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Abstract

We characterize decision rules which are implementable in mechanism design set-

tings when, after the play of a mechanism, the uninformed party can propose a new

mechanism to the informed party. The necessary and sufficient conditions are, essen-

tially, that the rule would be implementable if parties could commit not to renegotiate

the mechanism, that for each type the decision is at least as high as if there were no

mechanism, and that the slope of the decision function is not too high. The direct

mechanism which implements such a rule when renegotiation can be prevented will

also implement it in any equilibrium when it cannot, so the standard mechanism is

robust to renegotiation.
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1 Introduction

Suppose that the interaction between a number of asymmetrically informed parties

is governed by a mechanism. However, the parties cannot fully commit to the outcome

of this mechanism - once the outcome is known, it may be renegotiated by the parties.

What is the set of allocations that can be achieved in this environment and how can

they be achieved?

We address these questions in the context of a model with two players and one-

sided asymmetric information: one player’s (the principal’s) payoff function is com-

mon knowledge, but the other’s (the agent’s) is private information.

In the mechanism the agent sends a message to the principal, determining some

contracted decision and money payment. However, the two players cannot be obliged

to stick to this decision. We assume that, at this point, the principal is able to design

a second-stage mechanism to determine the actual decision and transfer. Her optimal

mechanism will depend on what she has learned from her interaction with the agent

in the initial mechanism. Consequently, we cannot assume that the agent’s message

in the initial mechanism reveals his type because the principal, knowing the truth,

would subsequently extract all the remaining surplus. This in turn would give the

agent an incentive to understate his type.

To determine what can be achieved in this setting we characterize the imple-

mentable decision and utility schedules: that is, functions mapping the agent’s type

to, respectively, decision and expected utility, taking renegotiation into account. As in

the case in which the mechanism cannot be renegotiated, once the implementable de-

cision schedules have been determined, the implementable expected utility schedules

can be derived by integration.

The initial mechanism may be designed either by the principal or by an outside

agency, such as a planner. If the designer is the principal she might want to propose

a mechanism to attract a particular pool of agents or to induce relationship specific

investment. Her optimal ex-ante mechanism taking these considerations into account

may not be the same one which she would wish to offer ex-post. If the designer is
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an outside agency he may be, for example, a regulator or a higher level of authority

in the organization to which the principal belongs. An alternative application is the

design of a trading platform or a market where sellers and buyers who do not know

each other are matched. In each of these cases, the designer may have an objective

function which differs from those of the players, though the arguments of the function

may include the principal’s expected payoff and/or the distribution of utilities and

decisions across the various types of agent.

If a decision schedule (mapping types of agent to decisions) is renegotiation-

implementable (i.e., implementable taking into account renegotiation as described

above) then it is easy to see that it must, as in the no-rengotiation case (i.e. when

parties can commit not to renegotiate), be an increasing function. It must also give

the efficient decision to the top type and a weakly lower-than-efficient decision to all

types. We derive (in Proposition 2) two further conditions which a strictly increas-

ing, differentiable decision schedule must satisfy if it is renegotiation-implementable.

One puts an upper bound on the slope of the function, which depends on the prior

distribution over types. The second condition is that, for every type, the decision

must be at least as high as it would be if there were no initial mechanism and the

principal simply offered her ex-post optimal mechanism.

Moreover, one mechanism which implements a particular implementable schedule

is simply the same truth-telling direct revelation mechanism which would implement

it in the no-renegotiation case, although the equilibrium is very different. In equilib-

rium, rather than tell the truth with probability 1, the agent uses a mixed strategy -

a type θ of the agent randomizes over messages below θ, so that the principal, given

announcement θ′, has a posterior belief distributed over types θ′ and above. The prin-

cipal’s equilibrium strategy is to offer the initial mechanism again after any message.

The agent then selects the decision and transfer which he would have chosen had the

two players been committed not to renegotiate this mechanism in the first place.

In Proposition 3 we show, by construction, that any decision schedule which satis-

fies the necessary conditions can be renegotiation-implemented in this way. In Propo-

sition 4, we show that the equilibrium is unique. In other words, we have the striking
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result that, for a large class of decision rules, the standard incentive-compatible mech-

anism has a strong renegotiation-invariance property - after any message, the principal

always wants to offer the initial mechanism again. The designer does not have to be

concerned about whether renegotiation might be possible - the same mechanism de-

livers the desired outcome for every type whether it is possible or not. A further

appealing feature is that an outside designer wishing to implement a particular out-

come function does not need to know the prior distribution over the agent’s types

(the principal’s prior belief).

These results can be regarded as contributing to the bargaining literature as well

as to the mechanism design literature. Given a fixed bargaining game of incomplete

information, one can ask: in what ways is it possible to alter the outcome of the game

by obliging the parties to sign a contract beforehand? Our framework can also be

interpreted from this point of view.

Related Literature

Various notions of renegotiation-proofness for mechanisms have been proposed.

In the incomplete information case, much of the literature concerns interim rene-

gotiation, i.e., the parties have an opportunity to renegotiate before they play the

mechanism. For example, Holmström and Myerson (1983) define a decision rule (or

mechanism) M as durable if, given any type profile, and any alternative mechanism

M̃ , the players would not vote unanimously to replace M by M̃ if a neutral third

party were to propose it to them (see also Crawford (1985), Palfrey and Srivastava

(1991) and Lagunoff (1995)). Ex post renegotiation has been studied by Green and

Laffont (1987), Forges (1994), and Neeman and Pavlov (2013). In these contributions

the concepts employed are variations on the principle that a mechanism is (ex post)

renegotiation-proof if, for any outcome x of the mechanism and any alternative out-

come y, the players would not vote unanimously for y in preference to x if a neutral

third party were to propose it to them. Such definitions of renegotiation-proofness

have the merit that, if a given mechanism satisfies it, the mechanism is robust against

all possible alternative outcomes. However, it also has the drawback that the implied
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renegotiation process does not have a non-cooperative character. Under an alterna-

tive modeling of this process, a renegotiation proposal would be made by one of the

parties to the mechanism.

In this paper we use the latter notion of renegotiation. This is closer to the

one generally used for the complete information case (Maskin and Moore (1999),

Segal and Whinston (2002)), in which, for any inefficient outcome of the mechanism,

there is a single renegotiation outcome, which can be predicted by the players.3 It

also corresponds to the approach used in the literature on contract renegotiation

(e.g. Dewatripont and Maskin (1990), Hart and Tirole (1988), Laffont and Tirole

(1988,1990)) in which a trading opportunity is repeated a number of times and the

focus is on comparing the outcomes of long-term contracts, sequences of short-term

contracts, and long-term contracts which can be renegotiated (i.e., in the two-period

case, the parties are committed for one period, but in the second period there is an

opportunity to change the contract). The contract renegotiation literature is mostly

concerned with analyzing the mechanism that maximizes the payoff of one of the

contracting parties, for example, the principal. The same applies to Skreta (2006),

who considers a buyer-seller model with T periods and discounting, and shows that

it is optimal for the principal to offer a price in each period. Our paper is different in

that we are concerned with characterizing the set of all outcome functions which could

in principle be implemented by the parties. This is important either if the contracting

parties have objectives that differ from surplus or profit maximization, for example

because one of them can make a relationship specific investment, or, alternatively, if

a third party, such as a social planner, wants to implement an outcome in accordance

with some broader objectives.

