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Abstract

We analyze a cheap talk model with three possible decisions and two experts, one

biased and one unbiased. Sequential public communication is always optimal for the

decision maker. The optimal ordering of speaking depends on the conflict indices of

the two experts, where the conflict index of an expert is his probability that there

is a conflict conditional on a conflict being possible. In some cases, it is optimal to

have the unbiased expert speak first in order to silence him. The decision maker may

be better off if the biased expert knows all of the unbiased expert’s information. He

may also prefer to replace the unbiased expert with a second biased one.
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1 Introduction

There are many situations in which a principal has more than one potential expert,

or adviser, whom she can call on, each of whom has partial information which is

relevant to the decision which the principal must make. Some of these advisers may

be more biased than others, relative to the principal’s preferences. How should she

optimally consult these advisers? In particular, if there are two advisers, one of whom

is ‘friendly’, in the sense that he has similar preferences to her, whereas the other’s

preferences are only partially aligned with hers, under what circumstances is it better

to ask the friendly adviser to speak first, publicly, and under what circumstances is

it better to ask the less friendly one to speak first? When is it optimal to consult

them in private? How do the answers to these questions depend on the nature of the

private information: for example, on whether the friendly adviser is less well-informed

than the less friendly one?

The answers to these questions are relevant to the literatures on strategic com-

munication and organizational design, in particular the design of procedures in com-

mittees. They are also relevant to the theory of voting since the model can also be

interpreted as a model of sequential voting over a small number of alternatives.

We examine these questions in the context of a simple model in which the princi-

pal must choose between three decisions. The friendly adviser has private information

about one of these potential decisions while the less friendly one has private informa-

tion about the other two. Choosing the optimal decision for the principal requires

knowing both advisers’ private information. The principal cannot commit to a mech-

anism, and so her decision will be her optimal one given what she has learned from

the advisers. She cannot use side-payments.

In the class of simple communication procedures which we consider it is always

optimal to have the two advisers speak publicly in sequence. It turns out that the

choice of optimal order of announcements depends on two belief parameters of the

advisers, which we call the conflict indices of the good (i.e., friendly) adviser and the

biased (i.e., less friendly) adviser respectively. Whether there are conflicting interests
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between the two advisers depends on the state of the world; a particular adviser’s

conflict index is his probability that there is a conflict, conditional on his information

state being such that a conflict is possible. The relation between the conflict indices

and the optimal procedure is somewhat subtle. There are two reasons why it might

be strictly optimal to have the good adviser speak first - (a) to encourage the other

adviser to reveal information by revealing information himself, and (b) to encourage

the other adviser to reveal information by saying nothing. These correspond to two

regions of the parameter space. Similarly, there are two reasons why it might be

strictly optimal to have the less friendly adviser speak first - (a) because the likelihood

that there is a conflict is low enough that he is willing to reveal his information, but

only if he speaks first, and (b) that he will never reveal his information, whether first

or second, while the friendly adviser will not reveal his information unless he speaks

second.

Suppose the biased adviser (B) speaks first. If his conflict index is low then he

will reveal his information, but not if his conflict index is high. This is because he

knows that the unbiased, or good, adviser (G) will subsequently reveal the conflict if

it exists, to his own detriment. In the case in which G speaks first the opposite is true

- he will reveal his information if his conflict index is high, but not otherwise. This

is because, if it is not high, he will want to pretend that there is no potential conflict

(when in fact there is), in order to encourage B then to reveal his information.

The implication of this is that if B’s conflict index is low then it is optimal to have

him speak first, since then both advisers will reveal their information. If B’s conflict

index is too high for this, but G’s index is high, then it is optimal to have G speak

first, in which case he will reveal his information and, if in fact he reveals that there

is no possibility of a conflict, B will then reveal his information. In effect, the motive

in this case for having G speak first is that he can then signal, when appropriate, that

it is safe for the other adviser to be truthful.

The second motive for having G speak first applies in the case when G’s conflict

index is too low for him to be truthful when speaking first, and B’s conflict index

takes an intermediate value. The idea is that this serves to silence G. He reveals
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nothing; when B speaks he is then willing to speak truthfully because he knows that

nothing will be learned from G. The second motive for having B speak first applies

when his conflict index is too high for him to reveal anything at all (whether he is

first or second) and G’s has an intermediate value. Placing G second enables him to

speak freely, which he would not if he were placed first because his conflict index is

not high enough.

We also consider a variation of the model in which the biased adviser is fully-

informed - he knows all of the good adviser’s information, in addition to his own

private information. In this case the only motive for having the good adviser speak

first is to silence him. Whether the decision maker is worse off with a fully-informed

than a partially-informed biased adviser depends on the conflict indices; in particular,

if the biased adviser’s conflict index is high and the good adviser’s is not, then the

decision maker prefers to have a fully-informed biased adviser because she can extract

his information, whereas she cannot if he is partially-informed.

Finally, we ask whether the decision maker is always better off having an adviser

whose interests are fully aligned with her own, rather than a second biased adviser.

We show via an example that she may not be. In the example, a biased adviser would

tell her the truth, when speaking first, whereas an unbiased adviser would not.

Related Literature

The two closest papers to ours are Ottaviani and Sorensen (2000) and Krishna

and Morgan (2001)3. In Ottaviani and Sorensen’s paper, advisers are unbiased but

motivated by career concerns and are imperfectly informed about the state of the

world. The main insight is that with several advisers who give advice sequentially,

herding will occur once the belief becomes too concentrated, since each adviser will

want to agree with the current belief to appear better informed. In our paper herding

does not arise since advisers have different pieces of information and are not mo-

tivated by career concerns. Nevertheless, experts learn from each other and since

3Ottaviani and Sorensen (2006) uses a more general signal structure and utility functions. They
provide a full characterization of all equilibria but do not analyze the problem of several experts, so
there are no results on scheduling.
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learning affects their incentives for truthful revelation the way advice is scheduled

is important. Ottaviani and Sorensen show that less reliable advisers should speak

first, because they would otherwise herd and their information would be lost. In our

model, Sometimes B should speak first, either because his own conflict index is low

(and so he reports his information truthfully), or because G’s conflict index is too

high (and he can only be made to report truthfully if he goes second), and sometimes

G should go first (to signal to B that it is safe to talk). Ottaviani and Sorensen also

show that it is not always optimal to have better informed advisers since this might

increase herding. We have a similar result albeit for a different reason: sometimes

advisers are only willing to reveal their information if they are sufficiently ignorant

about aspects of the state of the world that conflicts with their own interests.

