but then it would obtain a payoff lower

than its minmax. Hence K(k, n) = K∗(k, n).

ii) Assume K < n
n−1M . From (A.10):

δ(k) =
K̂ −M

K̂ −
nP
i=1

max{0,M −K−i}
≥ K̂ −M

K̂ −
nP
i=1

(M −K−i)
=
1

n
= δ∗(kS).

Hence kS ∈ K(K,n). The above inequality also implies that perfect collusion

can be sustained for δ = 1/n only if firms can be punished down to their minmax

profits, and if each minmax profit πi = max{0,M − K−i} is moreover equal to

M −K−i, that is, if K−n ≤ ... ≤ K−1 ≤ M , which implies k̂i = ki (≤ M ) and

K̂ = K.37

37Except if n = 2, where k1 < M < k2 is also a possibility. However in that case, punishing
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Assume first that for δ = 1/n there exists a pure-strategy equilibrium that

gives firm 1 its minmax profitM−K−1. In the first period of this equilibrium, the

price pn charged by firm n cannot exceed p∗ ≡ (M −K−1) /k̂1, since otherwise by

(slightly) undercutting firm n, firm 1 would get a market share k̂1 (sinceK−n ≤M)

and a profit k̂1pn > M −K−1 (and it can always secure itself its minmax profit

in all the following periods). But if firm n charges a price pn ≤ p∗ in this first

period, its average discounted payoff will be at most k̂n[(1− 1/n)p∗ + 1/n]. But

if k1 < (1− 1/n)kn, k̂1 < (1− 1/n)k̂n (since ki ≤M) and:

k̂n[(1− 1
n
)p∗ +

1

n
] = k̂n[(1− 1

n
)(1− K̂ −M

k̂1
) +

1

n
] < M − K̂ + k̂n = πn,

which cannot be true in equilibrium. Therefore firm 1 obtains necessarily more

than its minmax in equilibrium, and δ(k) is therefore strictly larger than 1/n. A

similar argument holds for mixed strategy equilibria.38

firm 1 down to its minmax would require firm 2 to constantly set its price equal to 0 and thus
to get a lower payoff than its minmax.
38Assume the price pn charged by firm n exceeds p > (M −K−1) /k̂1 with probability 1. Then

by slightly undercutting the price p, firm 1 secures a payoff strictly larger than its minmax, a
contradiction. Thus firm n must choose a price below or equal to p with positive probability.
The expected profit firm n derives in equilibrium when choosing a price below p in the first
period is bounded by k̂n[(1 − 1/n)p + 1/n]. Since p may be chosen arbitrarily close to p∗, we
obtain that firm n would get an expected equilibrium profit below its minimax M −K−n when
k̂1 is strictly smaller than (1− 1/n)k̂n.
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Figure 1

Critical level for the discount factor for symmetric firms

n: number of firms, K: total capacity, M : market size
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Range of market shares allowing collusion
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Figure 3

Critical level for the discount factor for asymmetric firms

kn: total capacity of the largest firm,

K−n: total capacity of the smaller ones.
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M : market size
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K−n < M
kn < M

K−n < M
kn > M

K−n > M
kn < M

K−n > M
kn > M

ki & + + − − / =
kn % + = + =

ki → kn + + = − / =
Table 1

Impact of changes in capacity
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k1/M k2/M k3/M k4/M
min. discount
for collusion

Before the
merger

0.34 > 1 0.34 − 1

1.68
= .59

Proposed merger
with transfer of Volvic

> 1 > 1 − 1

2
= .50

Merger without
transfer of Volvic

> 1 0.34 − 1

1.34
= .75

Merger with transfer of
Volvic and divestiture

> 1 > 1 0.57
1.57

2.57
= .61

Table 2

Conditions for collusive equilibrium
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