Our analysis is also related to the literature on incomplete information bargaining

beginning with Fudenberg and Tirole (1983). Firstly, one interpretation of a mecha-

nism is that it is a device for understanding what can be achieved by non-cooperative

bargaining games, see for instance Ausubel and Deneckere (1989a) and (1989b). In

3Rubinstein and Wolinsky (1992) model renegotiation as costly because it involves delay and
show that the set of implementable outcomes in a complete information buyer-seller model is larger
than those of the standard model of implementation with renegotiation.
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contrast, we consider what a mechanism can achieve when it is played before parties

enter into such a bargaining game. Also, in our paper bargaining is finite, though

we have some discussion of the infinite horizon case in Subsection 3.6. Finite-time

bargaining is considered in Fuchs and Skrzypacz (2012): the bargainers face an exoge-

nous deadline at which they receive a fixed share of total surplus. The authors study

how the period length of bargaining rounds affects patterns of trade. In contrast we

keep the timing fixed and consider how an initial mechanism can affect what is im-

plemented at the deadline. We also consider a more general class of utility functions

and therefore need to study a larger set of possible mechanisms, whereas in Ausubel

and Deneckere (1989a) and (1989b) and in Fuchs and Skrzypacz (2012) parties need

only make price offers.

A recent strand of the literature on the Coase Conjecture is concerned with con-

tract negotiations with limited commitment. In Strulovici (2013) contracting parties

negotiate over the contract they wish to adopt over a given status-quo, using an ex-

plicit infinite time horizon bargaining protocol with a fixed break-down probability.

He shows that, when the probability of break-down approaches zero, all equilibria

converge to an equilibrium with efficient contracting. Maestri (2013) studies an infi-

nite time horizon non-durable goods monopoly problem, in which parties can write

long-term contracts that are renegotiated before each new trading round. He shows

that as parties become infinitely patient the essentially unique equilibrium converges

to one in which contracts are efficient subject to incentive compatibility.

The above papers on bargaining and the Coase Conjecture characterize contracting

outcomes when negotiation frictions disappear in situations with an infinite time

horizon. We, on the other hand, provide a characterization of the outcomes that arise

if a mechanism constitutes the status quo of an exogenously given bargaining game.

None of the above papers derives our renegotiation-invariance results.

Finally, the paper is related to recent work in organizational theory, stemming

from Crawford and Sobel (1982). In Krishna and Morgan (2008), the uninformed

decision maker can commit to a contract which pays the informed sender a monetary

transfer which depends on the message sent, but cannot commit to the action which
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she then takes. In our setting the sender is the agent and the decision maker is the

principal, who can only partially commit to her action (the renegotiation mechanism).

See also Ottaviani (2000) for a model with informed senders, monetary transfers and

lack of commitment by the receiver.

Outline

Section 2 sets out the model. Section 3 contains the analysis and results. Subsec-

tion 3.1 proves the renegotiation-invariance principle, which is helpful in deriving the

necessary conditions. It shows that without loss of generality we can consider equilib-

ria of the form which we construct later. Subsection 3.2 derives necessary conditions

for implementation. In Subsection 3.3 we construct an equilibrium for an arbitrary

decision schedule which satisfies the necessary conditions and proves the strong im-

plementation (uniqueness) result. Subsection 3.4 discusses the special case in which

utility is linear. Subsection 3.5 contains a dicussion of several applications and our

main assumptions. Subsection 3.6 has a discussion of infinite horizon bargaining.

Section 4 concludes. Some of the proofs are in the Appendix.

2 The Model

A principal (P ) and an agent (A) must choose a decision x from the set [x, x̄] ⊆ <+,

and a money transfer t. The agent has a privately known type θ which follows a

distribution F , with differentiable density f > 0, on the interval Θ = [θ, θ̄], where

θ > 0. Both players are expected utility maximizers and have quasi-linear utility for

money. If the decision is x ∈ [x, x̄] and A transfers t to P , then P ’s payoff is t− cx,

where c > 0, and A’s payoff is u(x, θ) − t, where u is a thrice-differentiable function

satisfying the conditions ux > 0, uxx < 0, uxθ > 0 and uxxθ > 0, with subscripts

denoting derivatives. We make the assumption that ux(x, θ) > c > ux(x̄, θ̄), which

guarantees that, for each type, the ex-post efficient decision is interior.

We denote by ∆(Θ) the set of distribution functions on Θ. The reservation utility

for P and for each type of A is zero.
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The choice of decision and transfer is governed by a mechanism γ, i.e., a triple

(M,xM , tM) consisting of a set of messages M , where M is a metric space, and a pair

of functions xM : M → [x, x̄] and tM : M → <. A chooses a message m ∈ M . When

message m is sent, xM(m) is the contracted decision and tM(m) is the contracted

payment to be paid by A to P . We assume throughout that communication is direct

(there is no mediator) and that mechanisms are non-stochastic. Denote the set of

possible mechanisms by Γ.

The parties, however, are not able to commit not to renegotiate the mechanism.

After the play of the mechanism they have the option of choosing a further mechanism

to play in order to arrive at an outcome which they both prefer. We assume that

at this renegotiation stage all of the bargaining power lies with the principal, the

uninformed party.4 In other words, once the outcome of the initial mechanism, (x, t),

is known, the principal chooses a mechanism to offer to the agent. A can either play

this new mechanism or obtain the outcome (x, t). Clearly P ’s optimal mechanism at

the renegotiation stage will depend on her updated belief about A which the play of

the initial mechanism has generated.

Our aim is to characterize the set of utility schedules which can be implemented

by some mechanism taking into account the fact that the mechanism can be rene-

gotiated ex post. The main complication, of course, arises from the fact that the

agent, anticipating the renegotiation, will alter his behavior when he plays the initial

mechanism.

We include a discussion of our assumptions about renegotiation and the timing

of it in Subsection 3.5. We also present there several examples to which our analysis

can be applied.

Strategies and Equilibrium

An initial mechanism (M,xM , tM) and the post-mechanism stage together define

a two-stage game of incomplete information. Call this game Φ(M,xM , tM). We will

consider the perfect Bayesian equilibria of this game.

4If the agent had the bargaining power results analogous to ours would trivially hold.
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Given an outcome (x, t) of the initial mechanism, and a mechanism γ ∈ Γ offered

by P , A either chooses the default outcome (x, t) or plays the mechanism γ. In a

perfect Bayesian equilibrium A will choose optimally given his type, i.e., will either

play the mechanism optimally or, if the default gives a higher payoff, choose the

latter.

Given her belief G ∈ ∆(Θ) over A’s types, P will, at the preceding stage, choose

a mechanism to offer to A which is optimal for P .

Let DIC(x, t) be the set of incentive-compatible direct revelation mechanisms

which dominate the default outcome (x, t) for all types, i.e., mechanisms (Θ, xΘ, tΘ) ∈
Γ such that, for all θ, θ′ ∈ Θ,

u(xΘ(θ), θ)− tΘ(θ) ≥ u(xΘ(θ′), θ)− tΘ(θ′)

and

u(xΘ(θ), θ)− tΘ(θ) ≥ u(x, θ)− t.

It is straightforward to show, by a revelation principle argument, that we can

assume without loss of generality that P chooses a mechanism in DIC(x, t) and that,

for all θ ∈ Θ, type θ of A accepts the mechanism and tells the truth.

Given the above, we can take a pure strategy for P in Φ(M,xM , tM) = φ to be a

function sP : M → Γ such that, for m ∈ M , sP (m) ∈ DIC(xM(m), tM(m)). We only

consider equilibria in which P ’s strategy is pure. Denote by SφP the set of P ’s pure

strategies in the game φ.

Similarly, we can take a pure strategy for A in Φ(M,xM , tM) = φ to be a function

which maps Θ to M . We take a mixed strategy for A to specify a mixed strategy

for each type of A where a mixed strategy5 for type θ of A is a probability measure

sA(.|θ) on M . Let the set of these strategies be denoted by SφA.

If P ’s strategy is sP ∈ SφP and A is type θ ∈ Θ and sends m ∈ M , let the post-

5It is possible to define a continuum of mixed strategies over M via a distributional strategy
as in Milgrom and Weber (1985), i.e., a joint distribution on M × Θ for which the marginal on Θ
corresponds to the prior F . sA(.|θ) is then the measure on M conditional on θ. See also Crawford
and Sobel (1982).
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renegotiation decision and transfer be denoted by (xφ(m, sP , θ), t
φ(m, sP , θ)); that is,

the mechanism sP (m) gives this outcome. Then the expected payoff of type θ if he

sends message m is Uφ(m, sP , θ) = u(xφ(m, sP , θ), θ)− tφ(m, sP , θ).

