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Abstract

High–speed market connections improve investors’ ability to search for attractive quotes
in fragmented markets, raising gains from trade. They also enable fast traders to observe
market information before slow traders, generating adverse selection, and thus negative
externalities. When investing in fast trading technologies, institutions do not internalize
these externalities. Accordingly, they overinvest in equilibrium. Completely banning fast
trading is dominated by offering two types of markets: one accepting fast traders, the
other banning them. However, utilitarian welfare is maximized by having i) a single
market type on which fast and slow traders coexist and ii) Pigovian taxes on investment
in the fast trading technology.
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1. Introduction

Investors must process very large amounts of information, in particular about trades and

quotes, which are relevant both for the valuation of securities and the identification of trading

opportunities. Timely collection of this information has become increasingly difficult due to

the fragmentation of the markets, e.g., for U.S. equities, there are now more than 50 trading

venues: 13 registered exchanges and 44 so called Alternative Trading Systems.1

In fragmented markets, investors must search for quotes across markets. This can result in

delayed or partial execution, which is costly. Chiyachantana and Jain (2009) find that delays in

execution account for about 1/3 of total costs borne by institutional investors in their sample.2

To reduce these costs, traders can invest in fast trading technologies. For instance, they can

use smart routers that instantaneously compare quotes across trading venues and allocate their

orders accordingly. Furthermore, to better inform their routing decisions, they can buy fast

access to exchange data feed, using colocation rights (the placement of their computers next to

the exchange’s servers), or high-speed connections via fiber optic cables or microwave signals.

By the same token, however, fast trading technologies also accelerate access to value relevant

information for an asset, conveyed by recent transaction prices and quote changes for this asset

or related ones. Numerous empirical studies document that orders placed by fast traders

reflect advance information.3 This informational advantage generates adverse selection costs

for other market participants. For example, Baron, Brogaard, and Kirilenko (2014) observe that

aggressive, liquidity–taking, high–frequency traders earn short–term profits at the expense of

other market participants, and Brogaard, Hendershott, and Riordan (2014) write: “Our results

are consistent with ... high–frequency traders imposing adverse selection on other investors”.

Thus, firms investing in fast trading technologies generate adverse–selection costs for the other

market participants.

1See, for instance, O’Hara and Ye (2011), or, http://fragmentation.fidessa.com/ which provides statistics on
market fragmentation in the U.S. and Europe.

2In practice, delay costs stem from (i) a worsening of price conditions between an order arrival and its
completion and (ii) opportunity costs due to partial execution. Margin constraints could also make delayed
execution costly (see Zhu (2014)).

3For instance, Brogaard, Hagströmer, Norden, and Riordan (2014), Brogaard, Hendershott, and Riordan
(2014), Hendershott and Riordan (2013), Zhang (2013), and Kirilenko, Kyle, Samadi, and Tuzun (2011).
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Fast trading firms have no incentives to internalize these costs when making their investment

decisions, which can generate a wedge between privately and socially optimal investment in fast

trading technologies.4 In this paper, we analyze equilibrium investment decisions in fast trading

technologies, their consequences for welfare, and possible policy interventions (taxation and slow

markets) to achieve the socially optimal level of investment in fast trading technologies.

To examine these issues, we consider a simple model suitable for welfare and policy analysis.

Financial institutions have i) heterogeneous private valuations, e.g., due to differences in tax

or regulatory status, and ii) private information about common values. The latter is a source

of adverse selection, whereas the former creates gains from trade.5 Before trading, institutions

decide to invest or not in a fast trading technology. Then, institutions seek to trade in a

fragmented market. At each round of trade, a fraction λ of the trading venues offer attractive

quotes, while the others do not. Fast institutions can instantaneously search across all markets,

and consequently always find attractive quotes. Slow institutions cannot do so. For simplicity

we assume they can visit only one market venue per period. Correspondingly, at each period,

they execute their desired trade with probability λ. Otherwise they must continue to search

for quotes, and find this delay costly. Moreover, in addition to speeding up execution, fast

institutions’ ability to scan markets ultra rapidly enables them to obtain advance information

(e.g., from observing prices of other correlated assets), generating adverse selection costs for

the other market participants.