Krishna and Morgan (2001) consider sequential information revelation by two

perfectly informed, biased experts in an extension of Crawford and Sobel’s (1982)

cheap talk model (CS from now on). In contrast, we consider a problem where the

decision maker has to choose between different discrete alternatives and our experts

are only partially informed. As explained above, with partially informed advisers who

learn from each other scheduling advice is an important consideration, while this is

not an issue if experts are perfectly informed. Also, in our paper one of the experts is

unbiased. If this expert was in addition perfectly informed, the decision maker could

easily obtain all information by listening only to him. In our paper the unbiased

adviser does not know the state of the world fully and he lies because he wants to

influence the biased expert’s advice in a certain direction. Krishna and Morgan show

that full information revelation is possible provided that the two experts are biased

in opposite directions. We show a related result: If the second adviser is biased in the

opposite direction to B he might be more willing to reveal a potential conflict between

B and DM , so that, counter intuitively, more information is transmitted than with an

unbiased adviser. Krishna and Morgan also consider what happens when experts can

speak twice and show that in this case full information revelation can be induced. We

neglect this possibility but it would constitute an important extension of our paper.

In a related paper Austen-Smith (1993) compares sequential to simultaneous or
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joint referral of legislation by an uninformed House to two heterogeneous and partially

informed committees. Under the ‘open rule’ the referral process is equivalent to a

cheap talk game in which the committees serve as informed experts, and thus can

be modelled as a version of CS. Again, this paper differs from ours since it considers

a single dimensional decision space and information is not specific to a particular

adviser. It can be optimal to have the more extreme (more biased) committee give

advice first. In this context, the more biased committee separates only if the less

biased one follows by conditionally separating, whereas in our paper, when the more

biased expert B moves first, he either separates only if he is ignorant about G’s

information, or he always pools, in which case G should speak second to allow him

to separate.

A problem that mirrors the one in Austen-Smith (1993) and Krishna and Morgan

(2001) is considered by Wolinsky (2002). Here, the experts have the same biased

preferences but have different pieces of information regarding a single dimensional

decision. Here, information transmission works better if the decision maker groups

experts together in different groups and has each group report a ‘joint signal, rather

than communicating with each expert individually or with all experts joint in a single

group. Because advisers share the same preferences, how they communicate with

each other once grouped together, is immaterial. In a problem where experts are

both biased in favour of a status quo action and career concerned Bourjade and

Jullien (2011) show that the optimal schedule of advice critically depends on whether

or not the market can identify individual advisers. Sequential advice is optimal

when advisers cannot be distinguished and simultaneous advice dominates in the

opposite case. Dewatripont and Tirole (1999) provide a rationale for the existence

of advocates, i.e. advisers, who have a vested interest in the decision(s) they report

on, like the advisers in our paper. They consider the situation of an uninformed

principal who needs advice on two possible alternatives to be implemented in lieu of

a status quo. Advisers incur a cost for information collection and can either find hard

information or no information. Effort is not observable and so advisers are paid based

on the decision taken (this can be interpreted as short-hand for advisers with career
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concerns). Dewatripont and Tirole show that in their simplest setting (information

cannot be concealed) it is more costly to use one adviser who reports on both activities

rather than two who are asked to investigate one alternative each, so the principal

’creates’ partisan advisers. In an extension, where advisers can find evidence both

in favor and against an alternative and can decide to conceal this evidence, results

are less clear cut. Nevertheless, it is shown that it can be optimal for the principal

to hire two advisers who become either advocates (bias their reports in favor of their

alternative) or prosecutors (bias their report in favor of the status quo). Their paper

can thus be considered a precursor to ours. It explains why biased advisers exist,

while we take them as given and ask how best to talk to them.

Our paper is also related to the paper by Che, Dessein and Kartik (2013) on

pandering. In their paper an adviser has private information on a collection of alter-

native actions but always favours an action in this set over a status quo action. In

our paper, two advisers hold information on different possible actions and either have

a bias towards their controlled set of actions (adviser B) or no bias (adviser G). In

Che, Dessein and Kartik the adviser biases his advice in the direction of condition-

ally more attractive looking actions even though his preferences are identical to the

decision makers on those actions. This is reminiscent of the result in our paper that

G does not reveal his information fully although he has identical preferences to those

of the decision maker. He does so not because it makes his revelation more ‘credible’

as in Che, Dessein and Kartik, but because he strategically wants to influence the

other expert’s advice.

2 The Model

A decision-maker (DM) must choose one of a number of options. She is not fully

informed about the merits of each option but can take advice from one or both of two

agents who are better-informed than she is. One of these agents, the ‘good’ adviser,

or G, has the same preferences as DM while the other, the ‘biased’ adviser, or B, has

preferences which are only partially aligned with DM ’s. The potential options, or
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‘projects’, can be divided into those which fall into the sphere of B and those which

fall into the sphere of G. B is informed about the payoffs generated, both to himself

and to DM , of the former projects, but less so about the latter ones, and vice versa

for G. B’s preferences among the former projects coincide with those which DM

(and so G) would have if she were fully informed, but B always wants one of ‘his’

projects to be chosen in preference to any of the projects in G’s sphere. G, on the

other hand, always wants the best project for DM to be chosen.

Should the decision-maker in this type of setting listen to both advisers before

taking her decision? If so, should she listen to their advice in private or in public?

Does it matter in what order she consults them, and if so, under what conditions is

each order optimal? If the biased adviser were instead fully informed and so knew all

of G’s private information as well as the information about his ‘own’ projects, what

difference would that make to DM ’s optimal method of consultation? Finally, is DM

necessarily better off by virtue of one of the advisers having preferences fully aligned

with her own, or would it be better in some circumstances to have two advisers, both

of whom had different preferences from DM ’s?

In order to address these questions we consider the simplest model which corre-

sponds to the situation described above. There are three possible decisions, b1, b2 and

g, of which DM must choose one. b1 and b2 are in B’s sphere, while g is in G’s.

The players’ payoffs from decisions b1 and b2 depend on a random variable sb which

has two possible values, 1 and 2. The payoffs from g depend on a random variable

sg which can take two values, h and l. The probability that sb = 1 is denoted by β

and the probability that sg = h is denoted by γ. sb and sg are independent. We will

sometimes refer to the B-state being 1 (or 2) and similarly to the G-state being h or

l.

Initially we consider the information structure in which each adviser has informa-

tion which is unobserved by the other: B observes the B-state, i.e., the realization

of sb, but not the G-state and vice versa for G. Therefore each has some relevant

information, about his own sphere, but neither can be said to be better informed than

the other. Later we will consider the structure in which B is better informed than G:

8



G observes the G-state while B observes both states. In either case, DM observes

neither sb nor sg.

The state-dependent utility of DM , and also of G, for decision i (i ∈ {b1, b2, g})
is vG(i, sb, sg). The corresponding utility for B is vB(i, sb, sg). Since the payoffs of

all parties from decisions b1 and b2 depend only on the B-state, and the payoffs

from g only on the G-state, vG(i, s, h) = vG(i, s, l) for i ∈ {b1, b2}, s ∈ {1, 2} and

vG(g, 1, s) = vG(g, 2, s) for s ∈ {h, l}; similarly for vB.

We make the following assumption about the form of the payoffs:

Assumption 1

vG(b2, 2, .) > vG(b1, 2, .) > vG(g, ., h) > vG(b1, 1, .) > vG(g, ., l), vG(b2, 1, .);

vB(b2, 2, .) > vB(b1, 2, .) > vB(b1, 1, .) > vB(b2, 1, .) > vB(g, ., h) = vB(g, ., l).