For (x, t) ∈ [x, x̄] × < and G ∈ ∆(Θ), let P ((x, t), G) ⊆ DIC(x, t) be the set of

solutions to the problem

max(Θ,xΘ,tΘ)∈DIC(x,t)

∫ θ̄

θ

tΘ(θ)− cxΘ(θ)dG(θ),

in which xΘ(.) is a right-continuous function.6 That is, these are the optimal direct

revelation mechanisms for P when she has belief G and the default outcome is (x, t).

Definition 1: A renegotiation equilibrium (or r-equilibrium) of Φ(M,xM , tM) = φ is

a profile of strategies (sP , sA) ∈ SφP×S
φ
A, and, for each m ∈M , a belief G(.|m) ∈ ∆(Θ)

such that

(i) for each θ ∈ Θ sA(.|θ) puts probability 1 on messages which maximize Uφ(m, sP , θ);

(ii) for each m ∈M , sP (m) ∈ P ((xM(m), tM(m)), G(.|m));

and

(iii) for each m ∈ M , G(.|m) is consistent with Bayes’ Rule, where appropriate,

given prior belief F and strategy sA.

If the strategy profile is (sA, sP ) then the expected payoff of type θ of A is

Uφ(sA, sP , θ) =
∫
m
Uφ(m, sP , θ)dsA(m|θ). Let xφ(sA, sP , θ) be the final decision if

the strategy profile is (sA, sP ). This will be stochastic if sA is mixed.

Definition 2: (i) A function U : Θ → <+ is a r-implementable utility schedule

if there exists a mechanism (M,xM , tM) ∈ Γ such that Φ(M,xM , tM) = φ has a

renegotiation equilibrium (sA, sP , {G(.|m)}m∈M) for which, for all θ ∈ Θ, U(θ) =

Uφ(sA, sP , θ).

(ii) A function U : Θ→ <+ is strongly r-implementable if there exists a mechanism

6For any solution in which x(.) is not right-continuous, there is a payoff-equivalent one in which
it is.
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(M,xM , tM) such that, for all θ ∈ Θ, U(θ) = Uφ(sA, sP , θ) for every renegotiation

equilibrium (sA, sP , {G(.|m)}m∈M) of Φ(M,xM , tM) = φ.

Definition 3: A function X : Θ→ [x, x̄] is a r-implementable decision schedule if

there exists a mechanism (M,xM , tM) and a renegotiation equilibrium

(sA, sP , {G(.|m)}m∈M) of Φ(M,xM , tM) = φ such that, for all θ ∈ Θ, xφ(sA, sP , θ) =

X(θ) with probability 1.

Associated with a r-implementable decision schedule X is the corresponding trans-

fer schedule T : Θ → <. We refer to the pair (X,T ) as a r-implementable outcome

function.

The fact that U must be non-negative reflects the fact that A’s outside utility

has been normalized to zero and we allow him not to participate in the mechanism.

We refer to a utility schedule or decision schedule as c-implementable if it can be

implemented in the case in which the players can be committed not to renegotiate

the mechanism. By standard results (see Fudenberg and Tirole (1993), Milgrom and

Segal (2002)) X is c-implementable if and only if X(·) is non-decreasing, and U ≥ 0

is c-implementable if and only if, for all θ ∈ Θ, U(θ) − U(θ) =
∫ θ
θ
uθ(X(θ̃), θ̃)dθ̃ for

some non-decreasing function X : Θ → [x, x̄]. A c-implementable U is absolutely

continuous and a.e. differentiable.

Remark It is easy to show, using revelation principle arguments, that if U (resp.

X) is r-implementable then U (resp. X) is c-implementable.

The first-best decision for θ solves the problem maxx∈[x,x̄]u(x, θ) − cx. By our

assumptions this has a unique solution which we denote by x∗(θ). Furthermore, x∗(.)

is strictly increasing in θ. We assume that u(x∗(θ), θ) − cx∗(θ) > 0 for all θ so that

there is strictly positive surplus for each type.
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3 Analysis

3.1 Renegotiation Invariance

It is straightforward to show that the ex-post efficient decision schedule x∗(.) is

r-implementable. Take an incentive-compatible direct revelation mechanism which

would implement it in the no-renegotiation case. There is an equilibrium in which

each type tells the truth in this mechanism and, after any message θ, leading to

default (x∗(θ), t∗(θ)), the principal offers the default again, as a fixed outcome. This

is an optimal offer because A’s type is common knowledge and so the default is

known to be efficient. Equally, it is easy to implement P ’s optimal mechanism given

belief F , denoted by (Θ, xF (.), tF (.)), that guarantees each type of A at least his

reservation utility of 0, using a null initial mechanism - at the second stage the

principal will choose (Θ, xF (.), tF (.)). The questions we ask are: what other schedules

are r-implementable, and how can they be implemented?

Consider P ’s optimal decision given belief G ∈ ∆(Θ) and default outcome (x, t).

Denote the minimum and maximum of supp(G) (the support of G) by θ(G) and

θ̄(G) respectively. It is straightforward to show that if an incentive-compatible direct

revelation mechanism (Θ, xΘ, tΘ) satisfies

u(xΘ(θ(G)), θ(G))− tΘ(θ(G)) ≥ u(x, θ(G))− t

then, for all θ > θ(G),

u(xΘ(θ), θ)− tΘ(θ) ≥ u(x, θ)− t.

It follows that choosing P ’s optimal (Θ, xΘ, tΘ) ∈ DIC(x, t) is payoff-equivalent to

choosing P ’s optimal incentive-compatible direct revelation mechanism for type space

supp(G) subject to the constraint that the payoff of type θ(G) is at least u(x, θ(G))−t.
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Therefore, by standard results, an optimal mechanism (Θ, xΘ, tΘ) satisfies

xΘ(θ̄(G)) = x∗(θ̄(G)),

xΘ(θ) ≤ x∗(θ) ∀θ ∈ supp(G)/θ∗,

and

u(xΘ(θ(G)), θ(G))− tΘ(θ(G)) = u(x, θ(G))− t.

Furthermore, the downward incentive constraints bind. Therefore, if θ ∈ supp(G)

and θ′ ∈ supp(G) for θ′ > θ but (θ, θ′) ⊆ (supp(G))C then u(xΘ(θ′), θ′) − tΘ(θ′) =

u(xΘ(θ), θ′)− tΘ(θ).

The Lemma below establishes that, in any r-equilibrium of any mechanism, the

final (post-renegotiation) decisions satisfy the usual monotonicity property (message

by message). This is because the final outcome schedule is incentive-compatible and

the utility functions are supermodular. It also establishes that the decisions are less

than or equal to the efficient decisions and (in part (iii)), using these two properties,

that decisions are deterministic - although a given type of A may randomize over

messages, each message in the support of his strategy will lead to the same final

decision (and transfer). This Lemma, and all subsequent Lemmas and Propositions,

are to be understood as referring to almost all θ.

Lemma 1 Suppose that (sA, sP , {G(.|m)}m∈M) is a r-equilibrium of Φ(M,xM , tM) =

φ, where (M,xM , tM) ∈ Γ.

(i) Take any θ and θ′ > θ. If m ∈ supp(sA(.|θ)) and m′ ∈ supp(sA(.|θ′)) then

xφ(m, sP , θ) ≤ xφ(m′, sP , θ
′);

(ii) xφ(sA, sP , θ) ≤ x∗(θ) w.pr.1;

(iii) Suppose m and m′ are both in supp(sA(.|θ)). Then xφ(m, sP , θ) = xφ(m′, sP , θ)

and tφ(m, sP , θ) = tφ(m′, sP , θ).