First, we analyze equilibrium allocations and prices for a given fraction (α) of fast insti-

tutions. The larger α, the greater the information content, and hence the price impact, of

trades. Now, institutions prefer to abstain from trading when their price impact exceeds their

private gain from trade. Hence, an increase in α lowers gains from trade for all market par-

ticipants. Thus, fast institutions exert a negative externality upon the others, by increasing

adverse selection in the marketplace.

4As written by Hirshleifer (1971), “the distributive aspect of access to superior information... provides a
motivation for the acquisition of private information that is quite apart from any social usefulness of that infor-
mation... There is an incentive for individuals to expend resources in a socially wasteful way in the generation
of such information.”

5The differences in private values in our setting are similar to those in Duffie, Garleanu, and Pedersen (2005).
Our assumption is also in line with Bessembinder, Hao, and Zheng (2013), in which private valuation shocks
induce gains from trade and hence transactions between rational agents.
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Second, we study equilibrium investment in fast trading technologies, i.e., we endogenize

α. Financial institutions invest only if the cost of the fast technology is smaller than the

relative value of being fast, i.e., the difference between the expected profit of a fast and a slow

institution. Now, the relative value of being fast depends on the fraction of institutions who

choose to be fast. Hence, the equilibrium level of investment in the fast trading technology is the

solution of a fixed point problem: if institutions expect the level of fast trading to be α∗, then

exactly this fraction find it optimal to be fast. When the relative value of being fast declines

with the level of fast trading (i.e., if institutions’ decisions are substitutes), the equilibrium is

unique. Otherwise, there can be multiple equilibria. This happens when entry of a new fast

institution reduces the profit of slow institutions more than that of fast institutions. In this

case, institutions’ investment decisions are complements: they reinforce each other, because

the technology becomes increasingly attractive as more institutions invest in it. As a result, all

institutions can end up investing in the fast technology, even though other equilibria with less

or no investment in fast trading exist as well. This outcome has the flavour of an arms’ race,

as in Glode, Green, and Lowery (2012).

Third, we show that, because of the negative externality induced by fast traders, equi-

librium investment in the fast trading technology exceeds its utilitarian–welfare maximizing

counterpart.6 This problem arises whether institutions’ investment decisions are substitutes or

complements. However, complementarities in investment decisions tend to worsen overinvest-

ment because institutions can be trapped in an investment race, even if the socially optimal

level of investment is low.

Fourth, we analyze various possible policy interventions to mitigate this inefficiency. A ban

on fast trading precludes reaping the benefits of the technology. This approach is too harsh

because the socially optimal level of investment is not necessarily zero. We therefore focus on

less heavy-handed approaches.

The first approach is to let “slow markets”(on which fast trading is banned) coexist with fast

markets. This approach always dominates a complete ban on fast trading or “laissez-faire”.

6In practice, trading firms invest significant amounts to obtain fast access to markets. For example, the
cost of Project Express, which drew a new and faster fiber optic cable across the Atlantic, to connect Wall
Street to the City, was $300 million. For 2013 alone, the Tabb Group estimates the investment in fast trading
technologies at $1.5 billion, twice the amount invested in 2012.
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However, it can lead to underinvestment in the fast trading technology. Slow institutions

migrate to slow markets where there is no adverse selection, and this reduces the expected

profits of fast institutions. In this context, there are only two possible equilibrium outcomes:

either all institutions trade in slow markets, or all of them are fast. The “All-Slow”equilibrium

naturally arises when the technological cost is higher than a threshold. However, this threshold

is lower than the threshold below which investment in the fast trading technology is socially

desirable. When the technological cost is between the two thresholds, the introduction of a slow

platform lowers investment in the fast trading technology relative to the utilitarian optimum.

The second approach is to have only fast markets with Pigovian taxation of the fast trading

technology. This approach Pareto dominates the former. Indeed, equating the tax to the

negative externality generated by fast trading leads to the level of investment that maximizes

utilitarian welfare. Redistribution of this tax among all institutions (fast and slow) enables

them to share the social gains.