The following example illustrates the structure of payoffs.

b1 b2 g

1 4,4,4 3,0,0 (0,0),(4.5,3.5),(4.5,3.5)

2 5,5,5 7,7,7 (0,0),(4.5,3.5),(4.5,3.5)

Rows correspond to B-states and columns correspond to decisions. The first entry

in a cell (i, j) is B’s payoff vB(j, i, .), the second is G’s and the third DM ’s. In the

case of decision g there are two payoffs for a given agent and B-state; the first is the

payoff if the G-state is h and the second the corresponding payoff for G-state l. That

is, we assume that vG(g, i, h) = 4.5 and vG(g, i, l) = 3.5 for i ∈ {1, 2}. The only effect

of the G-state is on DM ’s and G’s payoff from decision g.

By Assumption 1, b2 is better than b1 in state 2 and vice versa in state 1, for all

players. Also 2 is the better state in the sense that the payoffs in state 2, for each of

b1 and b2, are higher than in state 1. Regardless of the value of sb or sg, g is the worst

decision for B. For DM , on the other hand, g may or may not be optimal, but the
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information of both advisers is necessary to decide which. DM ’s payoff from decision

g is high if sg = h and otherwise low. In the former case g is the optimal decision for

DM if sb = 1 but is inferior to both b2 and b1 if sb = 2; on the other hand, if sg = l

then g is inferior to b1 regardless of B’s information.

It is convenient to normalize the payoffs as follows

Assumption 2 vG(b2, 1, .) = vB(g, ., h) = vB(g, ., l) = 0.

DM is indifferent between b1 and b2 if her B-state probability β = β̃, where

β̃ =
vG(b2, 2, .)− vG(b1, 2, .)

(vG(b2, 2, .)− vG(b2, 1, .))− (vG(b1, 2, .)− vG(b1, 1, .))
,

and, if DM knew that sg = h then she would be indifferent between b1 and g if

β = β∗, where

β∗ =
vG(b1, 2, .)− vG(g, ., h)

vG(b1, 2, .)− vG(b1, 1, .)
.

We make the following assumption, which is equivalent to assuming that each of

the three decisions b1, b2 and g is optimal for some belief β when the G-state is high

(h).

Assumption 3 β∗ > β̃.

This implies that, when G’s type (i.e., the G-state) is high, g is optimal if B-state

1 is likely (β > β∗), b1 is optimal for intermediate values of β (β ∈ (β̃, β∗)) and b2 is

optimal if B-state 2 is likely (β < β̃). In our example above, β̃ = 1
3

and β∗ = 1
2
.

Each player is an expected utility maximizer. It is assumed not to be possible to

make money transfers. How should DM structure the communication between the

two advisers and herself? There are many communication structures which she could

use. She could consult the advisers privately or publicly. The advisers could send

messages simultaneously or sequentially. There could be several rounds of communi-

cation. She could consult only one of them before taking the decision.

We restrict attention to games with at most two rounds of communication. Specif-
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ically, there are eight games which DM can choose from. Firstly, there are two public

sequential message games, the G-leader game and the B-leader game. The G-leader

game has the following rules. First, B and G observe the realizations of, respectively,

sb and sg. Then G chooses a message from a finite set M and publicly announces it.

B, after hearing G’s message, chooses a message from M and publicly announces it.

DM then chooses a decision from the set {b1, b2, g}. The B-leader game is identical

except that the order of messages is reversed - B sends the first message and G, after

observing it, sends the second. Secondly, there are two sequential private message

games, in which an adviser’s message is not observed by the other adviser. There are

two simultaneous-move message games, one private and one public. Finally, DM can

exclude one or other adviser and have a single message. It is easy to see that the two

simultaneous-move games are equivalent to each other, and also to the two private

sequential games. Here we analyze the (public) G-leader and B-leader games. In the

next section we show that one of these two games is always optimal in the class which

we consider.

In the G-leader game a pure strategy for G is a function mG : {h, l} → M

mapping his information type set to messages; a mixed strategy is a function µG :

{h, l} → ∆(M), where ∆(M) is the set of probability distributions over M . A pure

strategy for B is a function mB : {1, 2} × M → M mapping pairs consisting of

B’s information type and G’s message to messages; a mixed strategy is a function

µB : {1, 2}×M → ∆(M). A pure strategy for DM is a function dD : M2 → {b1, b2, g}
and a mixed strategy is a function δD : M2 → ∆({b1, b2, g}). The strategies in the

B-leader game are defined in an analogous way.

We analyze perfect Bayesian equilibrium (PBE) of these games. A PBE of the G-

leader game consists of (i) a strategy profile, (ii) for each possible message m ∈M sent

by G, a belief for B γB(m) ∈ ∆({h, l}) and (iii) for each possible pair of messages

(mg,mb) ∈ M2, a belief for DM σD(mg,mb) ∈ ∆({h, l} × {1, 2}); such that each

strategy is optimal given the beliefs and the beliefs are derived from Bayes’ Rule after

positive-probability messages. Note that DM ’s belief in a PBE after two positive-

probability messages must be uncorrelated and her belief about G must be the same
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as B’s belief, i.e., γB(mG). A PBE for the B-leader game is defined similarly.

As in any cheap talk game, there exist uninformative (babbling) equilibria. We

take the view that these are implausible and so we use a refinement which excludes

them. Suppose, for example, in the B-leader game, after B has sent his message, DM

(and G) attach strictly positive probability to B being type 1. Then G’s information

is valuable and the only plausible equilibrium continuation is the separating one, in

which G reveals his type truthfully. We assume that this is the equilibrium continua-

tion which is played. Equally, in the G-leader game, after G has spoken, if there is an

informative continuation which Pareto-dominates the babbling, or pooling, continu-

ation for DM and both types of B, given their common belief about G’s type, then

we assume that the pooling equilibrium is not played. We denote by communication

equilibrium, or c-equilibrium, a PBE which satisfies this refinement.

DM chooses a game, or communication structure, in order to maximize her equi-

librium expected payoff. We assume that DM ’s preferred equilibrium of the chosen

game is played. Initially we restrict attention to the two games described above.

We assume that DM is unable to commit to a decision rule. We also assume that

she cannot use mediated communication. Some power to commit is, however, implied

by the rules of the communication game. For example, in the G-leader game, as we

shall see, DM would, in many cases, want to hear again from G after the two rounds

of communication have taken place. The assumption therefore is that she has the

power to commit to preventing any further communication.

3 Overview of Results

In this Section we provide an outline of our results. Fuller and more precise

arguments are presented in the next Section.

If B is type 2 then there is no conflict of interest between B and DM : they both

want decision b2. Similarly there is no conflict if B is type 1 and G is type l: they

both want decision b1. Conflict only arises when B is type 1 and G is type h, in which

case DM wants g and B wants b1. Therefore we can interpret the parameter γ, the
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probability of type h, as B’s degree of belief (assuming that he is type 1) that there

is a conflict and so we refer to it as B’s conflict index. Similarly, we can regard β as

G’s conflict index, since this is G’s degree of belief (assuming he is type h) that B is

type 1, hence that there is a conflict.

