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Abstract

We propose a bubble game that involves sequential trading of an asset com-
monly known to be valueless. Because some traders do not know where they
stand in the market sequence, the game allows for a bubble at the Nash equi-
librium when there is no cap on the maximum price. We run experiments
both with and without a price cap. Structural estimation of behavioral game
theory models suggests that quantal responses and analogy-based expecta-
tions are important drivers of speculation.

Keywords: Rational bubbles, irrational bubbles, experiments, cogni-
tive hierarchy model, quantal response equilibrium, analogy-based expecta-
tion equilibrium



1 Introduction

Historical and recent economic developments such as the South Sea, Mis-
sissippi, and dot com price run-up episodes suggest that financial markets
are prone to bubbles and crashes. However, to the extent that fundamental
values cannot be directly observed in the field, it is very difficult to empir-
ically demonstrate that these episodes actually correspond to mispricings.1

To overcome this difficulty and study bubble phenomena, economists have
relied on the experimental methodology: in the laboratory, fundamental val-
ues are induced by the researchers and can thus be compared to asset prices.
Starting with Smith, Suchanek and Williams (1988), many researchers docu-
ment the existence of speculative bubbles in experimental financial markets.2

We propose a bubble game that complements Smith et al. (1988) and is
simple enough to be analyzed using the tools of (behavioral) game theory.
Moreover, it enables to control for the number of trading opportunities thus
easing the interpretation of experimental data. The bubble game features
a sequential market for an asset that generates no cash flow (and this is
announced publicly to all market participants). Traders do not know where
they stand in the market sequence nor can they observe past traders’ actions.
The price proposed to the first trader in the market sequence is random
and the subsequent price path is exogenous.3 Traders have limited liability
and are financed by outside financiers. At each point in the sequence, an
incoming trader has the choice between buying or not at the proposed price.
If he declines the offer, the game ends and the current owner is stuck with
the asset.

When there is a price cap (consistent with the fact that there is a finite
amount of wealth in the economy), only irrational bubbles can form: upon
receiving the highest potential price, a trader realizes that he is last in the

1In this paper, we define the fundamental value of an asset as the price at which agents
would be ready to buy the asset given that they cannot resell it later. See Camerer (1989)
and Brunnermeier (2009) for surveys on bubbles.

2The design created by Smith, Suchanek and Williams (1988) features a double auc-
tion market for an asset that pays random dividends in several successive periods. The
subsequent literature refined this design to show that bubbles also tend to arise in call
markets (Van Boening, Williams, LaMaster, 1993), with a constant fundamental value
(Noussair, Robin, Ruffieux, 2001) and with lottery-like assets (Ackert, Charupat, Deaves,
and Kluger, 2006), but tend to disappear when some traders are experienced (Dufwenberg,
Lindqvist, and Moore, 2005), when there are futures markets (Porter and Smith, 1995)
and when short-sales are allowed (Ackert, Charupat, Church, and Deaves, 2005).

3Our set up is inspired by the two-envelope puzzle discussed by Nalebuff (1989) and,
especially, Geanakoplos (1992). The Supplementary Appendix available online relates the
bubble game to this puzzle as well as to the Saint-Petersburg paradox.
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market sequence and, if rational, refuses to buy. Even if not sure to be last
in the market sequence, the previous trader, if rational, also refuses to buy
because he anticipates that the next trader will know he is last and will
refuse to trade. This backward induction argument rules out the existence
of bubbles when there is a price cap, if all traders are rational and rationality
is common knowledge. By increasing the level of the cap, one increases the
number of steps of iterated reasoning needed to rule out the bubble. As a
result, varying the level of the cap enables the experimenter to understand
how bounded rationality or lack of higher-order knowledge of rationality
affect speculative bubbles. This is of interest in light of the theoretical
analyses of Morris, Rob, and Shin (1995) and Morris, Postlewaite, and Shin
(1995) who show that lack of common knowledge fosters bubble formation.

When the price cap is infinite, bubbles can be rational because no trader
is ever sure to be last in the market sequence. Proposing an experimental
analysis of rational bubbles is difficult because extant theories in which
bubbles are common knowledge involve infinite trading opportunities and
infinite losses.4 5 The bubble game overcomes these difficulties: there is a
finite number of trades and the potentially infinite losses are concentrated
in the hands of outside financiers who are consequently not part of the
experiment.

Our experiment features various treatments depending on the existence
and the level of a price cap. Subjects participate in only one treatment and
in a one-shot game.6 Our experimental results are as follows. First, bubbles
arise whether or not there is a cap on prices. Bubbles thus form even if
they would be ruled out by backward induction. Second, the propensity for

4Such an infinite number of trading opportunities may derive from infinite horizon
models (see, for example, Tirole (1985) for deterministic bubbles, Blanchard (1979) and
Weil (1987) for stochastic bubbles, Abreu and Brunnermeier (2003), and Doblas-Madrid
(2012) for clock games), or from continuous trading models (see Allen and Gorton, 1993).

5The theoretical analyses of Allen, Morris, and Postlewaite (1993), and Conlon (2004)
show that rational bubbles can occur with a finite number of trading opportunities and
without exposing participants to potentially infinite losses. These analyses however in-
volve asymmetric information regarding the asset cash flows. In order to be in line with
the literature on experimental bubbles, we design an experiment in which there is no
asymmetric information on the asset payoff. Because trading is not continuous, asset
prices as well as potential gains and losses have to grow without bounds for a bubble to
be sustained at equilibrium (see Tirole, 1982).

6The Supplementary Appendix reports two robustness experiments. In the first ex-
periment, the same treatments are used but the game is now repeated five times with
stranger matching. In the second experiment, a one-shot game experiment is organized
with executive MBA students. Experience with the game or in business does not eliminate
speculation in the bubble game.
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a subject to enter a bubble increases with the distance between the offered
price and the maximum price. We refer to this phenomenon as a snowball
effect, and show that it is related to a higher probability not to be last and
to a higher number of steps of iterated reasoning.

Different explanations based on various generalizations of the Nash equi-
librium can be put forward to explain these results. First, because the bub-
ble game involves introspective and iterated reasoning, one could think of
the Cognitive Hierarchy (hereafter CH) model of Camerer, Ho, and Chong
(2004). This model considers that players underestimate other agents’ so-
phistication (see, for example, Camerer and Lovallo (1999) for evidence con-
sistent with such underestimation in an experimental entry game). Second,
because the game requires longer and longer chains of belief formation when
a player is further away from the maximum potential price, one could also
expect the Quantal Response Equilibrium (hereafter QRE) of Mac Kelvey
and Palfrey (1995) to be relevant. The QRE features players who correctly
anticipate others’ mistakes. This equilibrium concept may thus be viewed as
a way to model strategic uncertainty and to study how it propagates across
nodes of the game (see, for example, Mc Kelvey and Palfrey (1998) for an ap-
plication of the QRE to the centipede game). Finally, it might be difficult to
form beliefs about the likelihood of speculation at each possible transaction
price. Instead, players might simplify the problem by assuming that this
likelihood is the same across various transaction prices. The Analogy-Based
Expectation Equilibrium (hereafter ABEE) of Jehiel (2005) could thus be
pertinent (see Huck, Jehiel, and Rutter (2011) for evidence consistent with
players using analogy reasoning in normal form games).7 Our theoretical
analysis shows that each of these three generalizations can account for the
main stylized facts from the experiment, namely, the existence of bubbles
even when there is a price cap and the presence of a snowball effect. One
of the main contribution of the present paper is then to test which of these
explanations is most likely from an empirical point of view. This enables us
to learn more about the nature of speculation in the bubble game.

We estimate various specifications of two models of bounded rationality:
the Subjective Quantal Response Equilibrium (hereafter SQRE) of Rogers,
Palfrey, and Camerer (2009), and the Analogy-Based Expectation Equilib-
rium (hereafter ABEE) of Jehiel (2005). The SQRE is an equilibrium con-
cept in which agents depart from Nash equilibrium due to less than perfect

7In the ABEE logic, agents use simplified representations of their environment in order
to form expectations. In particular, agents are assumed to bundle nodes of the game into
analogy classes. Agents then form correct beliefs concerning the average behavior within
each analogy class.
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payoff responsiveness (players might not always choose the best response
to their beliefs regarding other players’ behavior) or due to erroneous ex-
pectations regarding other players’ payoff responsiveness. The SQRE nests
the QRE that features less than perfect payoff responsiveness but rational
expectations, and the CH model that features perfect responsiveness but
underestimation of other players’ one.8 Estimating SQRE and its various
nested models, we show that speculation in the bubble game is related to
quantal responses rather than to cognitive hierarchies. Since each subject
plays only once, it is somehow surprising that equilibrium considerations
embedded in QRE (and also in ABEE, see below for the results) matter to
explain behavior in our experiment. The best-fitting specification in this
class is a Heterogeneous Quantal Response Equilibrium (hereafter HQRE)
that generalizes the QRE to take into account the fact that payoff respon-
siveness varies across subjects.