Fix a mechanism (M,xM , tM) and a r-equilibrium (sA, sP , {G(.|m)}m∈M) of

Φ(M,xM , tM) = φ. Lemma 1 implies that for each θ this equilibrium has a de-
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terministic final outcome (xφ(sA, sP , θ), t
φ(sA, sP , θ)). Define an outcome schedule

(X,T ) by X(θ) = xφ(sA, sP , θ) and T (θ) = tφ(sA, sP , θ), for θ ∈ Θ. This is an

incentive-compatible schedule, otherwise some type could profitably deviate by imi-

tating another type over the two-stage game. Furthermore, after any m, the outcome

schedule which P proposes in sP (m) coincides with (X,T ) for types in supp(G(.|m)).

The next proposition gives a modified revelation principle. It shows that the same

outcome as is achieved in the given equilibrium (namely (X,T )) can also be achieved

by giving the parties, at the outset, the direct revelation mechanism (Θ, X, T ). In

the equilibrium of Φ(Θ, X, T ) which achieves this the agent will not tell the truth,

as he would in the no-renegotiation case, unless X is efficient; this is because, after

A has spoken truthfully and revealed himself to be type θ, P would offer an efficient

outcome x∗(θ). Instead, as we show, A randomizes over messages below his true type

and, whatever message he sends, the principal will always offer the initial mechanism

(Θ, X, T ) again.

Proposition 1 (Renegotiation Invariance) For any r-implementable outcome func-

tion (X,T ) it is possible to implement it by means of the direct revelation mechanism

(Θ, X, T ) and an equilibrium in which, for each type θ of A, the support of the mixed

strategy is a subset of [θ, θ], and, after any message, P offers the same mechanism,

(Θ, X, T ).

Proof Let (sA, sP , {G(.|m)}m∈M) be an r-equilibrium of Φ(M,xM , tM) which r-

implements the given outcome function (X,T ). Take a message m which is in the

support of sA. After this message is sent the default outcome is (xM(m), tM(m)) and

P ’s belief is G(.|m). The minimum of the support of G(.|m) is θ(G(.|m)). For brevity

we refer to G(.|m) as Gm and to θ(G(.|m)) as θm.

As argued above, the outcome function which is given by sP (m) must coincide

with (X,T ) for types in the support of Gm. Therefore (Θ, X, T ) is optimal for P given

belief Gm subject to the constraint that type θm gets at least u(xM(m), θm)− tM(m).

It follows that
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(*) (Θ, X, T ) is optimal for P given belief Gm subject to the constraint

that type θm gets at least u(X(θm), θm)− T (θm).

Now suppose that the initial mechanism is (Θ, X, T ). In Φ(Θ, X, T ), A’s strategy

is defined by the two-step procedure:

(i) select a message m in M using the strategy sA;

(ii) given m, announce θm, the lowest type which sends m according to sA.

P ’s strategy is: offer (Θ, X, T ) after any message. P ’s beliefs are derived via Bayes’

Rule.

This profile clearly implements the schedule (X,T ). To see that it is an equi-

librium, note first that A is indifferent between all type announcements since any

announcement leads to the same schedule and all possible defaults belong to this

schedule. Therefore A’s strategy is optimal. Next, consider P ’s strategy. Initially,

suppose that P can observe the message m chosen by A in stage (i) of his strategy, in

addition to his type announcement. Then P ’s belief is Gm, with lower bound of sup-

port θm. The default outcome is (X(θm), T (θm)). Therefore, by (*), it is optimal for

P to offer (Θ, X, T ). In fact, P only observes the announcement θ, not m. However,

P knows that m lies in the set {m|θm = θ} and, as just shown, (Θ, X, T ) is optimal

for each such m. Therefore P ’s strategy is optimal and so the given strategies and

beliefs form an equilibrium.

The fact that, for any m chosen at stage (i) of his strategy, A announces the lowest

type who would send m implies that he never announces a type above his true type.

QED

In the equilibrium of Proposition 1, A must randomize over announcements in such

a way that P ’s optimal mechanism is always (Θ, X, T ), no matter what announcement

A makes. This renegotiation-invariance property is distinct from the renegotiation-

proofness principle. In our setting the latter would say that our two-stage game

φ can be regarded as a single mechanism which is not renegotiated. By contrast,

renegotiation-invariance means that the outcome of the initial mechanism is in fact

renegotiated in equilibrium, but the final outcome is the same as if renegotiation were

15



not possible. It remains to discover which mechanisms (Θ, X, T ) have the property

that this is possible. We examine this question in the following subsections.

3.2 Necessary Conditions for r-implementability

Proposition 1 enables us to establish conditions which r-implementable decision

(and hence utility) schedules must satisfy, since the form of the equilibrium described

in the Proposition restricts the possible second-stage beliefs.

Together with Lemma 1, Proposition 1 implies that if (X,T ) is r-implementable

then X(θ̄) = x∗(θ̄) and X(θ) ≤ x∗(θ) for all θ ∈ Θ. Furthermore, since (X,T ) must

be incentive-compatible X must be non-decreasing. We restrict attention to decision

schedules X(.) which are strictly increasing, differentiable and satisfy X(θ) < x∗(θ)

for all θ < θ̄. The next Lemma shows that, for such schedules, any message θ which

is sent in the equilibrium described in Proposition 1 is sent by all types above the

lowest type which sends θ - after any message, the support of P ’s belief is of the form

[θ′, θ̄].

Lemma 2 Suppose (X,T ) is r-implementable and X is strictly increasing and

satisfies X(θ) < x∗(θ) for all θ < θ̄. Then (X,T ) is r-implemented by an equilibrium

(sA, sP , {G(.|θ)}θ∈Θ) of Φ(Θ, X, T ) in which, for all θ ∈ supp(sA), supp(G(.|θ)) =

[θ(G(.|θ), θ̄] and, if θ′ ∈ supp(sA(θ1)) then θ′ ∈ supp(sA(θ2)) for all θ2 > θ1.

Consider a schedule (X,T ) which satisfies the assumptions of Lemma 2, and such

that X is differentiable. (Θ, X, T ) r-implements this outcome by means of an equilib-

rium (sA, sP , {G(.|θ)}θ∈Θ), as in Proposition 1. Since no type puts positive probability

on messages above their true type, θ must put probability 1 on θ, i.e., tell the truth,

so θ is in the support of A’s strategy sA. Denote G(.|θ) by GX . Then Lemma 2

implies that supp(GX) = Θ. Furthermore, (X,T ) is optimal for P given belief GX ,

so (see Myerson (1981), Fudenberg and Tirole (1991)) X must point-wise maximize

virtual surplus

u(X(θ), θ)− 1−GX(θ)

gX(θ)
uθ(X(θ), θ)− cX(θ),
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where gX is the density of GX (it can be shown, using a sequence of approximating

models with finitely many types, that GX has a density, and so that, if GX has an

atom, it must be at θ). Therefore, for all θ > θ,

1−GX(θ)

gX(θ)
=

(ux(X(θ), θ)− c)
uxθ(X(θ), θ)

. (1)

Since X(.) is differentiable, this implies that gX is differentiable.

Furthermore, take any other message θ1 in the support of A’s strategy. Let the

support of P ’s beliefG(.|θ1) be [θ1, θ̄]. Then it is again optimal for P to offer (Θ, X, T ),

so G(.|θ1) must be the same as GX , scaled to the support [θ1, θ̄], i.e., for θ′ ∈ [θ1, θ̄],

G(θ′|θ1) =
GX(θ′)−GX(θ1)

1−GX(θ1)

and
1−G(θ′|θ1)

g(θ′|θ1)
=

1−GX(θ′)

gX(θ′)
.

As Lemma 3 below shows, this, combined with the fact that each type only sends

messages below his true type, implies that the hazard rate of GX is everywhere greater

than that of the prior F and that the proportional growth rate of gX is everywhere

less than that of f . Essentially, all types must randomize in a proportionally similar

way, in order for P to want to offer the same mechanism no matter what message

she receives. However, lower types randomize over a smaller set of messages, so any

message θ′ is more likely to have been sent by lower types in [θ′, θ̄] than by higher

ones.