We show below that, in both games, when mixed strategy equilibria exist they are

never optimal for DM . Therefore we restrict attention to pure strategy equilibria.

Consider first the B-leader game. G always separates (if a c-equilibrium is being

played) since, having identical payoffs to DM , he has no reason to lie. Either B

separates or he pools. Is there a c-equilibrium in which he separates? Suppose B is

type 1. If he reveals his type, then, with probability γ, G is type h and the decision

will be g, and, otherwise, he is type l and the decision will be b1. This gives him an

expected payoff of (1− γ)vB(b1, 1, .). If instead he mimics type 2 the decision will be

b2, giving him payoff vB(b2, 1, .). Therefore a separating equilibrium exists if γ ≤ γ̂,

where

γ̂ = 1− vB(b2, 1, .)

vB(b1, 1, .)
.

This equilibrium gives the maximum feasible payoff to DM , since all information

is revealed. On the other hand, if γ > γ̂, no information about B is revealed in a

c-equilibrium. First B pools and then G separates. The decision is b2 if β < β̃, b1 if

β ∈ (β̃, β∗), and, if β > β∗, the decision is g if G is type h and b1 if G is type l.

In effect, if B’s conflict index γ is low enough then type 1 of B is confident enough

to reveal his information when he speaks first - the expected benefit of getting his

preferred project outweighs the risk of G’s project being chosen. On the other hand,

if his conflict index is above γ̂ then his information cannot be extracted. Figure 1

shows which equilibria exist in each part of the parameter space.
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γ

1

β1

γ̂

β̃ β?

B separates / G separates

B pools / G separates

decision decision decision

decision

b2 b1 g if h
b1 if l

b1 if 1 b2 if (2, l) g if (2, h)

Figure 1: B-leader Game

Next, consider the G-leader game. Is it still true that G must separate in a

c-equilibrium when his information is useful? Not necessarily - it depends on param-

eters. Consider a candidate c-equilibrium in which G separates. Once he reveals that

he is type l, B will separate and the decision will be b1 if type 1, b2 if type 2. If,

on the other hand, he is type h then there cannot be revelation by B: type 1 would

mimic type 2 to get b2 rather than g. B therefore pools. In that case the decision

must be g (if it were, say, b1, type h would certainly want to mimic type l to induce

separation). Given this, will type h of G want to reveal his type? He will only do so

if the probability of state 1 is high enough; if it is below a certain threshold β′, the h
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type would want to mimic the l type - the advantage of this is that it will extract B’s

information, bringing a better decision in state 2 (namely b2) at the cost of a worse

one in state 1 (b1 rather than g). The relevant threshold is

β′ =
vG(b2, 2, .)− vG(g, ., h)

vG(b2, 2, .)− vG(b1, 1, .)
.

This equilibrium, which we call the Contingent Separating Equilibrium, exists if β >

β′ but not if β < β′. Figure 2 illustrates.

-

6

β′

γ

1

β1

G separates
B separates

if l
B pools

if h

decision
g if h
b1 if (1, l)
b2 if (2, l)

Figure 2: G-leader Game

The other possible pure strategy equilibria involve pooling by G. In this case,

once G has spoken, will B want to separate? We saw above that when γ > γ̂ B will

not reveal his type if he knows that DM will discover G’s information. If, on the

other hand, DM learns nothing from G before taking the decision B is less concerned

about revealing that he is type 1. Specifically, if γ is low enough that DM prefers

b1 to g in state 1, then B is indeed willing to reveal state 1 truthfully. The relevant

threshold is

γ̃ =
vG(b1, 1, .)− vG(g, ., l)

vG(g, ., h)− vG(g, ., l)
.
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Note that γ̃ > γ̂. Summarizing, there is an equilibrium in which G first declines to

reveal his information and B then reveals his type if and only if γ ≤ γ̃. We call this

the Pooling/Separating Equilibrium.

In the third type of pure strategy equilibrium, the Pooling/Pooling Equilibrium,

G pools and B then pools. This is a c-equilibrium if γ > γ̃. The decision is b2 for low

β and either g or b1 for high β, depending on γ. It is also an equilibrium for γ ≤ γ̃,

but not a c-equilibrium. See Figure 3.
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Figure 3: G-leader Game

In the G-game the Contingent Separating Equilibrium is optimal where it exists,

i.e. for β ≥ β′. It is clearly better than the Pooling/Pooling Equilibrium. As for the

Pooling/Separating Equilibrium, the outcome is the same if G is type l, but if G is

type h the Contingent Separating Equilibrium is better because

vG(g, ., h) > βvG(b1, 1, .) + (1− β)vG(b2, 2, .)

when β > β′.
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Which of the two games should the decision maker choose? We can identify five

regions of β/γ space, as shown in Figure 4.

-
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Figure 4

There are four principles which govern the choice of optimal communication struc-

ture.

Principle 1 It is optimal to have B speak first when he is confident enough (his

conflict index is low enough) to tell the truth.

If γ < γ̂ the B-leader game gives complete information revelation and so is opti-

mal.

Principle 2 One reason to have G speak first is to allow him to reveal to B that

it is safe to speak truthfully.

This is optimal when B’s conflict index is not low (γ > γ̂) and G’s conflict index

is high (β > β′), so that it is credible that G will be truthful when speaking first.
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In this region DM should choose the G-leader game. The Contingent Separating

equilibrium would then be played whereas, in the B-leader game, B would pool; in

both cases, G’s information is revealed but only in the former does B reveal anything.

Principle 3 A second reason to have G speak first is to silence him, making it

safe for B to be truthful.

This applies when B’s conflict index is neither low (γ > γ̂) nor high (γ < γ̃), so

that B could be willing to tell the truth and when, in addition, G’s conflict index is

not high (β < β′). The G-leader game is optimal in this case. The G-leader game

gives a payoff of βvG(b1, 1, .) + (1 − β)vG(b2, 2, .). The B-leader game in this region

would give a lower payoff: if DM ’s decision, given type h, is g, this gives a lower

payoff because β < β′, and, if DM would never play g DM would be better off

obtaining B’s information. Effectively, if it is not possible to exclude G completely,

the best thing is to ask him to speak first and rely on him to reveal nothing, thereby

giving B the confidence to reveal his information.

Principle 4 A second reason to have B speak first is that he cannot credibly be

truthful and it is credible for G to tell the truth only if he speaks second.

If γ > γ̃ and β ∈ (β∗, β′), the B-leader game is optimal. In the G-leader game,

no information would be revealed; in the B-leader game, B would pool, but G would

separate, and G’s information is valuable. Because G’s conflict index is not high,

if his information is useful, it is only credible for him to be truthful when speaking

second, and B’s is high so that it is never credible for B to tell the truth.

Finally, in the region in which γ > γ̃ and β < β∗, either game is optimal. Al-

though G would reveal his information only in the B-leader game, his information is

redundant because g would not be optimal even if he is the h type.