The ABEE offers an interesting complementary point of view on the
bubble game.9 Bianchi and Jehiel (2011) indeed suggest that the ABEE
logic can generate bubbles in an environment in which they do not arise if
all traders are commonly known to be perfectly rational. Our experiment
enables us to test what type of analogy classes best explains speculation in
the bubble game. Our results show that an ABEE with two analogy classes,
one including the traders who know they are not last and the other including
the remaining traders, has a fit that is not significantly different at 5% from
the HQRE when estimated on the data from treatments in which not all
players know their position in the market sequence.10 The main message
of the paper is thus that both stochastic choices and analogy classes are
important drivers of speculation in the bubble game.11

8Both the SQRE and the ABEE as well as their various specifications are introduced
more precisely in Section 4 of the paper.

9When estimating ABEE, we follow Huck, Jehiel, and Rutter (2011) and consider that
agents play noisy best responses to their beliefs regarding other traders’ behavior.

10The fit of ABEE with two classes is significantly lower than the one of the HQRE
when estimated on the entire data that includes an additional centipede-like treatment in
which all players know where they stand in the market sequence. Augmenting the ABEE
to include potential heterogeneity in individual payoff responsiveness improves the fit of
the ABEE but not significantly.

11QRE and ABEE offer distinct explanations for the emergence of bubbles. From an
empirical point of view, the evidence of categorical-type of thinking during the dot-com
bubble (as documented, for example, by Cooper, Dimitrov, and Rau (2001)) suggests
that ABEE could be relevant. On the other hand, QRE could be relevant to explain
the Chinese warrant bubble to the extent that option prices violated model-free bounds
on fundamental values (see, for example, Xiong and Yu (2011) for evidence of put prices
being higher than the corresponding strike prices).
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The rest of the paper is organized as follows. The next section compares
the bubble game to the previous literature. Section 3 presents the bubble
game and the Bayesian Nash predictions. Section 4 derives the behavioral
game theory predictions using SQRE, and ABEE logics. The empirical re-
sults are in Section 5. Section 6 concludes and provides potential extensions.

2 Literature review

The bubble game in which agents trade sequentially can be viewed as a
generalization of the centipede game in which not all players know where
they stand in the sequence.12 13 The bubble game indeed shares some
features with the centipede game. On the one hand, because of limited
liability, the sum of traders’ potential gains increases as the bubble grows.
On the other hand, when there is a price cap, the game can be solved by
backward induction.

There are however several important differences between the bubble
game and the centipede game. First, our generalization enables the ex-
istence of a bubble equilibrium when there is no cap on prices, without
relying on an infinite horizon game. Second, since traders play only once,
there is no reputation building considerations in the bubble game. Third,
in the bubble game, traders are offered a price at which they can buy. This
price reveals information which enables them to perform inferences regarding
their position. This informational ingredient is not present in the centipede
game.

These conceptual differences have important consequences from an ex-
perimental point of view. First, one can perform a bubble experiment in
an environment in which there actually exists a bubble equilibrium. Sec-
ond, the absence of reputational issues eliminates one potential explanation
for behavior that is not really relevant for bubbles from an empirical per-
spective. Third, the informational aspect of our game opens the scope for
behavioral regularities that are not present in the centipede game. In par-
ticular, we show that QRE is better at explaining speculative behavior than

12See, for example, Mc Kelvey and Palfrey (1992) for an experimental analysis of the
centipede game.

13This is related to the absent-minded centipede game proposed by Dulleck and
Oechssler (1997): in a classic centipede game, some agents suffer from imperfect recall
and may not realize that they have reached the end of the game. The bubble game is
different in the sense that even traders with perfect recall may not know where they stand
in the sequence, and that price information received by traders enables further inference
regarding their position.
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CH which is the opposite to what has been previously found on the centipede
game.14 The relative importance of quantal responses compared to cogni-
tive hierarchies for bubbles is a novel empirical finding that opens interesting
perspectives for the understanding of speculative behavior.

Our experimental analysis is also related to Lei, Noussair and Plott
(2001) and to Brunnermeier and Morgan (2010). 15 Lei, Noussair and
Plott (2001) use Smith et al. (1988)’s design and show that, even when they
cannot resell and realize capital gains, some participants still buy the asset
at a price which exceeds the sum of the expected dividends. This behav-
ior is consistent with risk-loving preferences or violation of dominance. We
extend Lei et al. (2001)’s analysis in the sense that, in our design, i) risk
preferences cannot explain the decision to buy at the maximum price, and
ii) one can observe the behavior of traders who need to perform one, two
and even more steps of iterated reasoning to find out that speculating is not
an equilibrium.

Brunnermeier and Morgan (2010) study clock games both from a theo-
retical and an experimental standpoint. These clock games can indeed be
viewed as metaphors of “bubble fighting” by speculators, gradually and pri-
vately informed of the fact that an asset is overvalued. Speculators do not
know if others are already aware of the bubble. They have to decide when
to sell the asset knowing that such a move is profitable only if enough spec-
ulators have also decided to sell. Their experimental investigation and ours
share two common features. First, the potential payoffs are exogenously
fixed, that is, there is a predetermined price path. Second, there is a lack
of common knowledge over a fundamental variable of the environment. In
Brunnermeier and Morgan (2010), the existence of a bubble is not common
knowledge. In our setting, the existence of the bubble is common knowl-
edge but traders’ position in the market sequence is not. There are several
differences between our approach and theirs. A first difference is the time di-
mension. The theoretical results tested by Brunnermeier and Morgan (2010)
depend on the existence of an infinite time horizon. They implement this
feature in the laboratory by randomly determining the end of the session.
By contrast, we design an economic setting in which there could be bubbles

14See, for example, the experimental investigations of the centipede game by Mc Kelvey
and Palfrey (1992) who apply the QRE logic, and by Kawagoe and Takizawa (2010) who
apply the CH logic and argue that it better fits the data than the QRE logic.

15A related analysis of bubbles is offered by Palfrey and Wang (2012) who experimentally
study speculation due to traders’ differential interpretation of public signals. A recent
working paper by Asparouhova, Bossaerts, and Tran (2011) study bubbles in a laboratory
experiment in which the asset payoff is determined by the result of a centipede game.

6



in finite time with finite trading opportunities, even if traders act rationally.
A second difference is that our experimental design also enables the study of
irrational bubbles. A third difference is that we account for the formation of
rational and irrational bubbles by showing that bounded rationality models
can explain observed behavior.

3 The bubble game

This section proposes a simple experimental design in which bubbles may
or may not be ruled out by backward induction. This design features a se-
quential market for an asset whose fundamental value is commonly known
to be 0. There are three traders in the market.16 Trading proceeds sequen-
tially. Each trader is assigned a position in the market sequence and can
be first, second or third with the same probability 1

3 . Traders are not told
their position in the market sequence but can infer some information when
observing the price at which they are offered to buy.

Prices are exogenously given and are powers of 10.17 For simplicity, we
do not include the issuer of the asset in the present experimental design.
The first trader is offered to buy at a price P1 = 10n. The power n follows

a geometric distribution of parameter 1
2 , that is P (n = j) = 1

2

j+1
, with

j ∈ {0, 1, 2, ...}. The geometric distribution is useful from an experimental
point of view because it is simple to explain and implies that the conditional
probability to be last in the market sequence is equal to 0 if the proposed
price is 1 or 10, and is equal to 4

7 otherwise.18 If a trader decides to buy
the asset at price Pt, he proposes the asset to the next trader at a price
Pt+1 = 10Pt.

In order to prevent participants from discovering their position in the
market sequence by hearing other subjects making choices or by measuring
the time elapsed since the beginning of the game, subjects play simultane-
ously. Once P1 has been randomly determined, the first, second and third

16We could have designed an experiment with only two traders per market. However,
this would have required higher payments for bubbles to be rational. Indeed, the condi-
tional probability to be last would be higher. We could also have chosen to include more
than three traders per market. We decided not to do so in order to have a sufficiently
high number of observations at the different price levels.

17We have chosen prices to be powers of 10 in order for the profit in case of a successful
speculation to compensate for the loss incurred in case of a failed speculation. If there
were more traders in the market sequence, the probability to be last would decrease and
price explosiveness could be lower.