Lemma 3 Let GX and gX be defined as above. For all θ ∈ Θ, (i)

1−GX(θ)

gX(θ)
≤ 1− F (θ)

f(θ)

and (ii)
(gX)′(θ)

gX(θ)
≤ f ′(θ)

f(θ)
.
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The next proposition gives necessary conditions for X(θ) to be r-implementable.

Recall that xF is P ’s optimal decision schedule given belief F .

Proposition 2 Suppose that (X(.), T (.)) is r-implementable and X is strictly

increasing and differentiable and satisfies X(θ) < x∗(θ) for all θ < θ̄. Then (i)

f ′(θ)

f(θ)
+ A(X(θ), θ) +X ′(θ)B(X(θ), θ) ≥ 0 (2)

for all θ ∈ Θ, where

A(x, θ) =
2uxθ(x, θ)

(ux(x, θ)− c)
− uxθθ(x, θ)

uxθ(x, θ)

and

B(x, θ) =
uxx(x, θ)

(ux(x, θ)− c)
− uxxθ(x, θ)

uxθ(x, θ)
;

(ii) X(θ) ≥ xF (θ) for all θ; and (iii) (X,T ) gives non negative utilities to the principal

and the lowest agent type.

Proof (i) By Lemma 3(ii),

f ′(θ)

f(θ)
− (gX)′(θ)

gX(θ)
≥ 0.

Since

(gX)′(θ)

gX(θ)
= − gX(θ)

1−GX(θ)
−

d
dθ

(1−GX(θ)
gX(θ)

)

1−GX(θ)
gX(θ)

(3)

it follows, using (1), that

(gX)′(θ)

gX(θ)
= −A(X(θ), θ)−X ′(θ)B(X(θ), θ).
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(ii) follows from Lemma 3(i), (1), the corresponding equation for F and the fact that

ux(x, θ)− c
uxθ(x, θ)

is decreasing in x if x < x∗(θ). (iii) must be true to satisfy the participation con-

straints. QED

The necessary condition (2) places an upper bound on the slope of X, the bound

depending locally on the prior and on the level of X. For some priors, this upper

bound is negative at certain points; in that case a strictly increasing X cannot be

implemented and so X would have to have a flat section there. Consider the case in

which u(x, θ) = θu(x). Then the condition becomes

X ′(θ) ≤ −u
′(X(θ))(θu′(X(θ))− c)

cu′′(X(θ))
[
f ′(θ)

f(θ)
+

2u′(X(θ))

(θu′(X(θ))− c)
].

u′ > 0, u′′ < 0 and, since X(θ) is strictly below the efficient level, θu′(X(θ))− c > 0.

Therefore the right hand side is negative if

f ′(θ)

f(θ)
+

2u′(X(θ))

(θu′(X(θ))− c)
< 0,

so (2) is harder to satisfy if f is falling fast.

In the linear case,7 in which u(x, θ) = θx and the set of decisions [x, x̄] = [0, 1],

B(x, θ) = 0 and A(x, θ) = 2(θ− c)−1. Therefore the necessary condition (2) becomes

θf ′(θ) + 2f(θ) ≥ 0. Since this is independent of X ′(θ), any increasing function which

is above xF can be implemented as long as the condition is satisfied. The condition

is equivalent to concavity of P ’s revenue function R(θ) = θ(1− F (θ)), which in turn

is implied by the increasing hazard rate assumption on F .

3.3 Sufficient Conditions for r-implementability

Suppose that an incentive-compatible schedule (X,T ) satisfies the conditions of

7We discuss the linear case in subsection 3.4 below.
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Proposition 2. Is it possible to r-implement it? In this subsection we show that it

is. We construct an equilibrium of the type described in Proposition 1. The initial

mechanism is (Θ, X, T ). Each type θ has a mixed strategy with support [θ, θ] and a

mass point on θ. After any announcement, P offers (Θ, X, T ) again.

Let z(θ) = A(X(θ), θ) + X ′(θ)B(X(θ), θ). The mixed strategy of type θ of A,

sA(.|θ), is given by the distribution function

sA([θ, θ′]|θ) =
f(θ′)

f(θ)
exp[−

∫ θ

θ′
z(u)du]

for θ′ ≤ θ and sA([θ, θ′]|θ) = 1 for θ′ > θ. By (2) −z(θ) is bounded, so the integral is

well-defined. The density is then

σA(θ′|θ) =
1

f(θ)
[exp(−

∫ θ

θ′
z(u)du)][f ′(θ′) + f(θ′)z(θ′)].

This distribution is well-defined because f ′(θ′) + f(θ′)z(θ′) ≥ 0 by (2).

Given message θ ∈ Θ, P ’s belief (c.d.f) is

G(θ′|θ) =

∫ θ′
θ
exp[−

∫ u
θ
z(w)dw]du∫ θ̄

θ
exp[−

∫ u
θ
z(w)dw]du

for θ′ ≥ θ and G(θ′|θ) = 0 for θ′ < θ.

Note that if θ1 < θ2 < θ

sA([θ, θ1]|θ)
sA([θ, θ2]|θ)

=
f(θ1)

f(θ2)
exp[−

∫ θ2

θ1

z(u)du]

which is independent of θ, so that any two types θ and θ′ randomize in the same

way, proportionally, over the set of announcements below min[θ, θ′]. This is the

property which ensures that the principal’s posterior distribution is invariant, apart

from scaling, to the announcement.

To see that this is an equilibrium, note first that, by Bayes’ rule, the conditional
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density of type θ′ ≥ θ after message θ is

f(θ′)σA(θ|θ′)∫ θ̄
θ
f(u)σA(θ|u)du

=
exp[−

∫ θ′
θ
z(w)dw]∫ θ̄

θ
exp[−

∫ u
θ
z(w)dw]du

so P ’s beliefs are correct given A’s strategy. A’s strategy is optimal because every

message leads to the same offered schedule (X,T ), so he is indifferent between all

messages. It remains to show that P ’s optimal mechanism is (Θ, X, T ) after every

message, i.e., that
1−G(θ′|θ)
g(θ′|θ)

=
(ux(X(θ′), θ′)− c)
uxθ(X(θ′), θ′)

for every message θ ∈ Θ and every θ′ ≥ θ.

Let k(v) =
∫ v
θ
z(w)dw for v ≥ θ. Then

1−G(θ′|θ)
g(θ′|θ)

=

∫ θ̄
θ′
exp[−k(v)]dv

exp[−k(θ′)]

so we need to show that∫ θ̄

θ′
exp[−k(v)]dv = exp[−k(θ′)]

(ux(X(θ′), θ′)− c)
uxθ(X(θ′), θ′)

. (4)

For θ′ = θ̄, the LHS of (4) is zero, and the RHS is also zero since ux(X(θ̄), θ̄)− c = 0

by efficiency at the top. The derivative of the LHS with respect to θ′ is −exp[−k(θ′)].

The derivative of the RHS is

(ux − c)
uxθ

e−k(θ′)(−k′(θ′)) + e−k(θ′)uxθ[uxxX
′(θ′) + uxθ]− (ux − c)[uxθθ + uxxθX

′(θ′)]

(uxθ)2

where arguments (X(θ′), θ′) have been omitted for brevity. Since k′(θ′) = z(θ′), this

is equal to −exp[−k(θ′)] and so (4) is true for all θ′. This shows that P ’s strategy is

optimal. Therefore we have:

Proposition 3 Any incentive-compatible schedule (X,T ) such that X is strictly

increasing and differentiable, and satisfies xF (θ) ≤ X(θ) < x∗(θ) for θ < θ̄, X(θ̄) =
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x∗(θ) and condition (2), is r-implementable.

Proposition 3 establishes that any schedule (X,T ) which satisfies the necessary

conditions can be implemented by simply giving the parties the incentive-compatible

DRM which implements the schedule in the case in which renegotiation is impossi-

ble. The next Proposition shows that, in the game defined by this mechanism, the

equilibrium described above is essentially unique - in any equilibrium of the game,

the outcome is (X,T ).