Optimality of Sequential Public Announcements

Suppose that, instead of making their announcements sequentially and publicly,

the advisers make them simultaneously (or, as is equivalent, privately). In any equi-
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librium of this game which is optimal for DM G will tell the truth if his information is

valuable. It is easy to see that B separates if γ < γ̂ and pools if γ > γ̂, and, therefore,

that this game is outcome-equivalent to the B-leader game. If DM excludes the good

adviser, i.e. makes her choice after a single message from B, then the outcome is the

same as in the G-leader game in (i) the region in which γ ∈ (γ̂, γ̃) and β < β′ and

(ii) the region in which γ > γ̃ and β < β∗, and is otherwise worse. If she excludes the

biased adviser then the outcome is the same as in the G-leader game in the region in

which γ > γ̃ and β < β′, and is otherwise worse. This justifies our assertion in the

previous section that sequential public announcements are always optimal.

4 Results

Here we provide more precise statements of the claims of the previous section.

Proposition 1 In the B-leader game,

(i) if γ ≤ γ̂ there exists a c-equilibrium in which B separates(tells the truth) and

G then separates after either message; DM ’s expected payoff in this equilibrium is the

maximum possible, namely (1− β)[vG(b2, 2, .)] + β[γvG(g, ., h) + (1− γ)vG(b1, 1, .)].

(ii) if γ > γ̂, all c-equilibria are payoff-equivalent to the following equilibrium. B

pools (babbles) and G then separates after either message. The decision is b2 if β < β̃,

b1 if β ∈ (β̃, β∗), and, if β > β∗, b1 if G is type l and g if G is type h.

Proof (i) Type 2 of B sends a message ma, type 1 sends a message mb. Type

h of G sends mh, type l sends ml. DM chooses b2 after ma, for any message of G

and after mb chooses g given mh and b1 given ml. DM has the appropriate point

beliefs. Given these strategies, B is willing to tell the truth in state 1 if and only if

(1− γ)vB(b1, 1, .) ≥ vB(b2, 1, .), i.e. γ ≤ γ̂. Optimality of the other strategies is easily

checked. In each of the four states, DM ’s payoff is maximized. The proof of (ii) is in

the Appendix. QED

Now consider the G-leader game.
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Proposition 2 In the G-leader game any c-equilibrium is payoff-equivalent to one

of five possible types of equilibrium.

(i) Pooling/pooling (PP) Equilibrium. In this equilibrium the two types of G pool

and the two types of B pool after every message. DM chooses b2 if β ≤ β̃, b1 if

β ∈ (β̃, β∗), and, if β ≥ β∗, g if

pvG(g, ., h) + (1− γ)vG(g, ., l) ≥ (1− β)vG(b1, 2, .) + βvG(b1, 1, .)

and otherwise b1. This type of equilibrium exists if and only if γ > γ̃.

(ii) Pooling/Separating (PS) Equilibrium. G pools and B separates after every

message. DM chooses b2 if 2 and b1 if 1. This exists if and only if γ ≤ γ̃.

(iii) Contingent Separating Equilibrium. G separates. B separates if G is type l

and pools if G is type h. DM chooses g if h and, if l, b2 if 2 and b1 if 1. This exists

if and only if β ≥ β′.

(iv) G-semi-separating Equilibrium. G semi-separates and B plays a pure strategy.

Type h of G randomizes over a message mp and a message ms. Type l of G sends ms

with probability 1. After mp B pools (babbles). After ms B separates. This equilibrium

exists only if γ > γ̃ and β ≥ β′. DM ’s expected payoff is

(
p− γ̃
1− γ̃

)vG(g, ., h) + (
1− γ
1− γ̃

)[(1− β)vG(b1, 2, .) + βvG(b1, 1, .)].

(v) G/B-Semi-separating Equilibrium. Each player semi-separates. Type h of G

randomizes over two messages mh and ml; type l sends ml w.pr.1. After message

mh B pools (babbles); after message ml B semi-separates - type 2 of B sends some

message ma with probability 1 and type 1 of B randomizes between ma and some

message mb 6= ma. This exists only if β ≥ β∗ and γ ≥ γ̃. DM ’s expected payoff in

her most preferred equilibrium of this kind is the same as that of the equilibrium in

(iv).

Proof: In Appendix.

Next, we ask how the conflict index parameters γ and β determine DM ’s choice
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of optimal communication structure.

Proposition 3 The B-leader game is optimal for DM if γ < γ̂ (B and G both

separate) and if γ > γ̃ and β ∈ (β∗, β′) (B pools and G then separates). The G-leader

game is optimal if γ > γ̂ and β > β′ (G separates; B pools if G is h and separates if

G is l) and if γ ∈ (γ̂, γ̃) and β < β′ (G pools and B separates). If γ > γ̃ and β < β∗

then both games are optimal.

Proof The two types of mixed strategy equilibrium of the G-leader game, de-

scribed in Proposition 2(iv) and 2(v) give the same payoff to DM . In the parameter

region in which they may exist (γ > γ̃ and β > β∗) there is an equilibrium of the

B-leader game in which, by Proposition 1(ii), DM gets the payoff

γvG(g, ., h) + (1− γ)[(1− β)vG(b1, 2, .) + βvG(b1, 1, .)]

which is greater than the mixed strategy equilibrium payoff because vG(g, ., h) >

(1 − β)vG(b1, 2, .) + βvG(b1, 1, .) for β > β∗. Therefore we can ignore the mixed

strategy equilibria.

If γ < γ̂ the B-leader game equilibrium in which B separates and G then separates

(Proposition 1(i)) has payoff (1 − β)vG(b2, 2, .) + β[γvG(g, ., h) + (1 − γ)vG(b1, 1, .)].

The equilibria of the G-leader game in this region are the contingent separating (if

β ≥ β′), which is worse since vG(b2, 2, .) > vG(g, ., h), and the strong separating,

which is worse since vG(g, ., h) > vG(b1, 1, .).

If β > β′ and γ > γ̂ then the contingent separating equilibrium of the G-leader

game has payoff γvG(g, ., h) + (1 − γ)[(1 − β)vG(b2, 2, .) + βvG(b1, 1, .)]; the only c-

equilibrium of the B-leader game for this region (B pools, G separates, b1 if l, g if h),

is worse since vG(b2, 2, .) > vG(b1, 2, .).

If γ ∈ (γ̂, γ̃) and β < β′ the strong separating equilibrium of the G-leader game

gives payoff (1−β)vG(b2, 2, .)+βvG(b1, 1, .). In this region the best equilibrium of the

B-leader game gives either b2 for sure (worse since vG(b2, 1, .) < vG(b1, 1, .)), b1 for

sure (worse since vG(b1, 2, .) < vG(b2, 2, .)) or (if β > β∗) b1 if l and g if h, giving payoff
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γvG(g, ., h) + (1 − γ)[(1 − β)vG(b1, 2, .) + βvG(b1, 1, .)]. But vG(b2, 2, .) > vG(b1, 2, .)

and, since β < β′, (1− β)vG(b2, 2, .) + βvG(b1, 1, .) > vG(g, ., h), so this is worse.