18The probabilities to be first, second or third conditional on each price, which are
computed using Bayes’ rule, are given to the participants in the Instructions.
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traders are simultaneously offered prices of P1, P2, and P3, respectively.19

If they decide to buy, they automatically try and resell the asset.
Each trader is endowed with 1 unit of capital. Additional capital may

be required in order to buy the asset at price Pt > 1. This additional capital
(that is, Pt− 1) is provided by an outside financier. The experimenter plays
the role of the outside financier for all players. Payoffs are divided between
the trader and the financier in proportion of the capital initially invested:
a fraction 1

Pt
for the trader, and a fraction Pt−1

Pt
for the financier. Consider

a trader who decides to buy the asset at price Pt. When he is unable to
resell, his final wealth is 0 which corresponds to the fundamental value of
the asset. The outside financier also ends up with 0. When the trader is
able to resell the asset, he gets 1

Pt
percent of the proceed Pt+1 = 10Pt and

thus ends up with a final wealth of 10. The outside financier ends up with
10Pt − 10.20

The separation of payoffs between traders and outside financiers allows
implementing limited liability in the experiment: the maximum potential
loss of a trader is 1. The potentially infinite gains and losses are incurred
by financiers. However, financing all the traders and also playing the role of
the issuer, the experimenter faces a maximum total payment, per cohort of
3 subjects, of 20. This maximum payment occurs when all subjects decide
to enter the bubble. The experimenter is thus not subject to bankruptcy
risk.

The timing of the bubble game is depicted in Figure 1.21 Speculating is
profitable for trader j if the following individual rationality (IRj) condition
is satisfied:

[1− P (last)]× P (next trader buys)× Uj (10)

+{[1− P (last)]× P (next trader doesn’t buy) + P (last)}×Uj (0) ≥ Uj (1) ,

19This experimental procedure corresponds to the strategy method. When a trader does
not accept to buy the asset, subsequent traders end up with their initial wealth whatever
their decision. The advantage of this method is that we can observe traders’ speculation
decision even if a bubble does not actually develop.

20When traders are self-financed, payoffs’ absolute values are scaled up by Pt. Intro-
ducing traders’ limited liability and outside financiers undoes this scaling. This change
has some relevance from a practical point of view because most traders do have limited
liability and invest other people’s money. This change can also have some consequences
for behavior in our experiment (as well as in practice): the stakes being smaller than when
they are self-financed, traders might have more incentive to enter into bubbles.

21This timing does not correspond to the extensive form of the game. Indeed, it leaves
aside the issue of which player is first, second, or third. The extensive-form game is
provided in Appendix A for the two-trader case. When there is no cap on the first price,
it includes an infinite number of nodes.
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? ? ? 

Figure 1: Timing of the bubble game.
The bubble game features a sequential market in which traders are protected by limited liability and
financed by outside financiers. Question marks emphasize the fact that traders are equally likely to
be first, second or third, and to be offered to buy at prices P1, P2, or P3, respectively. This figure
displays traders’ payoff only. In case of successful speculation, traders’ payoff is 10 because prices
are powers of 10 and traders invest one unit of capital. Appendix A provides the extensive-form
game for the two-trader case.

where P (last) is the probability that the trader is last in the market se-
quence conditional on the price he is being proposed, and Uj (.) is his utility
function.

In order to study how traders’ rationality influences speculation, we in-
troduce a cap K = 10k on the first price, with k ∈ {0, 1, 2, ...}. With
three traders only, the cap K on the first price translates into a cap of
10k+2 = 100K on the highest potential price in the bubble game. The
Bayesian Nash equilibrium is as follows. If K is finite, upon being proposed
a price of 100K, an agent understands that he is last in the market sequence.
Consequently, his individual rationality condition cannot be satisfied and he
refuses to buy. Anticipating this refusal, agents who are proposed lower
prices also refuse to buy, even if they are not sure to be last in the market
sequence. At the Bayesian Nash equilibrium, a bubble never forms, being
ruled out by backward induction.22 This establishes a connexion between
the bubble game and the previous experiments initiated by Smith et al.
(1988) that focus on irrational bubbles.

The bubble game complements this previous literature because we can
vary K to study how the number of iterated steps of reasoning needed
to reach the Nash equilibrium influences speculation. When the proposed

22With a cap on prices, everyone not buying is in fact the unique rationalizable strategy
profile.
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price is P = 100K, an agent knows that he is last and no iterated step of
reasoning is needed. When the proposed price is P = 10K, a subject knows
that he is not first in the market sequence (he can be second or third). At
equilibrium, he has to anticipate that the next trader in the market sequence
(if any) would not accept to buy the asset. One step of iterated reasoning
is thus needed to derive the equilibrium strategy. More generally, when the
proposed price is 1 ≤ P ≤ 100K, the required number of iterated steps of
reasoning is log10

(
100K
P

)
. In order to study whether this required number

of iterated steps of reasoning affects bubble formation, we have chosen to
experimentally study treatments in which K equals 1, 100, and 10,000.

Another interesting aspect of our design is that we can let K go to in-
finity. A bubble can arise at equilibrium if the (IRj) condition is satisfied
for all traders on the market. It is straightforward to show that, if traders
anticipate that other traders speculate, there indeed exists increasing and
concave utility functions Uj (.) for which this (IRj) condition holds. The
bubble game thus offers an economic environment in which rational bub-
bles can form despite the number of trades being finite and the existence
of the bubble being common knowledge. Hence our paper contributes to
the literature on rational bubbles by showing that neither infinite trading
horizon (see Blanchard (1979) and Tirole (1982)) nor infinite trading speed
(see Allen and Gorton (1993) and Abreu and Brunnermeier (2003)) are nec-
essary for common knowledge rational bubbles to exist.23 The possibility of
equilibrium bubbles in our setting arises because no trader is ever sure to
be last in the market sequence.24

In order to show that the bubble equilibrium is meaningful, we now check
whether financiers are willing to fuel the bubble. It is clear that, if the same
financier provides capital to all traders (as it is the case in the experiment),
his total expected profit would be negative. However, we show below that,
if each trader has a different outside financier, these financiers may have
an interest in providing capital to traders. Assuming that a financier has a
utility function denoted by Uf (.) and an initial wealth denoted by W , his
individual rationality condition (IRf) is written as:

23In the previous models, two dimensions of infinity were required for bubbles to emerge
at equilibrium: infinite trading opportunities and potentially infinite prices. We show that
only this last dimension of infinity is necessary for common knowledge rational bubbles
to arise at equilibrium.

24It is straightforward to show that a no-bubble equilibrium always exists. The Supple-
mentary Appendix proves the existence of a bubble equilibrium for the risk neutral and
constant relative risk aversion cases. It also offers a more extensive theoretical analysis of
the bubble game including a welfare analysis.
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[1− P (last)]P (next trader buys)Uf (W + 10Pt − 10)

+ {[1− P (last)]× P (next trader doesn’t buy) + P (last)}
× Uf (W − Pt + 1) ≥ Uf (W ) ,

for all Pt. It is again straightforward to show that, if financiers expect
that all traders speculate, there exist functions Uf (.) for which the (IRf)
condition holds.

The experimental protocol is as follows. Our baseline experiment in-
cludes a total of 234 subjects. Subjects are junior and senior undergraduates
in Business Administration at the University of Toulouse. Each subject par-
ticipates in only one session and receives a 5-euro show-up fee. Each session
includes only one replication of the trading game. Subjects’ risk aversion is
measured thanks to a procedure inspired from Holt and Laury (2002). We
adjust their questionnaire to match the set of potential decisions subjects
actually face in our experiment. This enables us to measure risk aversion
in a context that is in line with the experimental set up as far as payoffs
and probabilities are concerned.25 The minimum, median, maximum, and
average gains in the experiment are respectively 0, 1, 10, and 3.35 euros (not
including the show-up fee). The instructions for the case where K = 10, 000
are in Appendix B.

Our experimental protocol is summarized in Table I.

Session # Subjects cap on initial price, K Bayesian Nash Equilibrium

1, 5, and 9 60 1 no-bubble

2, 6, and 10 54 100 no-bubble

3, 7, and 11 63 10,000 no-bubble

4, 8, and 12 57 +∞ no-bubble or bubble

Table 1: Experimental protocol.