Proposition 4 Suppose that (X,T ) is an incentive-compatible schedule such that

X is strictly increasing and differentiable and satisfies xF (θ) ≤ X(θ) < x∗(θ) for

θ < θ̄, X(θ̄) = x∗(θ̄) and condition (2). Then the game Φ(Θ, X, T ) has a unique

equilibrium outcome.

Proof Let U(θ) be the payoff schedule of the equilibrium of Proposition 3.

By standard results,

U(θ) = U(θ) +

∫ θ

θ

uθ(X(θ̃), θ̃)dθ̃ (5)

Therefore, if every equilibrium of Φ(Θ, X, T ) has the same utility schedule then

every equilibrium gives the same outcome, namely (X(θ), T (θ)), to each type θ, since

uxθ > 0. Suppose then that there is an equilibrium with utility schedule Ũ 6= U . Call

this equilibrium (s̃A, s̃P , G̃). Since any type θ is able to tell the truth in Φ(Θ, X, T ) and

decline to renegotiate, giving u(X(θ), θ)− T (θ) = U(θ), it must be that Ũ(θ) ≥ U(θ)

for all θ ∈ Θ.

Given θ′ ∈ supp(s̃A), let θ′′ = min[supp(G̃(.|θ′)]. Suppose that θ′′ 6= θ′. Since the

lowest type in the support gets zero renegotiation surplus, the equilibrium payoff of

type θ′′ is the default payoff u(X(θ′), θ′′) − T (θ′) < u(X(θ′′), θ′′) − T (θ′′) = U(θ′′).

Contradiction. Therefore the lowest type which sends message θ′ is θ′, and this type’s

equilibrium payoff Ũ(θ′) = U(θ′). This implies that no type sends messages above

their true type.

By Lemma 1(iii), we can assume without loss of generality that in the strategy
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profile (s̃A, s̃P ) P offers (Θ, X̃, T̃ ) after any message, where (X̃, T̃ ) is the outcome

implemented by (s̃A, s̃P , G̃).

Let θ1 = inf(θ|Ũ(θ) > U(θ)) and let θ2 = inf(θ|θ > θ1, Ũ(θ) = U(θ)) unless

Ũ(θ) > U(θ) for all θ > θ1, in which case let θ2 = θ̄.

(a) Assume that θ2 < θ̄.

Then Ũ(θ) > U(θ) for all θ ∈ (θ1, θ2), Ũ(θ1) = U(θ1) and Ũ(θ2) = U(θ2), by

continuity of Ũ and U . Since min(supp(G̃(·|θ))) = θ if θ ∈ supp(s̃A) it follows that

θ /∈ supp(s̃A) if θ ∈ (θ1, θ2), otherwise θ would be the lowest type to send message θ,

hence Ũ(θ) = U(θ). So no type in (θ1, θ2) sends any message in (θ1, θ2).

Since P offers (Θ, X̃, T̃ ) after any message, (X̃, T̃ ) is optimal for P conditional on

the set of messages [θ, θ1]. Let P ’s probability distribution conditional on this set be

denoted by G̃1. Then, for θ ∈ (θ1, θ2), G̃1 must have a density g̃1 and g̃1(θ) = f(θ)

since types in (θ1, θ2) only send messages in [θ, θ1]. Hence, by (1) and the argument

in the proof of Proposition 2, X̃ is differentiable on (θ1, θ2) and

f ′(θ)

f(θ)
= −A(X̃(θ), θ)− X̃ ′(θ)B(X̃(θ), θ)

for θ ∈ (θ1, θ2).

By Lemma 3,
(gX)′(θ)

gX(θ)
≤ f ′(θ)

f(θ)
.

So

−A(X̃(θ), θ)− X̃ ′(θ)B(X̃(θ), θ) ≥ −A(X(θ), θ)−X ′(θ)B(X(θ), θ)

for θ ∈ (θ1, θ2). Hence, if X̃(θ) = X(θ), X̃ ′(θ) ≥ X ′(θ). For small enough ε > 0,

Ũ(θ) > U(θ) for θ ∈ (θ1, θ1 + ε). Therefore X̃(θ) > X(θ) for θ ∈ (θ1, θ1 + ε) by (5).

Therefore, since X̃ ′ ≥ X ′ whenever X̃ = X,

∫ θ2

θ1

uθ(X̃(θ), θ)dθ >

∫ θ2

θ1

uθ(X(θ), θ)dθ

which contradicts Ũ(θ2) = U(θ2).

(b) Now assume that θ2 = θ̄, so that Ũ(θ) > U(θ) for all θ ∈ (θ1, θ̄].
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According to the equilibrium strategy s̃A, types in (θ1, θ̄] only send messages in

[θ, θ1], so, conditional on this set of messages, P ’s belief G̃1 satisfies

1− G̃1(θ)

g1(θ)
=

1− F (θ)

f(θ)

for θ > θ1. Also (X̃, T̃ ) is optimal for P given this belief so

1− F (θ)

f(θ)
=
ux(X̃(θ), θ)− c
uxθ(X̃(θ), θ)

.

From Lemma 3
1− F (θ)

f(θ)
≥ 1−GX(θ)

gX(θ)
=
ux(X(θ), θ)− c
uxθ(X(θ), θ)

so X(θ) ≥ X̃(θ) for θ ∈ (θ1, θ̄) since uθx > 0. By (5) this contradicts the fact that

Ũ(θ) > U(θ) on this interval. QED

3.4 The Linear Case

One leading case, treated in an earlier version of this paper, is the bilateral trade

model, in which the principal is a seller of a unit quantity of a divisible good and the

agent is a buyer, type θ of whom has utility θx for quantity x. So [x, x̄] = [0, 1] and

u(x, θ) = θx. xF is a step function corresponding to a posted price mechanism, equal

to zero below some θ̂ and equal to 1 above θ̂. The efficient quantity is 1 (assuming

c < 1), hence not strictly increasing as in our model above.

Our results above apply also to this case. The density of the mixed strategy defined

in the argument leading to Proposition 3 becomes in this case (f(θ′)(θ′)2)(f(θ)θ2)−1

for types θ below a critical value θ∗, and higher types have the same strategy as type

θ∗. It is straightforward to show that the principal’s updated belief GX is such that8

1−GX(θ)

gX(θ)
= θ − c,

8For θ ≤ θ∗: for higher types the game is over, since the initial mechanism has to give quantity
1 to them.
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and so virtual utility is zero for all types. Therefore P is indifferent between all

mechanisms and it is optimal for her to offer the initial mechanism again. Although,

for generic beliefs, only posted price mechanisms are optimal for P , the beliefs which

arise endogenously in equilibrium are the non-generic ones which justify the given

mechanism.

3.5 Discussion

Here we outline several settings in which our analysis applies and discuss some of

its main assumptions. The initial mechanism could be either designed by the principal

or by a third party such as a social planner. The choice of the initial mechanism

may be modelled by a variety of extensive forms and the appropriate participation

constraints will vary accordingly.

If the mechanism is chosen by the principal, the question arises why she would

not simply have a null contract initially and then implement her optimal schedule

xF . In other words, why should we be interested in r-implementability of any other

schedules?

To answer this question, consider an example in which the principal is a firm

seeking to hire new employees. The initial mechanism corresponds to an announced

labor contract that is designed to attract applications from potential workers. There

are various reasons why a null initial contract might be strictly suboptimal. One

possibility is that workers have a fixed cost a > 0 of applying to the firm (i.e. of taking

part in the mechanism) and the announced contract therefore has to incorporate

a type-independent rent. If the initial contract were null, the principal’s optimal

mechanism after the worker has arrived would leave the lowest types with utility

below the reservation level of 0 since a is sunk. In this case the principal’s optimal

mechanism would be (Θ, xF , tF−a), but she would have to announce it in advance, and

be legally obliged to honor it, which introduces the problem that it may be vulnerable

to renegotiation after the worker has arrived. A richer set of optimal (for the principal)

schedules could arise if workers have type-dependent reservation utilities, given, for

example, by employment contracts which they could obtain from another firm. If
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this outside option is no longer available once the worker has arrived at the principal

then, again, the principal would be obliged to announce her mechanism in advance.