If γ > γ̃ and β ∈ (β∗, β′) then the B-leader game has an equilibrium in which

B pools and G separates, giving payoff γvG(g, ., h) + (1 − γ)[(1 − β)vG(b1, 2, .) +

βvG(b1, 1, .)]. The best equilibrium in the G-leader game (strong pooling) has pay-

off max{γvG(g, ., h) + (1 − γ)vG(g, ., l), (1 − β)vG(b1, 2, .) + βvG(b1, 1, .)}. The first

bracketed expression is worse since vG(b1, 2, .) > vG(b1, 1, .) > vG(g, ., l); the second is

worse since vG(g, ., h) > (1− β)vG(b1, 2, .) + βvG(b1, 1, .) when β > β∗.

Finally, when γ > γ̃ and β < β∗, in the G-leader game only (i) applies, giving

max{(1 − β)vG(b2, 2, .) + βvG(b2, 1, .), (1 − β)vG(b1, 2, .) + βvG(b1, 1, .)}, the same as

in the B-leader game. QED

5 Discussion and Extensions

A Fully Informed Biased Adviser

In the previous sections each of the two advisers had some information which was

not known to the other. Suppose now that the biased adviser is fully-informed. The

good adviser, as before, knows the value of sg; the biased adviser, however, knows the

value of both sb and sg. We ask here what difference this makes to the decision-maker’s

choice of optimal communication protocol, and whether, or under what conditions,

the decision-maker is worse off when the biased adviser is fully-informed than when,

as in the previous section, he is partially-informed.

B now has four possible types: {1h, 1l, 2h, 2l}. Consider first the G-leader game.

It is not difficult to see that this is essentially equivalent to the G-leader game of the

previous sections. Once G has spoken, B has no incentive to reveal the G-state, if it

has not been revealed, and has the same incentive as in our original G-leader game

to reveal the B-state. DM ’s best c-equilibrium is as before. There are three regions:

(i) β > β′, (ii) β < β′, γ < γ̃, and (iii) β < β′, γ > γ̃ (see Figures 2 and 3), and the

profiles in each region are as before.
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However, the B-leader game is now different. It can be shown that we can restrict

attention to pure strategy equilibria. If sg = h then B will not reveal sb, since, after

he reveals 1, G would reveal h. The two possibilities are (a) that he pools if sg = h

and separates if sg = l, and (b) he pools in both cases. There is always a c-equilibrium

of type (a). After B speaks, G separates. If G is type l the decision is b2 if 2 and

b1 if 1. If type h, the decision is b2 for β < β̃, b1 for (β̃, β∗), and g for β > β∗. The

strategies are equivalent to those of the Contingent Separating Equilibrium of our

original game; the difference is that it is now an equilibrium for all parameters. An

equilibrium of type (b) is clearly worse than this for DM , so we ignore it.

Which communication protocol should the decision-maker select? In Region (i),

it makes no difference because the Contingent Separating Equilibrium will apply in

both cases. In Region (ii), the G-leader game is optimal. This gives a payoff of

(1 − β)vG(b2, 2, .) + βvG(b1, 1, .). The B-leader game gives the same payoff in state

l, but a strictly worse one in state h, since the decision is the same for 2 as for 1,

and vG(g, ., h) < (1− β)vG(b2, 2, .) + βvG(b1, 1, .) because β < β′. In Region (iii), the

B-leader game is optimal since no information is revealed in the G-leader game.

This gives us two further principles.

Principle 5 If the biased adviser if fully informed, the only motive for having the

good adviser speak first is to silence him.

In the partial information case, for some parameters, it was better to have G speak

first so as to tell B that it was safe to tell the truth. This no longer applies, since

there is nothing to teach B. In particular, if it is feasible to exclude G there is now

no positive reason to have G speak first.

Principle 6 If B’s conflict index is low, DM is worse off with a fully informed

than a partially informed biased adviser; if it is high, and G’s is not, she is better off

with a fully informed biased adviser.

For low γ, DM is worse off because it is no longer possible to extract all informa-

tion. For γ > γ̃ and β < β′ it is possible to extract information from a fully-informed

B, but not a partially-informed one, so DM is better off.
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Two Biased Advisers

Here we show, via an example, that it may be that the decision maker is better

off having two advisers whose preferences are not aligned with her own than having

one biased (misaligned) and one good (aligned).

The example is the same as the one in Section 3 except that, instead of the good

adviser G, there is a second biased adviser, B2. B2’s information is the same as G’s

was, and his preference function vB2 is the same as vG except that vB2(g, ., h) = 5.5,

so that, in G-state h, he values decision g higher than DM does.

b1 b2 g

1 4,4,4 3,0,0 (0,0),(5.5,3.5),(4.5,3.5)

2 5,5,5 7,7,7 (0,0),(5.5,3.5),(4.5,3.5)

We take the case in which γ > γ̃ = 1
2

and β ∈ (β∗, β′) = (1
2
, 5
6
).

In the model of Section 3, in this parameter region (see Figure 4), the optimal

game is the B-leader game and, in equilibrium, B pools, G separates and DM ’s payoff

is γvG(g, ., h) + (1− γ)(βvG(b1, 1, .) + (1− β)vG(b1, 2, .)) = 4.5γ + (1− γ)(5− β)).

Now suppose that B2 speaks first. The following is a c-equilibrium. B2 separates;

B separates if B2 reveals as l and pools if he reveals as h. DM has the appropriate

beliefs and chooses g if h, b1 if (l, 1) and b2 if (l, 2). It is straightforward to check that

this is an equilibrium. In particular, type h of B2 is willing to tell the truth because

this gives 5.5 whereas lying would give him β(4) + (1− β)(7) < 5.5 for β > 1
2
.

DM ’s expected payoff is

γ(4.5) + (1− γ)[β(4) + (1− β)(7)] > γ(4.5) + (1− γ)(5− β)

and so DM is strictly better off than before. Somewhat counter-intuitively, it is

possible to get the adviser to tell the truth when he does not share the decision

maker’s preferences but not when he does.
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Appendix

Lemma 1 Take any c-equilibrium, either in the G-leader or the B-leader game, in

which B semi-separates (i.e. in which B randomizes and the equilibrium distributions

over decisions are different for the two types). Then in this equilibrium type 2 of B

sends some message m2 with probability 1 and type 1 of B randomizes between m2

and some message m1 6= m2. When m2 is sent there is strictly positive probability of

decision b2 and when m1 is sent there is zero probability of decision b2.

Proof Suppose that, in some c-equilibrium of either game, both types of B are

indifferent between two messages m1 and m2. Let the equilibrium distribution over

decisions after mi (i = 1, 2) is sent be ψi = (ψi
1, ψ

i
2, ψ

i
3). Then, by indifference of the

two types,

vB(b2, 2, .)ψ
1
1 + vB(b1, 2, .)ψ

1
2 = vB(b2, 2, .)ψ

2
1 + vB(b1, 2, .)ψ

2
2

and

vB(b2, 1, .)ψ
1
1 + vB(b1, 1, .)ψ

1
2 = vB(b2, 1, .)ψ

2
1 + vB(b1, 1, .)ψ

2
2,

which is not possible unless ψ1 = ψ2.