25The questionnaire is composed by a table with 14 decisions. For each decision i,
subjects may choose between the riskless option A, which is to receive 1 euro for sure,
or the risky option B, which is to receive 10 euros with probability i

14
, or 0 euro with

probability 14−i
14

. This questionnaire features what Harrison, List and Towe (2007) refer
to as a higher frame: a risk-neutral agent switches to the risky option B in the upper part
of the table. It gives us a precise estimation of the willingness to accept the bets at stake
in the bubble game.
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4 Behavioral game theory predictions

This section analyzes the game with various behavioral game theory mod-
els. The next section structurally estimates these models using data from
the bubble game. Two types of models appear relevant in our context: the
Subjective Quantal Response Equilibrium (hereafter SQRE) of Rogers, Pal-
frey, and Camerer (2009), and the Analogy-Based Expectation Equilibrium
(hereafter ABEE) of Jehiel (2005). On the one hand, the SQRE is of interest
here since i) it is based on the concept of noisy best-response that proved use-
ful to explain failures of backward induction in previous experiments (see
Camerer (2003)), and ii) it allows for heterogeneity in agents’ rationality
that could be an important driver of bubble formation. On the other hand,
the ABEE is relevant here because i) belief formation about the likelihood
of speculation at each price being complicated, players might simplify the
problem as considered in this equilibrium concept, and ii) candidates for
analogy classes arise naturally in the bubble game.

4.1 Subjective Quantal Response Equilibrium

According to the SQRE logic, an agent’s payoff responsiveness, denoted by
λi,s, depends on his type i and on his level of sophistication, denoted by s.
SQRE then involves a stochastic choice model whereby the agent’s propen-
sity to choose an action has a logistic form that depends on the expected
payoff of this action given his information, and on his payoff responsiveness.
The expected payoff from buying the asset conditional on being proposed
a price P is denoted by ui,s(B|P ). The expected payoff from not buying
the asset is denoted by u∅. We adopt a specification with logistic stochastic
choice functions so that the probability that agent i buys the asset after

being proposed a price P is: Pi,s(B|P ) = eλi,sui,s(B|P )

eλi,sui,s(B|P )+eλi,su∅
.

In the SQRE logic, agent i’s payoff responsiveness is given by: λi,s =
λi + γs, where it is commonly known that λi is uniformly distributed over
the interval [Λ − ε

2 ,Λ + ε
2 ], and where γ represents the sensitivity of an

agent’s payoff responsiveness to his level of sophistication. The level of
sophistication s follows a Poisson distribution with density function f . Let
τ denote the average level of sophistication.

Finally, in the SQRE logic, agents may not have the same understanding
of the overall population of players. In particular, it is assumed that an
agent with sophistication s cannot imagine that other agents can have a
sophistication greater than s − θ. The agent’s truncated beliefs about the
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fraction of h-level players is thus gs(h) = f(h)∑max(s−θ,0)
i=0 f(i)

. The expected payoff

from buying the asset conditional on being proposed a price P can thus be

written as: ui,s(B|P ) = 10 [1− P(last|P )]
∑max(s−θ,0)

h=0 gs(h)Pi′,h(B|10P ).26

Overall, SQRE has five parameters: Λ, the basic payoff responsiveness; ε,
the uncertainty surrounding the basic payoff responsiveness; τ , the average
level of sophistication; γ, the sensitivity of payoff responsiveness to sophis-
tication; and θ, the imagination parameter. As noted by Rogers, Palfrey,
and Camerer (2009), SQRE is useful to incorporate the notion of skill. Skill
is captured by the payoff responsiveness parameter λi,s. The higher this
parameter is, the more responsive the player is to payoffs and the better
he perceives other players’ skills. This player might misperceive the distri-
bution of skill in the population but, conditional on a skill level, he holds
correct beliefs on the choice probabilities.

One advantage of using the SQRE is that it nests various interesting
behavioral game theory models. In particular, when Λ = 0, ε = 0, γ = +∞
and θ = 1, the SQRE boils down to the Cognitive Hierarchy model (here-
after CH) developed by Camerer, Ho and Chong (2004) with only one free
parameter τ . The CH model states that agents best-respond to mutually
inconsistent beliefs: they believe that all other agents’ sophistication is lower
than theirs.27 Moreover, agents with a level of sophistication s = 0 choose
each available action with an equal probability. Alternatively, when ε = 0,
θ = +∞, and when γ = 0 or τ = 0, the SQRE corresponds to the Quan-
tal Response Equilibrium (hereafter QRE) of Mc Kelvey and Palfrey (1995)
with only one free parameter Λ. The QRE takes into account the fact that
players make mistakes but it retains beliefs’ consistency. At equilibrium,
players are responsive to payoffs to the extent that more profitable actions

26Given our experimental design, subjects play a simultaneous-move game in which de-
cisions matter only if previous traders in the market sequence, if any, decide to buy the
asset. We calculate expected payoffs conditional on this event in order to simplify equi-
librium computations. Our specification of the QRE thus corresponds to Mc Kelvey and
Palfrey (1998)’s Agent QRE in which agents play only once. An alternative specification
is to compute expected payoffs ex-ante, that is, taking into account the probability that
previous players, if any, decide to buy. We checked that, when estimated on the entire
data, the quantal response equilibrium has a better fit with our specification than with
the ex-ante specification (p-value is 0.00 with a Vuong test).

27The level-k model of Stahl and Wilson (1995) and Nagel (1995) also exhibits such
downward looking beliefs. The difference between these models and the CH model is that
they assume that agents believe that all other agents have a level of sophistication that
is just below theirs. See also Costa-Gomes, Crawford, and Broseta, (2001), Costa-Gomes
and Crawford (2006), and Crawford and Iriberri (2007) for experimental studies of the
level-k model.
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are chosen more often. Using the SQRE enables us to study whether noisy
best-responses with beliefs consistency or best-responses with beliefs incon-
sistencies best explain speculation in the bubble game.

Another advantage of the SQRE is that the QRE and CH models can be
extended to take into account heterogeneity across agents. The CH model
can be extended to a (discretized) Truncated Quantal Response Equilib-
rium (hereafter TQRE) by setting γ < +∞. As a result, we have a CH
model in which agents, instead of best-responding, have a payoff respon-
siveness that increases with their level of sophistication. Likewise, the QRE
can be extended to a Heterogeneous Quantal Response Equilibrium (here-
after HQRE) by setting ε > 0. We then have a QRE in which agents do
not know for sure what the exact level of payoff responsiveness of another
agent is.28 Both of these extensions can prove useful to understand whether
heterogeneity across agents plays a role in bubble formation.

A last advantage of the SQRE is that is can be used to estimate whether
overconfidence matters for speculative bubbles. The limited imagination pa-
rameter θ indeed represents the extent to which agents underestimate the
average level of sophistication in the population of players, a phenomenon
we refer to overconfidence because it is similar in spirit to the better-than
average effect in the psychology literature. Starting from the CH model
and freeing the parameter θ, we can estimate the extent to which agents
suffer from limited imagination. We call this model the overconfidence CH
(hereafter OCH). θ positive corresponds to a high level of overconfidence
because agents believe that all other players are less sophisticated than they
are. When θ is negative, agents conceive that other players may be more so-
phisticated than them but they are still underestimating the average level of
sophistication due to their truncated beliefs. In the limit, when θ converges
to −∞, there is no overconfidence.

We now apply the SQRE to the bubble game. For brevity, we focus here
on the QRE and CH models for treatments with a finite price cap K.29

We first study the QRE. After being proposed a price P = 100K, a
trader perfectly infers that he is last in the market sequence and buys with

28Uncertainty about other traders’ payoff responsiveness can be interpreted as uncer-
tainty about their level of risk aversion.

29The computations for the general specification of the SQRE as well as for the case
in which K = +∞ are available in the Supplementary Appendix. Extending the CH and
QRE models to incorporate traders’ heterogeneity as modeled in the TQRE and HQRE
models does not change the underlying logic. For the case in which K = +∞, we derive
predictions by relying on equilibrium conjectures that are realized at equilibrium as it is
the case for the derivation of the Nash equilibrium.
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probability P (B|P = 100K) = 1
1+eΛ

. After observing a price P = 10K, a
trader infers that he has a specific probability, denoted by q(K,P = 10K),
not to be last. He correctly anticipates that the probability to buy of the last
trader is not equal to zero. His expected payoffs from buying is u(B|P =
10K) = q(K,P = 10K) × 1

1+eΛ
× 10. His probability to buy is therefore

P (B|P = 10K) = 1

1+e
Λ×

(
1− 10q(K,P=10K)

1+eΛ

) . Applying this logic backward, we

find the predicted probability that a trader buys at all potential prices. This
analysis shows that the QRE can predict the existence of bubbles even when
there is a price cap.

Consider now the CH model. When proposed a price of 100K, a trader
knows he is last in the sequence. Consequently, only level-0 traders buy,
with probability 1

2 . Given that there is a fraction f (0) = τ0e−τ

0! of such
traders in the population, the probability to observe a trader buying at this
price is: P (B|P = 100K) = 1

2e
−τ .