Her optimal mechanism in this case may be very different from (Θ, xF , tF ).

Another class of cases arises when the principal would like to induce ex ante

investment by the agent in the relationship, leading to a potential hold-up problem.

Consider the case in which the agent’s utility function is u(θ, x) = θu(x), where u(·)
is a strictly increasing and strictly concave function with u′(0) =∞.

Assume that before the realization of the agent’s type he can make an unobserv-

able investment costing I that raises his type in the sense of first-order stochastic

dominance. That is, his type distribution will be F 0 with continuous density f 0 if

he does not make the investment, and it will be F 1 with corresponding density f 1

if he makes the investment, where F 1 first-order stochastically dominates F 0. The

support is [θ, θ] in both cases.

If there is no ex-ante mechanism the principal will ex-post offer (Θ, xF
i
, tF

i
), (i =

0, 1) depending on whether she believes investment has taken place or not. Let

U i(θ) = θu(xF
i
(θ))− tF i

(θ).

Assume that the principal’s profit is higher with investment than without but that

the agent will not invest given mechanism (Θ, xF
1
, tF

1
), that is,

∫ θ

θ

U1(θ)dF 1 − I <
∫ θ

θ

U1(θ)dF 0.

Consequently, the principal would like to design a mechanism ex-ante that in addition

to incentive compatibility and individual rationality also takes the agent’s investment

incentives into account.9

It can be shown that the optimal schedule x1∗(θ) solves(
θ − 1− F 1(θ)

f 1(θ)
+ µ

F 0(θ)− F 1(θ)

f 1(θ)

)
u′(x1∗(θ)) = c,

9We maintain the assumption that the principal’s mechanism has to satisfy interim individual
rationality: the principal cannot insist that the agent accepts the mechanism before learning his
type, for example because she is facing a population of anonymous agents or because she cannot
observe the timing of the realization of agents’ types.
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where µ > 0 is the Lagrange multiplier associated with the constraint that the agent

must want to invest. Since F 1 first-order stochastically dominates F 0, the last term

in brackets is positive, which implies that

x∗(θ) ≥ x1∗(θ) ≥ xF
1

(θ).

In summary, the principal’s optimal initial contract is neither the null contract, nor

her ex post optimal one.

Alternatively, the initial mechanism may be chosen by a third party. For example

suppose this third party is a regulator, the principal is a firm and the agent a potential

buyer. The regulator wishes to maximize the weighted sum of the buyer’s expected

utility and the seller’s expected profits and so chooses a mechanism (Θ, x(·), t(·)) that

maximizes

∫ θ

θ

[U(θ) + απ(θ)] dF,

for some α > 1, where π(θ) is the firm’s profit and U(θ) = θu(x(θ)) − t(θ) is buyer

type θ’s utility. Using standard arguments, the optimal schedule xR
∗
(·) solves(

θ +
1− α
α

1− F (θ)

f(θ)

)
u′(xR

∗
(θ)) = c,

which implies that

x∗(θ) ≥ xR
∗
(θ) ≥ xF (θ).

As in the previous examples, the optimal initial mechanism is neither the principal’s

preferred mechanism, nor the efficient one. Nor, in general, is it a convex combination

of those two mechanisms.

In another similar example, the planner is the headquarters of the firm. The

division (principal) aims to maximize its own profits; the headquarters, however, is

interested both in the profit which the division makes from a particular buyer (agent)

but also in the profits to be made from this buyer by its other divisions in the future.

This profit may depend both on the type of the buyer and, because, say, of learning
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effects, on the quantity consumed by the buyer, which affects future willingness-to-

pay.

Our formulation assumes that the principal is able to commit to her second-stage

mechanism. One possible reason for this is that from the point at which P and A

meet there is, for exogenous reasons such as perishability, a finite time available in

which to complete the transaction. A third party, on the other hand, is not able to

exploit this deadline because he cannot observe the precise times at which principals

and agents meet, or their horizons. More generally, there are many settings in which

it is harder for a third party to commit other agents than it is for those agents to

commit themselves. Moreover, we conjecture that our results would generalize to

other extensive forms, such as bargaining games in which both players discount the

future and the principal makes offers at each discrete period over an infinite horizon.

We include some remarks on this in the following subsection.

We do not need to assume that the planner can oblige the parties to use his

mechanism. Rather both parties have a legal right to take part in it. Would the

principal, if she could, offer a different mechanism to be played in stage 1 instead of the

planner’s mechanism? Since, in our equilibrium, after every message of the planner’s

mechanism the principal offers this mechanism again, she would also choose to offer

it before the agent plays it, i.e. the planner’s mechanism is interim renegotiation-

proof. It might be argued that the principal could propose, in order to circumvent

renegotiation, to delay and play the planner’s mechanism at the deadline, which

would solve the renegotiation problem. However, the agent would have no incentive

to agree, since renegotiation cannot harm him and in principle could benefit him.

We assume that the planner cannot prevent renegotiation by, for example, de-

stroying any remaining quantities of the good (in case the principal is a seller and the

agent a buyer) or by taxing away the principal’s surplus from renegotiation. Physi-

cally destroying remaining quantities might be impossible if the planner cannot verify

at what point his mechanism has been executed. Similarly, in order to tax the prin-

cipal’s surplus the planner would have to be able to verify if renegotiation has taken

place, which might be difficult if parties’ renegotiation agreements are silent or can be
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claimed to form part of an entirely new contractual agreement between the principal

and the agent (for a further discussion, see Hart and Moore (1999)).

3.6 Infinite-Horizon Bargaining

In the model above we have assumed that the principal, at the second stage, is

able to make a take-it-or-leave-it offer of a mechanism to the agent. We conjecture

that our results will generalize in some form to other extensive forms, including those

in which the principal has much less commitment power.

For example, consider the following extensive form for the bilateral trade case. As

in subsection 3.4, the utility of type θ of the buyer is θx but now the seller has a single

indivisible good for sale, with c normalized to zero. Time is discrete and extends over

an infinite horizon (τ = 0, 1, 2, ...). The buyer plays the initial mechanism at time 0.

If the outcome is that the good is unsold then, beginning at time 0, seller and buyer

play a standard infinite-horizon bargaining game in which the seller makes all the

price offers, as in Fudenberg, Levine and Tirole (1985). That is, at any time τ ≥ 0, if

the buyer has not yet accepted any offer, the seller makes a price offer pτ which the

buyer either accepts or rejects. Both players have discount factor δ < 1. Extending

Definition 2, we can regard a utility schedule U as r-implementable if there exists a

mechanism and a Perfect Bayesian Equilibrium of the induced game (consisting of

the mechanism plus subsequent bargaining) in which each type θ of buyer has utility

U(θ).

Take a r-implementable schedule U . The analog of Lemma 1 continues to apply

for this model, so the outcome for any type θ is deterministic. It takes the form

(τ(θ), t(θ)), meaning that trade takes place at time τ(θ) and the discounted value of

the transfers from buyer to seller is t(θ), where U(θ) = θδτ(θ) − t(θ). In the natural

direct revelation mechanism10 associated with U(.), which we denote by γ(U), the

buyer announces his type and the outcome for announcement θ is a contract according

to which the buyer receives the good at time τ(θ) and pays a price p(θ), where t(θ) =

10Cramton (1985) refers to this as a direct revelation sequential bargaining mechanism.
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δτ(θ)p(θ). The types are partitioned into intervals [θn, θn−1), [θn−1, θn−2), ..., [θ0, θ−1],

where θn = θ and θ−1 = θ̄, with associated prices pn, pn−1, ..., p1, p0, in such a way

that for all θ ∈ [θi, θi−1), τ(θ) = i and p(θ) = pi.