Let m1 and m2 be equilibrium messages sent with strictly positive probability

by type 2. Then type 1 strictly prefers, say, m1. This implies that m2 reveals type

2 and so must be followed by decision b2 with probability 1. This gives 2’s highest

possible payoff, so m1 must also be followed by b2 for sure. Hence 2 will not randomize

over two messages which lead to different decision distributions and, w.l.o.g, 2 sends

some message m2 w.pr.1. Any other equilibrium message reveals 1 so, w.l.o.g, the

randomization takes the given form. Since m1 reveals B to be type 1, it must be

followed by b1 or g, since b2 is dominated for DM if sb = 1. If m2 is followed only

by b1 or g then both the 2 and the 1 type would prefer the message giving the higher

probability of b1, so the equilibrium would be uninformative about B, hence there

must be positive probability of b2. QED
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Lemma 2 In the B-leader game, there is no c-equilibrium in which B semi-

separates if γ > γ̂.

Proof Suppose that there is an equilibrium in which B semi-separates. By Lemma

1, it is optimal for type 1 to reveal his type by sendingm1. Gmust then reveal his type.

If G is type h, the decision is g, and if l, the decision is b1. This gives 1 an expected

payoff of (1− γ)vB(b1, 1, .) which is strictly less than vB(b2, 1, .) since γ > γ̂. Suppose

instead that 1 sends message m2. If DM ’s updated belief βG(m2) > β̃ then b2 is

strictly worse for DM than b1, which contradicts Lemma 1. Hence βG(m2) ≤ β̃ < β∗.

This implies that DM strictly prefers b1 to g (regardless of whether G announces h or

l) and so only plays b2 or b1 after m2. Type 1 then gets a payoff of at least vB(b2, 1, .),

which is strictly greater than his payoff from m1, contradicting the supposition that

he randomizes between m2 and m1. QED

Proof of Proposition 1(ii) By Lemma 2, B does not separate if γ > γ̂, hence either

pools or separates. If he separates, G must then separate after type 1 is revealed and

the equilibrium must be as in (i). This is not an equilibrium since γ > γ̂, so B must

pool. G must then separate. It is easy to see that this is an equilibrium. DM ’s

optimal decisions are as given since DM learns nothing about B. QED

Lemma 3 In the G-leader game, if there is a c-equilibrium in which B semi-

separates then γ > γ̃. Type h of G randomizes over two messages mh and ml; type

l sends ml w.pr.1. After message mh B pools (babbles); after message ml B semi-

separates as in Lemma 1.

Proof In the G-leader game, if B semi-separates after some message m from G

then the updated belief γB(m) must be γ̃. Otherwise, by Lemma 1, when B sends

m1, DM either plays b1 w.pr.1 or plays g w.pr.1. In the first case, 1 would strictly

prefer to play m1 and in the second would strictly prefer m2. This contradicts Lemma

1. Take an equilibrium as described in the statement of the Lemma. W.l.o.g., assume

that there is a single message m such that γB(m) = γ̃. Call this message m1. For any

message m2 6= m1, either γB(m2) > γ̃ or γB(m2) < γ̃. Suppose γB(m2) < γ̃. Then

26



DM strictly prefers b1 to g whether in state 2 or 1. Hence there is an equilibrium

(and this is best for DM) in which B separates, since there is no danger of g. This

would give type l of G his best possible payoff, so he would strictly prefer m2 to m1, in

which there is only semi-separation. Therefore m1 reveals type h, which contradicts

γB(m1) = γ̃. Hence γB(m2) > γ̃. This implies that the prior γ > γ̃. Also, w.l.o.g.,

there are two messages, mh and ml; l plays ml for sure, h randomizes over mh and

ml; γB(ml) = γ̃ and γB(mh) = 1. After ml, B semi-separates as in Lemma 1; after

mh, B does not semi-separate. He does not separate, since type 1 would not want to

reveal his type and get g. Hence he must pool. QED

Lemma 4 Consider a two-player game in which B sends a message to DM and

DM takes a decision. The prior belief of both players that sg = h is γ. Let

γ̃ =
vG(b1, 2, .)− vG(g, ., h)

vG(b1, 2, .)− vG(b1, 1, .)
.

A separating c-equilibrium exists if and only if γ ≤ γ̃ and a pooling c-equilibrium

exists if and only if γ > γ̃.

Proof Take a candidate separating equilibrium. After B is revealed as 2, DM

must play b2. After B is revealed as 1, DM plays g if γ > γ̃. In that case, type of

1 would prefer to deviate and mimic type 2, so this is not an equilibrium. If γ ≤ γ̃

and DM plays b1 after 1 is revealed, it is an equilibrium. Take a candidate pooling

(babbling) equilibrium. If γ ≤ γ̃ then, as just argued there is also a separating

equilibrium, so this fails to satisfy our refinement test. QED.

Proof of Proposition 2 By Lemma 3, the only equilibrium in which B mixes has

the form described in (iv) and (v). In any other equilibrium, B plays a pure strategy

after every message, hence must either (a) pool after every equilibrium message, or (b)

separate after every equilibrium message, or (c) pool after some equilibrium messages

and separate after others. Take these possibilities in turn.

(a) Suppose that B pools after every message. Then, by Lemma 4, γB(m) > γ̃ for

all m; hence γ > γ̃. If β < β∗ then DM ’s decision is either b2 or b1, and independent
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of G’s message, so the equilibrium is outcome-equivalent to one in which G pools.

If β > β∗ then DM chooses either g or b1 after every equilibrium message by G.

Suppose different messages lead to different distributions over g and b1. Then, since

h strictly prefers g to b1 and vice versa for l, they must separate. But this contradicts

the fact that γB(m) > γ̃ for every equilibrium m. Hence the distribution is invariant

to G’s message and we can again assume that G pools. This gives the equilibrium

described in (i). The expressions for DM ’s payoff follow because DM chooses b2 on

(0, β̃), b1 on (β̃, β∗) and either b1 or g on (β∗, 1).

(b) Suppose that B separates after every equilibrium message. By Lemma 4,

γB(m) ≤ γ̃ for every equilibrium message m. Hence γ ≤ γ̃. If there is a higher

probability of g after some messages than others then l and h would separate, con-

tradicting the fact that γB(m) ≤ γ̃ for every equilibrium message m. Hence DM ’s

choice is independent of G’s message (b2 if 2 and some distribution over g and b1 if

1), so we can assume that G pools. Lemma 5 implies that this is an equilibrium if

γ ≤ γ̃. This gives the equilibrium described in (ii). DM ’s expected payoff follows

because if she plays g with positive probability then she is indifferent between g and

b1.