When a trader is being proposed a price P = 10K, he infers that he is
penultimate in the sequence. If he is a level-0 trader, he buys with prob-
ability Ps=0(B|P = 10K) = 1

2 . If he is a level-s player with s ≥ 1, he
thinks that the next trader observing the price 100K is a level-h with prob-
ability gs(h) = f(h)∑s−1

i=0 f(i)
. Consequently, his expected profit if he buys is:

us≥1(B|P = 10K) = q(K,P = 10K) × f(0)∑s−1
i=0 f(i)

× 1
2 × 10. The trader is

strictly better off buying if and only if
∑s−1

i=0
τ i

i! < 5q(K,P = 10K). Given

that
∑s−1

i=0
τ i

i! is strictly increasing in s, there exists a (potentially infinite)
threshold s∗ ≥ 1 such that only traders with a level below or equal to s∗

buy. This is because higher level traders have a more accurate perception of
the distribution of lower-level types. Finally, given the actual distribution
of traders’ types, the probability to observe a trader buying at a price of
P = 10K is: P (B|P = 10K) = 1

2e
−τ +

∑s=s∗

s=1

(
τs

s! e
−τ). As before, the rest of

the model is solved backward. The CH model can thus predict the existence
of bubbles despite the presence of a price cap.

4.2 Analogy-Based Expectation Equilibrium

According to the ABEE logic, agents use simplified representations of their
environment in order to form expectations. In particular, agents are assumed
to bundle nodes of the game into analogy classes. 30 Agents then form

30Consistent with Jehiel (2005) when he studies endogenous analogy grouping (in page
100), we consider that an agent’s bundling includes his own nodes. This specification is
chosen for simplicity: it enables us to work with analogy classes that are constant across
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correct beliefs concerning the average behavior within each analogy class.
Following Huck, Jehiel, and Rutter (2011), we consider that agents apply
noisy best-responses to their beliefs.31

In the bubble game, two types of analogy classes arise naturally. On
the one hand, traders may use only one analogy class, assuming that other
traders’ behavior is the same across all potential prices. On the other hand,
traders may use two analogy classes: one class (Class I) that includes prices
at which traders are sure not to be last in the market sequence, the other
(Class II) that includes the remaining prices (at which traders think they
may be last or know they are last).

We now apply the ABEE to the bubble game. For brevity, we restrict
our attention to the case in which the price cap is K = 1 (the other cases are
addressed in the Supplementary Appendix). Let p1, p2, and p3 denote the
actual probability that a trader buys after observing prices equal to 1, 10,
and 100, respectively. Let P(B|P = 1), P(B|P = 10), and P(B|P = 100) be
the corresponding probabilities as (mis)perceived by traders using analogy
classes.

We start by analyzing the one-class ABEE. A trader after observing a
price P = 100 knows he is last. Consequently, his probability to buy is
p3 = 1

1+eΛ
. A trader after observing a price P = 10 has the following

expected payoff from buying: u(B|P = 10) = 10× P(B|P = 100). Because
of the use of one analogy class, we have P(B|P = 100) = p1+p2+p3

3 .32 The
probability to buy after P = 10 is therefore: p2 = 1

1+e
Λ(1− 10

3 (p1+p2+p3))
. A

trader after observing a price P = 1 has an expected payoff of u(B|P =
1) = 10 × P(B|P = 10) = 10p1+p2+p3

3 . The probability to buy is therefore:
p1 = p2. This analysis leaves us with a system of equations that can be
solved numerically to find p1, p2, and p3.

We now turn to the two-class ABEE. As before, a trader after observing a
price P = 100 buys with a probability p3 = 1

1+eΛ
. A trader after observing

a price P = 10 has the following expected payoff from buying: u(B|P =
10) = 10×P(B|P = 100). Because Class II is a singleton, we have P(B|P =

players.
31The ABEE concept with stochastic choice remains different from the QRE given that,

in the ABEE logic, agents have inaccurate expectations regarding other players’ behavior.
One can thus test whether this inaccuracy helps explaining the data.

32The probability 1
3

corresponds to the ex-ante probability of observing prices of 1, 10 or
100. Given our experimental design in which all agents have to pick an action irrespective
of whether previous players have decided to buy or not, using this ex-ante probability is
in line with the spirit of ABEE. If we had chosen an experimental design corresponding to
the extensive representation of the game, we would have P(B|P = 100) = p1+p1p2+p1p2p3

1+p1+p1p2
.

16



100) = p3. Thus, we have p2 = 1
1+eΛ(1−10p3) . A trader after observing a price

P = 1 uses Class I to form his expectations and thus has an expected payoff
of u(B|P = 1) = 10 × P(B|P = 10) = 10p1+p2

2 . The probability to buy is
therefore: p1 = 1

1+eΛ(1−5(p1+p2)) . The system of equations can again be solved
numerically.

Overall, one can show that the ABEE can predict the presence of a
bubble even when there is a price cap. The intuition is as follows. At
the ABEE, traders expect that the probability to buy is constant across
different prices. This leads them to overestimate the likelihood that traders
buy towards the end of the market sequence. A bubble can also arise at
equilibrium in the ABEE logic even if agents best-respond to their beliefs,
that is, even if Λ = +∞.33

4.3 Implications of the behavioral game theory models for
speculative bubbles

We use the derivations provided in the previous subsections in order to
highlight the implications for speculative bubbles of the various behavioral
game theory models we consider. For simplicity, we focus on the case in
whichK = 1 and on the decision to buy after observing P = 10 and P = 100,
the last two consecutive prices.

The QRE predicts that the probability to buy is P (B|P = 10) =

[
1 + e

Λ
(

1− 10

1+eΛ

)]−1

after observing P = 10, and P (B|P = 100) =
[
1 + eΛ

]−1
after observing

P = 100. The propensity to buy when P = 100 is pretty low because
traders can only lose by doing so. It is higher when P = 10 because there
is a chance that the next trader will buy. This higher chance of reselling
induces a higher propensity to speculate.34 The snowball effect in the QRE
model is thus due to the fact that the initial noise due to stochastic choice
is amplified when stepping back away from the maximum price. The QRE
predicts a snowball effect when K = +∞.

33For example, one can check that the following strategy profile is an ABEE with one
analogy class: traders buy after observing prices of 1 and 10 and do not buy after observing
a price of 100. With two analogy classes, the following profile is an ABEE: traders buy
after observing a price of 1 and do not buy after observing prices of 10 and 100.

34It is not always true that, in the QRE, P
(
B|P = 10i

)
> P

(
B|P = 10i+1

)
. Con-

sider, for example, the general case with a cap K in which the probability that trader
i is not to be last after observing P = 10i is denoted by q(K,P = 10i). We have

P
(
B|P = 10i

)
=
[
1 + eΛ(1−10q(K,P=10i)P(B|P=10i+1))

]−1

. If q(K,P = 10i) is low enough

compared to q(K,P = 10i+1), it is possible that P
(
B|P = 10i

)
< P

(
B|P = 10i+1

)
.
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The CH model predicts that P (B|P = 10) = 1
2e

−τ +
∑s=s∗

s=1

(
τs

s! e
−τ) and

that P (B|P = 100) = 1
2e

−τ . s∗ is the highest level of sophistication s such

that the inequality
∑s−1

i=0
τ i

i! < 5 is satisfied. This inequality indicates that
an agent with sophistication s is better off speculating. The propensity
to speculate when P = 100 is pretty low because only step-0 players buy
with probability 1

2 . It is higher when P = 10 because some agents with
higher levels of sophistication also decide to speculate. The snowball effect
in the CH model is thus due to an increase in the willingness to speculate
of more sophisticated agents. Contrary to the QRE, for K = +∞, the
CH model does not predict a snowball effect. Indeed, all traders have the
same propensity to buy for all prices: traders with s > 0 always speculate
while traders with s = 0 speculate with probability 1

2 . Our experiment thus
constitutes a stringent test for the CH model.

To analyze the implications of ABEE for the bubble game, we focus
on the one-class ABEE. This model predicts that a trader speculates with

probability p2 =

[
1 + e

Λ
(

1− 10
3

[
(1+eΛ)

−1
+2p2

])]−1

after observing P = 10,

and p3 = 1
1+eΛ

after observing P = 100 (p1, the probability to buy after
observing P = 1, is equal to p2). For example, for Λ = 1, numerical com-
putations yield p1 = p2 = 0.999 and p3 = 0.269. Because of analogy-based
expectations, the trader who observes P = 10 believes that the probability
that the next trader buys is p1+p2+p3

3 instead of p3. In the case we consider,
such erroneous beliefs induces him to overestimate the probability that the
next trader buys which increases his propensity to speculate.35 This rein-
forces the snowball effect above what would be predicted by the QRE, even
in the case in which K = +∞.