Our conjecture is that a version of the Renegotiation Invariance Principle holds

in this model. That is, U can be implemented by γ(U); the buyer randomizes over all

announcements below his true type in such a way that, for any announcement, the

seller’s beliefs are such that the sequence of prices p0, p1, p2, ...pn and the sequence

of acceptance sets [θ0, θ−1), [θ1, θ0), ..., [θn, θn−1) are the equilibrium path of a Perfect

Bayesian Equilibrium continuation. If so, a planner who would like to implement

a particular utility schedule U which is different from the one resulting from the

bargaining game alone can do so by giving the parties the mechanism γ(U) and thus

induce the required beliefs for the seller. Developing this analysis, and establishing

which outcomes can be r-implemented, are left for future work.

4 Conclusion

In this paper we have analyzed the impact of non-cooperative ex-post renegotiation

on the set of implementable outcomes in a general mechanism design problem. When

parties can commit not to renegotiate a mechanism, any increasing decision rule can

be implemented by using a direct revelation mechanism that is designed to elicit

the truth from privately informed parties. When this commitment is not possible,

the set of implementable rules is restricted because a direct revelation mechanism

cannot fully extract all information from the parties. Nevertheless, we have shown

that the restriction takes a very simple form - essentially, no type’s decision can be

reduced by the mechanism, and the slope of the decision function cannot be too

high. Furthermore, the direct revelation mechanism which is appropriate for the

no-renegotiation case implements the desired outcome in the renegotiation case too.
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Appendix

Proof of Lemma 1 (i) Since m is optimal for θ and m′ is optimal for θ′,

u(xφ(m, sP , θ), θ)− tφ(m, sP , θ)) ≥ u(xφ(m′, sP , θ
′), θ)− tφ(m′, sP , θ

′)

and

u(xφ(m′, sP , θ
′), θ′)− tφ(m′, sP , θ

′) ≥ u(xφ(m, sP , θ), θ
′)− tφ(m, sP , θ).

Therefore, since ux > 0 and uxθ > 0, xφ(m′, sP , θ
′) ≥ xφ(m, sP , θ).

(ii) Let M ′(θ) = {m ∈ M |xφ(m, sP , θ) > x∗(θ)}. If m ∈ M ′(θ) then θ /∈
supp(G(.|m)). But

pr({(θ,m) ∈ Θ×M |θ /∈ supp (G(.|m))andm ∈ supp (sA(.|θ))} = 0,

where pr refers to the joint distribution derived from F and sA. Therefore pr{θ ∈
Θ|sA(M ′(θ)|θ)) > 0} = 0.

(iii) Suppose xφ(m, sP , θ) > xφ(m′, sP , θ). Then Lemma 1(ii) implies that xφ(m′, sP , θ) <

x∗(θ), and so θ < θ̄(G(.|m′)). There are two cases to consider. (a) there exists θ1 =

min{θ̃ > θ|θ̃ ∈ supp(G(.|m′)}. (b) there exists a sequence {θi}∞i=1 ⊆ supp(G(.|m′))
and {θi}∞i=1 ↓ θ.

Case (a): downward incentive constraints bind for the mechanism sP (m′) so

u(xφ(m′, sP , θ1), θ1)− tφ(m′, sP , θ1) = u(xφ(m′, sP , θ), θ1)− tφ(m′, sP , θ) (6)

But θ is indifferent between m and m′, so

u(xφ(m′, sP , θ), θ)− tφ(m′, sP , θ) = u(xφ(m, sP , θ), θ)− tφ(m, sP , θ).
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Therefore, since θ1 > θ and xφ(m, sP , θ) > xφ(m′, sP , θ),

u(xφ(m, sP , θ), θ1)− tφ(m, sP , θ) > u(xφ(m′, sP , θ), θ1)− tφ(m′, sP , θ).

So, by (6),

u(xφ(m, sP , θ), θ1)− tφ(m, sP , θ) > u(xφ(m′, sP , θ1), θ1)− tφ(m′, sP , θ1)

which contradicts optimality of message m′ for θ1.

Case (b). By Lemma 1(i), xφ(m, sP , θ) ≤ xφ(m′, sP , θi) for all θi ∈ {θi}∞i=1. Right-

continuity of sP (m′) implies xφ(m′, sP , θ) ≥ xφ(m, sP , θ). Contradiction. QED

Proof of Lemma 2 In the equilibrium described in Proposition 1, after message

θ, P will optimally offer a mechanism which gives the efficient outcome for θ̄(G) =

max(supp(G(.|θ))), by efficiency at the top. If θ̄(G(.|θ))) < θ̄ this implies that she

doesn’t offer (Θ, X, T ). Contradiction. Therefore θ̄(G(.|θ))) = θ̄ for any message θ in

the support of A’s strategy.

Suppose that θ1 ∈ supp(G(.|θ)), θ2 ∈ supp(G(.|θ)), where θ2 > θ1 but (θ1, θ2) ∩
supp(G(.|θ)) = ∅. Then, since downward incentive constraints bind in sP (θ), type θ2

is indifferent between (X(θ1), T (θ1)) and (X(θ2), T (θ2)). But this contradicts the fact

that (X,T ) is IC for the type set Θ and X is strictly increasing. Hence, the support

of P ’s posterior belief is an interval. QED

Proof of Lemma 3 We can take sA(.|θ) to have a density on (θ, θ̄]. Denote this

density by σA(.|θ). Take any θ1 in the support of sA and any θ2 > θ1. By Bayes’

Rule,

[
1−G(θ2|θ1)

g(θ2|θ1)
] = [

1− F (θ2)

f(θ2)
]

∫ θ̄
θ2
σA(θ1|θ)h(θ)dθ

σA(θ1|θ2)
,

where

h(θ) =
f(θ)

1− F (θ2)
.
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Hence

σA(θ1|θ2)(
1−GX(θ2)

gX(θ2)
) = (

1− F (θ2)

f(θ2)
)

∫ θ̄

θ2

σA(θ1|θ)h(θ)dθ.

If θ1 = θ, the same applies, with sA replacing σA, i.e. probability mass rather than

density. Integrating over θ1 ∈ [θ, θ2],

(
1−GX(θ2)

gX(θ2)
)[sA(θ|θ2) +

∫ θ2

θ

σA(θ|θ2)dθ]

= (
1− F (θ2)

f(θ2)
)[

∫ θ̄

θ2

sA(θ|θ)h(θ)dθ +

∫ θ2

θ

∫ θ̄

θ2

σA(θ1|θ)h(θ)dθdθ1].

But

sA(θ|θ2) +

∫ θ2

θ

σA(θ|θ2)dθ = 1

and

sA(θ|θ) +

∫ θ2

θ

σA(θ1|θ)dθ1 ≤ 1

for θ ∈ (θ2, θ̄]. Hence 1−GX(θ)
gX(θ

) ≤ 1−F (θ)
f(θ)

. This proves (i).

(ii) Take θ′ ≥ θ in the support of sA, θ > θ′ and δ > 0. Then

g(θ + δ|θ′)
g(θ|θ′)

=
f(θ + δ)

f(θ)

σA(θ′|θ + δ)

σA(θ′|θ)
,

so
gX(θ + δ)

gX(θ)
=
f(θ + δ)

f(θ)

σA(θ′|θ + δ)

σA(θ′|θ)
,

Therefore
σA(θ′|θ + δ)

σA(θ′|θ)

is independent of θ′ and equal to, say, ν(θ, δ). Similarly,

sA(θ|θ + δ)

sA(θ|θ)
= ν(θ, δ).

However,

sA(θ|θ) +

∫ θ

θ

σA(θ′|θ)dθ′ = 1
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and

sA(θ|θ + δ) +

∫ θ

θ

σA(θ′|θ + δ)dθ′ ≤ 1.

Hence
gX(θ + δ)

gX(θ)
≤ f(θ + δ)

f(θ)
.

Letting δ → 0, this implies
(gX)′(θ)

gX(θ)
≤ f ′(θ)

f(θ)
.

QED
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