(c) Suppose that B separates after some messages and pools after others. Assume

first that G plays a pure strategy, i.e. one type plays a message ms which leads to

separation and the other a message mp which leads to pooling. A continuation equi-

librium in which B pools after G has revealed as type l is dominated by a separating

continuation and so fails our refinement. Therefore l sends ms, h sends mp; B sep-

arates after ms and pools after mp; after B reveals as l, DM plays b2 if 2 and b1 if

1. Suppose that g is played with zero probability after G reveals as h. Then type h

strictly prefers to play ms. Hence g is played with positive probability after G sends

mp and B pools. Therefore h’s equilibrium payoff is vG(g, ., h) (if DM randomizes

between g and b1 at this point then she, and hence h, must be indifferent between g

and b1). This is an equilibrium as long as h prefers mp to ms, i.e. if

vG(g, ., h) ≥ (1− β)vG(b2, 2, .) + βvG(b1, 1, .)
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or β ≥ β′. Note that β′ > β∗. This gives the equilibrium described in (iii).

Now suppose that G plays a mixed strategy. At least one type of G must send both

pooling (i.e. a message which leads to B pooling) and separating messages, otherwise

the equilibrium is equivalent to the one just described. Take a pair of equilibrium

messages for G, one pooling, mp, and one separating, ms, such that at least one is in

the support of both h and l. If g is never subsequently played after either mp or ms

then both types of G would strictly prefer ms, contradicting the fact that mp is an

equilibrium message. There are two cases to consider: (1) Only b2 or b1, or a mixture

of the two, is played after mp; (2) g is played with positive probability after mp.

Case (1). g is played with positive probability after ms, so if ms is weakly better

for l than mp then h strictly prefers ms to mp since their payoffs differ only if g is

played and h derives a higher payoff from g than l does. If h does not send mp then mp

reveals type l; however, mp is followed by pooling by B, which violates our refinement

condition. Therefore h sends both ms and mp and l only sends mp. ms reveals G as

h. Therefore, after B has then revealed as 1, DM plays g for sure; however, 1 would

get b2 by mimicking 2, which he prefers, a contradiction.

Case (2). g is played with positive probability after mp. Therefore β ≥ β∗. There

are two cases: 2(i), in which g is not played after ms, and 2(ii), in which g is played

with positive probability after ms. Case 2(i): after ms DM plays b2 if B is 2 and b1

if 1. l strictly prefers this to a continuation in which B pools. Therefore mp reveals

h. h gets a payoff of vG(g, ., h) from mp (since β ≥ β∗ only b1 or g could be played

and b1 only if β = β∗ in which case h is indifferent between b1 and g). h is indifferent

between ms and mp, so

vG(g, ., h) = (1− β)vG(b2, 2, .) + βvG(b1, 1, .)

i.e. β = β′, and this equilibrium is payoff-equivalent to the pure strategy equilibrium

described in (iii). Case 2(ii): g is played after ms, if B is type 1. 1 will not separate if

g is played with probability 1, so DM randomizes between g and b1 is B revealed as

1. Therefore γB(ms) = γ̃. Therefore both types send ms, otherwise γB(ms) would be

either zero or 1. g is played with positive probability after mp, so it cannot be that
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mp reveals l, so either l sends ms and h sends both ms and mp, or both send both

messages.

Suppose l sends ms and h sends both ms and mp. Let φ be the probability that

DM plays b1 after ms is followed by B revealing as 1, and 1 − φ be the probability

that DM plays g. mp reveals G as h and gives h payoff vG(g, ., h) (as above). After

ms is followed by B revealing as 1, DM randomizes over g and b1, hence her belief

γB(ms) = γ̃. This implies that the probability that h sends mp is

ψ =
γ − γ̃
γ(1− γ̃)

.

Since h is indifferent between mp and ms it must be that

vG(g, ., h) = (1− β)vG(b2, 2, .) + (1− β)[φvG(b1, 1, .) + (1− φ)vG(g, ., h)],

hence

φ =
(1− β)(vG(b2, 2, .)− vG(g, ., h))

β(vG(g, ., h)− vG(b1, 1, .))
.

The condition φ ≤ 1 gives β ≥ β′. This gives the equilibrium in (iv). For it to be an

equilibrium we also require φ ≥ (vB(b2, 1, .))(vB(b1, 1, .))
−1 so that 1 wants to separate

after ms. DM ’s payoff is (since DM is indifferent between g and b1 when 1 reveals)

γψvG(g, ., h) + [γ(1− ψ) + (1− γ)][(1− β)vG(b2, 2, .) + βvG(b1, 1, .)],

which reduces to the expression given.

Now suppose that B plays a mixed strategy. By Lemma 3, the form of the

equilibrium must be as follows. Type h of G randomizes between a message mp

(probability ψ) and a message mss (probability 1 − ψ). Type l sends mss for sure.

After mp B pools. After mss B semi-separates - 2 sends a message m2 for sure; 1

randomizes between m2 and m1 (probabilities 1−δ and δ respectively). After m2 DM

plays b2 with strictly positive probability; after m1 she plays b2 with zero probability.

By the assumption that β∗ > β̃, DM will not play g after (mss,m2) (if b2 is optimal

then β ≤ β̃ and so g is strictly worse than b1). She will not play b2 after (mss,m1)
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because B is then revealed as 1. Therefore we can assume that after (mss,m2) DM

plays b2 with probability φ and b1 with probability 1 − φ; and after (mss,m1) she

plays b1 with probability ω and g with probability 1− ω.

Note that ω ∈ (0, 1) because if DM plays g for sure then 1 would strictly prefer

m2 and if she played b1 for sure 1 would strictly prefer m1 (since φ > 0). This in

turn means that DM ’s belief after mss, γB(mss), equals γ̃, so that DM is willing to

randomize after 1 reveals. This in turn implies that

ψ =
γ − γ̃
γ(1− γ̃)

by Bayes’ Rule.

By Lemma 3 this equilibrium can exist only if γ ≥ γ̃. To show that β ≥ β∗, assume

β < β∗. Then, after G reveals as h and B pools, DM plays g with probability zero.

But, after mss, DM plays g with strictly positive probability since ω < 1. Therefore,

since h is indifferent between mp and mss, l must strictly prefer mp. Contradiction.

Hence β ≥ β∗.

As just shown, DM must play g with strictly positive probability after G reveals

as h. This implies that h’s payoff from mp is vG(g, ., h) (if b1 is also played then DM ,

and hence h must be indifferent between b1 and g). His payoff from mss is the same.

The equilibrium payoff of l is vG(g, ., h)−βδ(1−ω)(vG(g, ., h)−vG(g, ., l) since he gets

the same payoff as h unless g is played, which happens with probability βδ(1 − ω).

So DM ’s equilibrium payoff is

γvG(g, ., h) + (1− γ)vG(g, ., h)− βδ(1− ω)(vG(g, ., h)− vG(g, ., l)

and her best equilibrium in this class is the one with the lowest δ, so that β(m2) = β̃.

This implies that g is optimal both after m2 and after m1 and so DM ’s payoff in this

equilibrium is the same as if she played g for sure after mp and b1 for sure after mss.

This payoff is

γψvG(g, ., h) + [γ(1− ψ) + (1− γ)][(1− β)vG(b1, 2, .) + βvG(b1, 1, .)]

31



which reduces to the expression given in the Lemma. QED
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