5 Empirical Results

5.1 The determinants of speculation in the bubble game

We study individual decisions to buy the overvalued asset. Figure 2 plots,
for each treatment, the proportion of buy decisions for each price level. The
number of times a given price has been proposed is indicated at the bottom
of the bar. Below the horizontal axis, we explicitly indicate, for each price,

35It is not always the case that, in ABEE, traders overestimate the likelihood that
the next trader speculates. Consider, for example, the two-class ABEE with K = 100.
The trader observing P = 10 anticipates that the next trader is in Class II and that his
probability to buy is p3+p4+p5

3
. If p3 > p4 and p3 > p5, then the actual probability that

the next trader buys p3 is higher than the expected probability p3+p4+p5
3

.
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Figure 2: Data and predictions from behavioral game theory models.
Experimental data on the probability of a Buy decision, depending on the initial price, the prob-
ability not to be last and the number of steps of iterated reasoning. Predictions from behavioral
game theory models use the parameters of interest estimated on the entire data set.

the number of steps of reasoning required to reach equilibrium as well as the
conditional probability not to be last.

Let’s first focus on the treatments with a cap on the first price. The
rather high probabilities to buy in these treatments (Figure 2, Panels A, B
and C) are inconsistent with Nash equilibrium. Keeping the probability not
to be last constant, it seems that traders are more likely to buy when more
steps of reasoning are required (for example, compare the proportion of buy
decisions when traders are sure not to be last in Figure 2, Panels A, B, and
C). This is in line with previous experimental results on the centipede game.
36

36When the price proposed to subjects is 1, the propensity to buy is very high (100% of
subjects choose to buy when the price cap is greater than 1). This propensity to deviate
from the Nash equilibrium strategy is in line with the results reported by Mc Kelvey and
Palfrey (1992) on the six-move centipede game regarding the very low proportion of games
that end up in the first node. A high propensity to buy when being proposed a price of 1
is also observed in the robustness experiments discussed in the Supplemental Appendix.
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Also, keeping the number of steps of reasoning constant, it seems that
traders are more likely to buy when their probability not to be last increases
(for example, compare the proportion of buy decisions for 3 and 4 steps
of reasoning in Figure 2, Panel B and C). This is a new empirical result
that could not meaningfully be obtained in the centipede game because the
probability not to be last is equal to 1 for each node except the last one at
which it is 0. This result indicates that there is some elements of rationality
in subjects’ decisions.

These results uncover a snowball effect: when there is a price cap, the
propensity to enter bubbles seems to increase with the required number of
reasoning steps and with the probability not to be last.

We now turn to the treatment in which there is no cap on the first price
(Figure 2, Panel D), that is, K = +∞. First, subjects who are sure not to
be last always buy the asset which indicates a higher propensity to speculate
than when there is a price cap (for example, compare the proportion of buy
decisions when traders are sure not to be last in Figure 2, Panels D, and
C). A Wilcoxon rank sum test indicates that the proportion of buy decision
when subjects are offered a price of 1 or 10 is significantly higher when
K = +∞ (100%) than when there is one (77%) (the p-value is 0.034). 37

This is in line with the fact that bubbles are rational when K = +∞.
Second, focusing exclusively on data from K = +∞, the probability to

buy appears to be statistically higher when subjects are sure not to be last
(100%) than when they can be last (54%) (the p-value is 0.001 according to
a Wilcoxon rank sum test). There is thus a snowball effect in the treatment
with K = +∞. This is in contrast with the prediction of the CH model.

Third, when there is no cap and when prices are 100 or above, if partici-
pants coordinate on the same equilibrium, their decisions should be the same
for all price levels. In line with this hypothesis, using a Wilcoxon rank sum
test, we cannot reject the fact that the probability to buy is the same after
observing prices of 100, 1,000, and 10,000 (57%), and after observing higher
prices (46%) with a p-value of 0.52 (this test keeps the required number of
steps constant and equal to infinity).

These three results on the treatment with no cap cannot be obtained in
an experiment with the centipede game, and underline the interest of our
design for the study of speculation.

In order to deepen our statistical analysis, we run a logit regression of

37This result however does not hold if we compare the cases K = +∞ (100%) and
K = 10, 000 (92%) (the p-value is 0.261). Besides, there is no difference in the probability
to buy when a subject has a probability not to be last equal to 3

7
or 1

2
between the cases

K = +∞ (54%) and K = 10, 000 (64%) (the p-value is 0.367).
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the propensity to buy the overvalued asset.38 As can be seen in Table II, the
first four explanatory variables are constructed by interacting variables that
measure the number of steps of reasoning required to reach equilibrium and
the probability to be last. The last two variables are the individual degree
of risk aversion and the offered price.39 The constant reflects the propensity
to speculate of subjects who are proposed to buy at the maximum price
(100K), if any.40 This is useful because, since these subjects are expected
not to buy, their probability to buy can be viewed as the incompressible
level of noise in our data.

The results are in Table II. We first focus on the subjects who know they
are last in the market sequence. We can reject the hypothesis that these
subjects never enter the bubble. Out of the 29 subjects who knew they
were last, three bought the asset.41 This number is low but it is not zero.
This result is in line with the findings of Lei, Noussair and Plott (2001) that
subjects were buying an overvalued asset even when prohibited to resell.
In our framework, these agents correspond to “step 0” subjects. Lei et
al. (2001) report in page 853 that 6 out of 36 subjects made at least one
dominated transaction.42 This proportion (16.7%) is slightly higher than
our proportion of dominated choices (10.3%). We now complement their
results by studying the behavior of subjects who are further away from the
maximum price and who have more chances not to be last.

The regression analysis provides other interesting results. First, subjects
who have a chance not to be last buy significantly more than the ones who
know they are last. Indeed, the coefficients of Variables 1 through 4 are
significantly positive at the one percent level. Second, keeping constant
the probability to be last, subjects are more likely to buy when there are

38The results are the same if we run a probit regression.
39The coefficient of risk aversion is computed assuming a constant relative risk aversion

utility function as in Holt and Laury (2002).
40The regression also includes control variables that reflect the level of the cap in order

to test for treatment effects. These variables are omitted for the sake of brevity. None of
their coefficient is statistically significant and the results do not change if we omit these
variables from the analysis.

41None of the behavioral game theory models we consider can explain this phenomenon
in a way more satisfying than stating that people make random errors. However, as
explained above, the various models have different implications regarding the impact of
these errors on the market.

42We focus here on the experiment of Lei, Noussair and Plott (2001) during which
subjects could participate in several markets, the so-called TwoMarket/NoSpec treatment.
This is because, in this treatment, subjects could participate actively in the experiment
without being forced to participate in the bubble. This provides a lower bound for the
number of subjects who make mistakes in the market.

21



 

 

Coefficient p-value

Constant  -1.84 0.005

1: IStep=1 or 2 x I0<P(last)<1 1.80 0.013

2: IStep=1 or 2 x IP(last)=0 2.60 0.000

3: Istep>=3 x I0<P(last)<1 2.82 0.000

4: Istep>=3 x IP(last)=0 5.65 0.000

Degree of risk aversion  - 0.62 0.249

Price  -0.00 0.451

Log likelihood  -116.22

Number of observations 234

Table 2: Logit Regression of the Purchase Decision.
Ix is an indicator variable that takes the value 1 if condition x is true. The variable Step represents
the number of steps of reasoning needed to rule out bubbles. The variable P(last) is the probability
to be last in the market sequence.

3 or more steps of reasoning than when there are 1 or 2 steps. Wald tests
indicate that the differences between the coefficients of Variables 1 and 3 and
of variables 2 and 4 are statistically significant with a p-value of 0.07 and
0.01, respectively. Third, keeping constant the required number of reasoning
steps, subjects are more likely to buy when they are less likely to be last.
Wald tests indicate that the difference between the coefficients of Variables 1
and 2 is marginally significant with a p-value of 0.11, and that the difference
between the coefficients of Variables 3 and 4 is statistically significant with
a p-value of 0.01.

These results statistically establish the presence of the snowball effect:
the propensity to enter bubbles increases with the required number of rea-
soning steps and with the probability not to be last. This snowball effect is
not present at the Bayesian Nash equilibrium (whether there is a cap or not)
but it can be displayed by the behavioral game theory models discussed in
the previous section. The next subsection proposes a structural estimation
of these models in order to better understand the nature of speculation in
the bubble game.
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5.2 Estimating behavioral game theory models of specula-
tion

Our results so far suggest that some players have bounded rationality and
that the formation of bubbles is related to a snowball effect. To account for
these phenomena, we estimate models that explicitly incorporate bounded
rationality: the Subjective Quantal Response Equilibrium of Rogers, Palfrey,
and Camerer (2009), and the Analogy-Based Expectation Equilibrium of
Jehiel (2005).43 For each model, we estimate the parameters of interest
using maximum likelihood methods for the entire data set as well as for
each treatment separately.44 Confidence intervals are computed using a
bootstrapping procedure: using the empirical distribution of the observed
data, we resample 10,000 data sets on which the parameters of interest are
re-estimated. We then choose the 2.5 and 97.5 percentile points values to
construct 95% confidence intervals. When comparing the fits of two models,
we use a likelihood ratio test when the models are nested, and Vuong (1989)’s
test when they are not. 45

Table III reports our estimation results, and Figure 3 displays the sta-
tistical tests for various models’ comparisons. The first two lines of Table
III describe our data, namely, the number of observations, and the observed
average probability to buy. The next two lines show the predictions and
log-likelihoods of the Nash equilibrium under risk neutrality.46 The mean
choices are generally far away from the Nash equilibrium; the observed prob-
ability to buy is too low when there exists a bubble-equilibrium, and too
high when it does not exist.

Table III then provides the predictions and log-likelihoods of the various

43We initially planned to estimate the quantal response equilibrium and the cognitive
hierarchy model. Following suggestions from the referees, we decided to estimate the
Subjective Quantal Response Equilibrium which nests these two models, and the Analogy-
Based Expectation Equilibrium.

44For simplicity, when estimating the Truncated Quantal Response Equilibrium and
the general Subjective Quantal Response Equilibrium models, we set θ = 1 as in the CH
model.

45Under the null hypothesis, the probability distribution of the log-likelihood ratio statis-
tic used to test nested models is approximated by a Chi-squared distribution with degrees
of freedom equal to the difference between the numbers of parameters in the two models,
while the probability distribution of the Vuong’s statistic used to test non-nested models
is a standard normal distribution.

46We consider that traders coordinate on the bubble equilibrium when there is no cap
on the initial price. The no-bubble Nash equilibrium has a lower log-likelihood. In order
to compute the likelihoods, we assume that players choose non-equilibrium strategies with
a probability of 0.0001.

23



Table 3: Estimations and goodness of fit of behavioral game theory models.
In order to compute log-likelihoods for the Nash equilibrium, we assume that there is one chance
out of 10,000 that players choose the non equilibrium strategy. In the no-cap case, there are two
Nash equilibria: this table focuses on the bubble equilibrium which has the highest likelihood.
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SQRE and ABEE models including the Cognitive Hierarchy model and its
extension, the Truncated Quantal Response Equilibrium, and the Quantal
Response equilibrium and its extension, the Heterogeneous QRE (hereafter
HQRE), and the one- and two-classes ABEE. For brevity, the estimation of
the Overconfidence Cognitive Hierarchy model is given in the Supplementary
Appendix.

The results are as follows. The average level of sophistication τ of the
CH, estimated on the entire data set, is 0.5. This is in line with the median
estimates reported by Camerer, Ho and Chong (2004) that lie between 0.7
and 1.9, but is a little low. This low estimated τ suggests a high proportion
of level-0 players, around 60%. Interestingly, what drives this result is not
really the fact that traders enter too much into bubbles when they should
not. Indeed the fact that there is only around 10% of subjects who buy
when they know they are last in the market sequence suggests a proportion of
level-0 players equal to 20%. What explains the high estimated proportion of
level-0 players is rather the fact that subjects do not buy as much as expected
by the cognitive hierarchy model (with a higher average sophistication level)
when there is no cap on the initial price or when the cap is large. This can
be seen on Figure 2 that plots the predictions of the CH model using the
best-fitting value of τ estimated on the entire data set. CH embeds the
better than average effect to the extent that traders believe that no other
agent does as many steps of reasoning as them. Our estimations of OCH
(reported in the Supplementary Appendix) show that, when the parameter
θ can be identified, we cannot reject the hypothesis that θ = 1, its CH
restriction. Overconfidence is thus an important feature that enables the
CH logic to fit our data pretty well.

The payoff responsiveness Λ of the QRE, estimated on the entire data
set, is 0.3. This is consistent with the results of Mc Kelvey and Palfrey
(1995) who report estimates between 0.15 and 3.3. As was also the case for
the CH model, such a low value of the responsiveness parameter is required
not so much to explain why subjects buy when they should not (that is,
when the offered prices are close to the price cap, if any) but to explain
why they do not buy that much when they should (that is, when the offered
prices are low).

As shown in Figure 3 that displays the statistical tests for various models’
comparisons, the QRE fits our data better than the CH model (p-value=0.01
for the overall data). This result is interesting because Camerer, Ho and
Chong (2004) show that CH fits better than QRE for a wide variety of
games. This suggests that there is a specific aspect to the nature of specu-
lation in the bubble game. Moreover, this result is also at odd with those
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Figure 3: Goodness of fit comparisons.
Statistical tests for various models’ comparisons using parameters estimated across all treatments.
The arrows point towards the best model. Plain and dotted lines indicate, respectively, significant
and insignificant differences in likelihood at the 1% confidence level.

of Kawagoe and Takizawa (2010), who compare the goodness of fit of both
models in laboratory experiments of the centipede game. In order to under-
stand why QRE fits better than CH in the bubble game, it is interesting to
focus on the treatment with K = 1. Indeed, this treatment corresponds to
a specific centipede game with three agents playing once. In this treatment,
CH appears to fit better than QRE (p-value=0.046). The other treatments
with K > 1 are not centipede games because some agents do not know what
their position is. In this case, the information revealed by prices enable
traders to better infer their chances not to be last and affect their expected
payoffs. For these treatments, QRE fits better than CH most of the time
(p-values are 0.49, 0.06, and 0.00 for K equals 100, 10,000, and +∞, respec-
tively). Given that the informativeness of prices is a relevant feature from
an empirical point of view, this result demonstrates again the interest of our
design in better understanding the nature of speculation.

Looking at Figure 2, it appears that QRE better captures the fact that
the probability to buy when the price is higher than 100 is lower than the
one when the price is 1 or 10. In the QRE, since costlier mistakes are less
likely, this model is able to capture the drop in players’ expected utility
from buying: when they are proposed a price P ≥ 100, the conditional
probability to be third is greater than or equal to 1

2 , whereas, when they are
proposed a price of 1 or 10, the conditional probability to be third is zero.
This informational feature is present in our design but not in the centipede
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game, and has behavioral consequences in the bubble game.
The most striking difference between the fit of CH and QRE arises in the

treatment with K = +∞. Indeed, in this case, as explained in the theory
section and as can be seen in Figure 2, the CH model does not capture the
snowball effect while QRE does account for it.47

We then estimate generalizations of the CH and QRE models. First,
as Figure 3 indicates, TQRE and HQRE improve on CH and QRE models,
respectively. This suggests that taking into account heterogeneity in payoff
responsiveness enables the models to better fit data from the bubble game.
Second, the fact that HQRE better fits the data than TQRE confirms that
cognitive hierarchies are not necessary to explain speculative behavior in the
bubble game. This result is further confirmed by the SQRE estimations. On
the one hand, as shown in Table 3, the CH parameter τ is strictly positive
in only two treatments (those with K = 1 and K = +∞) and is rather
small. In the two other treatments, we estimate that τ = 0, so the SQRE
model boils down to the HQRE. On the other hand, even in the former
cases, a Vuong test indicates that the difference between the fits of the
HQRE and of the SQRE models is not significant. Figure 3 also shows that,
when these models are estimated on the overall data, the likelihood ratio
test favors the HQRE over the SQRE. These results confirm the fact that
cognitive hierarchies are not crucial to understand speculation in the bubble
game. We thus conclude that the nature of speculation in the bubble game
is related to less than perfect payoff responsiveness.

We finally estimate the ABEE models that assume traders form expec-
tations within analogy classes. We find that the two-class ABEE fits the
bubble game data better than the one-class ABEE. Figure 3 indicates that
a Vuong test favors the two-class ABEE model with a p-value of 7%. This
suggests that informational aspects related to the inference on the prob-
ability not to be last are important for speculation in our game. When
estimated on the entire data, the fit of the two-class ABEE appears lower
than the one of the QRE and of the HQRE.48 However, when excluding

47In the No cap treatment, the CH model predicts a probability to buy that is constant
across prices. The maximum likelihood procedure can thus not do better than choosing a
parameter τ such that the predicted probability to buy equals the unconditional probabil-
ity (up to numerical approximation errors). The QRE has a higher maximum likelihood
than the CH model despite the fact that it overestimates the average probability to buy
because it displays a snowball effect and thus minimizes the loss of log-likelihood at prices
of 1 and 10.

48The Supplementary Appendix reports estimations of an heterogeneous ABEE model
referred to as HABEE. Allowing for heterogeneity in payoff responsiveness in the ABEE
model increases the log-likelihood but this increase is not significant.
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the treatment in which K = 1 that corresponds to a centipede game, the
fit of the two-class ABEE is not significantly different at 5% than the one
of the QRE and of the HQRE. Furthermore, focusing on individual treat-
ments, the fit of the two-class ABEE is never significantly different even at
10% than the one of QRE. Compared to HQRE, it is significantly better at
1% for K = +∞ and not significantly different at 5% for the other three
treatments. This suggests that analogy classes play an important role in
understanding speculation as hypothesized by Bianchi and Jehiel (2011).

Moreover, the ABEE models appear better in terms of estimates’ sta-
bility. Indeed, for the SQRE model and its various specifications, the pa-
rameters of interest, estimated separately for each treatment, display some
variability: point estimates in Table III often vary by an order of magni-
tude.49 For example, the estimates of Λ vary from 0.1 to 2.7 in the QRE
model and from 0.4 to 2.3 in the HQRE model. In contrast, the estimates
from the ABEE models appear quite stable across treatments.

6 Conclusion

This paper proposes a novel experimental design to study speculative be-
havior in laboratory experiments: a bubble game in which agents trade
sequentially and do not always know where they stand in the sequence. Our
game has a no bubble Nash equilibrium when there is a finite price cap, and
an additional bubble equilibrium when there is no price cap.

Analyzing our experimental data, some descriptive statistics show that
speculation increases with the number of steps of iterated reasoning needed
to reach equilibrium and with the probability that a subject is not last in the
market sequence. We then offer maximum likelihood estimations of various
behavioral game theory models including, but not limited to, cognitive hi-
erarchy (Camerer, Ho and Chong, 2004), quantal response equilibrium (Mc
Palfrey and Palfrey, 1995), and analogy-based expectation equilibrium (Je-
hiel, 2005). The main finding of the paper is that speculation in the bubble
game is related to quantal responses and analogy classes.

This finding echoes the results of Carrillo and Palfrey (2009, 2011) and
Camerer, Nunnari, and Palfrey (2012) on other Bayesian games. Carrillo
and Palfrey (2009) create and study the compromise game, and show that

49Such parameter estimates’ variability is not unusual in structural estimations of game
theory models. For example, in his Table 3, Weizsäcker (2003) reports estimates of average
payoff responsiveness that lie between 1.75 and 11.33 for player j. As indicated above,
there is also some variability in the estimates of τ and Λ offered by Camerer, Ho, and
Chong (2004) and Mc Kelvey and Palfrey (1995), respectively.
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a mix between the cursed equilibrium of Eyster and Rabin (2005) and the
quantal response equilibrium best fits behavior in the compromise game.50

Carrillo and Palfrey (2011) and Camerer, Nunnari, and Palfrey (2012) fur-
ther find that this cursed quantal response equilibrium also fits quite well
data from experiments with private information on bilateral trading games
and auctions, respectively. Quantal responses and coarse thinking, an in-
gredient of both the cursed equilibrium and the analogy-based expectation
equilibrium, thus appears to be relevant to understand strategic behavior in
Bayesian games.

The experimental setting proposed in the present paper opens several
avenues of research. It would be interesting to study whether the occur-
rence of bubbles (rational and irrational) vary with the number of traders,
the introduction of risk in the underlying asset payoff, and the level of trans-
parency (one could proxy for transparency by setting a non-null probability
that a trade is publicly announced). It would also be interesting to test
whether the structural estimations of behavioral game theory models would
be different after allowing for a high number of repetitions of the bubble
game. Finally, it could be fruitful to extend the experimental setting to
cases in which the price path and the timing are left at the discretion of
traders. This would allow testing whether traders are able to coordinate on
a price path and a timing that sustains rational bubbles.

50In a cursed equilibrium, agents underestimate the correlation between players’ infor-
mation and action. As noted by Jehiel and Koessler (2008), the fully cursed equilibrium
of Eyster and Rabin (2005) is equivalent to an ABEE in which analogy-classes correspond
to the private information partition. Both equilibrium concepts incorporate a form of
coarse thinking according to which agents reason in terms of categories. In the context of
ABEE, agents reason in terms of categories of game nodes (the analogy classes) in which
they expect behavior to be identical. In the context of cursed equilibrium, agents reason
in terms of categories of types that are assumed to have the same behavior.
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7 Appendix

Appendix A: Extensive form of the game with two players

30



n=0

n=1

N N

N

i

i

i

-i

-i

-i

-i

-i

-i

-i

(10;0)

(0;1)

(1;1)

(1;1)

(0;10)

(1;1)

(1;0)

(1;1)

1/2

1/4

1/2

1/2

1/2

b
b

nb
b

nb
b

nb
b

nb

nb

b

nb

(10;0)

(0;1)

(1;1)

(1;1)
n=1

n=2

N

i
-i

-i

-i

-i

-i

-i

i

i

1/8

1/16

…

1/2

1/2

1/2

(0;10)

(1;1)

(1;0)

(1;1)

(10;0)

(0;1)

(1;1)

(1;1)

(0;10)

(1;1)

(1;0)

(1;1)

At each node, Nature (N), player i or player −i choose an action. (x; y)
represents the payoffs; x for player i, and y for player −i. Dotted lines relate
nodes that are observationally equivalent. b refers to the buy decision, nb to
the refusal decision.

31



Appendix B: Instructions for the case where K = 10, 000

Welcome to this market game. Please read carefully the following instructions. They
are identical for all participants. Please do not communicate with the other participants,
stay quiet, and turn off your mobile phone during the game. If you have questions, please
raise your hand. An instructor will come and answer.

As an appreciation for your presence today, you receive a participation fee of 5 euros.
In addition to this amount, you can earn money during the game. The game will last
approximately half an hour, including the reading of the instructions.

Exchange process
To play this game, we form groups of three players. Each player is endowed with one

euro which can be used to buy an asset. Your task during the game is thus to choose
whether you want to buy or not the asset. This asset does not generate any dividend. If
the asset price exceeds one euro, you can still buy the asset. We indeed consider that a
financial partner (who is not part of the game) provides you with the additional capital and
shares profits with you according to the respective capital invested. The market proceeds
sequentially. The first player is proposed to buy at a price P1. If he buys, he proposes to
sell the asset to the second player at a price which is ten times higher, P2 = 10×P1. If the
second player accepts to buy, the first player ends up the game with 10 euros. The second
player then proposes to sell the asset to the third trader at a price P3 = 10×P2 = 100×P1.
If the third player buys the asset, the second player ends up the game with 10 euros. The
third player does not find anybody to whom he can sell the asset. Since this asset does
not generate any dividend, he ends up the game with 0 euro. This game is summarized
in the following figure.

Buy

Buy Buy

Buy Buy

Buy

P1 P2 P3

(10,10,0)

(1,1,1) (0,1,1) (10,0,1)
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At the beginning of the game, players do not know their position in the market
sequence. Positions are randomly determined with one chance out of three for each player
to be first, second or third.

Proposed prices
The price P1 that is proposed to the first player is random. This price is a power of

10 and is determined as follows:
Price P1 Probability that this price is realized
1 1/2 (50%)
10 1/4 (25%)
100 1/8 (12.5%)
1,000 1/16 (6.3%)
10,000 1/16 (6.3%)

Players decisions are made simultaneously and privately. For example, if the first
price P1 = 1 has been drawn, the prices that are simultaneously proposed to the three
players are: P1 = 1 for the first player, P2 = 10 for the second player, and P3 = 100 for
the third player. Identically, if the first price P1 = 10, 000 has been drawn, the prices that
are simultaneously proposed to the three players are: P1 = 10, 000 for the first player,
P2 = 100, 000 for the second player, and P3 = 1, 000, 000 for the third player.

The prices that you are been proposed can give you the following information regarding
your position in the market sequence:

- if you are proposed to buy at a price of 1, you are sure to be first;
- if you are proposed to buy at a price of 10, you have one chance out of three to be

first and two chances out of three to be second in the market sequence;
- if you are proposed to buy at a price of 100 or 1,000, you have one chance out of

seven to be first, two chances out of seven to be second, and four chances out seven to be
last in the market sequence;

- if you are proposed to buy at a price of 10,000, you have one chance out of four to
be first, one chance out of four to be second, and two chances out four to be last.

- if you are proposed to buy at a price of 100,000, you have one chance out of two to
be second, and one chance out of two to be third.

- if you are proposed to buy at a price of 1,000,000, you are sure to be last.
In order to preserve anonymity, a number will be assigned to each player. Once

decision will be made, we will tell you (anonymously) the group to which you belong, your
position in the market sequence, if you are proposed to buy, and your final gain.

Do you have any question?
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