Our theoretical analysis has several empirical implications. Trades become more informative

when the level of fast trading increases. Hence, a reduction in the cost of fast trading raises

the informational content of trades. This has an ambiguous effect on trading volume, however.

Indeed, investment in fast trading technologies increases the chances that institutions are able

to carry out desired trades, which tends to increase volume, but it also raises price impact,

which tends to reduce trading volume. Consequently, trading volume can be non monotonic in

the level of fast trading. The model also implies that an increase in market fragmentation lowers

the profitability of fast institutions, because it increases the price impact of trades. Yet, for

a high cost of fast trading, increased market fragmentation might stimulate investment in fast

trading because market fragmentation hurts slow institutions even more than fast institutions,

so that the relative value of being fast increases. For a low cost of fast trading, this prediction

is reversed.

The next section discusses the relation between our analysis and the theoretical literature.

Section 3 presents the model and Section 4 derives equilibrium prices and trades, for a given

level of investment in the fast trading technology. This level is endogenized in Section 5. We

then show that the equilibrium level of investment in fast trading technologies is excessive and

study policy responses in Section 6. Section 7 describes empirical implications of the model
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and Section 8 concludes.

2. Related theoretical literature

2.1. Equilibrium information acquisition

Our paper is in line with the seminal analysis of private information acquisition in financial

markets by Grossman and Stiglitz (1980). One major difference is that, while in Grossman and

Stiglitz (1980) trading occurs because of noise traders, in our framework all agents optimize, so

that trading endogenously responds to gains from trade, adverse selection, and information ac-

quisition. This is necessary to perform a welfare analysis of information acquisition in financial

markets. We are not aware of any other welfare analysis of information acquisition in financial

markets, in the absence of noise traders. Moreover, since all trades are optimally chosen by

investors, we can study how uninformed investors’ trading reacts to an increase in the fraction

of informed traders, which enables us to to characterize equilibrium trading volume. Finally,

while in Grossman and Stiglitz (1980) investments in information acquisition are always strate-

gic substitutes, in our model they can also be strategic complements. In Ganguli and Yang

(2009) and Breon–Drish (2013), complementarity in information acquisition arises when prices

become less informative as the number of informed investors increases. This interesting mech-

anism is completely different from that at play in our model, whereby financial institutions can

decide to be fast because they anticipate many others to also be fast, and thus fear to obtain

very low profits if they remain slow.

Llosa and Venkateswaran (2012) and Colombo, Femminis, and Pavan (2014) study the wedge

between social and private optimality of information acquisition. These models, however, do

not apply to trading in financial markets. For instance, Colombo, Femminis, and Pavan (2014)

rely on exogenous technological externalities, negative as in the case of pollution, or positive

if agents have a taste for conformity. This differs from our analysis in which the negative

externality, induced by information acquisition, arises because of endogenous adverse selection

costs for financial market participants.

Hu and Qin (2013) show that investors’ ex-ante expected utility declines with the number
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of informed investors in Grossman (1976)’s model. In their set-up, prices are fully revealing.

Hence, investors are equally informed, whether or not they acquire information, and information

has therefore no private value. In contrast, in our model, information has both private and

social value and investors’ average welfare is not necessarily maximized when all investors are

uninformed. This is indeed the reason why banning fast trading is in general inefficient in our

model.

2.2. Market microstructure

Budish, Cramton, and Shim (2014) develop a model in which market makers invest in speed

to be first to react to, and profit from, public information arrival. In their analysis, however,

investors are noise traders and gains from trade are not modelled. Fast trading simply generates

transfers of resources from investors to market makers, without bringing any social benefit.

From a utilitarian point of view, the cost of fast trading is just the cost of investing in the fast

technology. In this context, trading slowly (e.g., in periodic batch auctions) is always socially

optimal. In contrast, our analysis emphasizes the dual role of fast trading technologies, which

facilitate the search for quotes at the same time as they generate adverse selection. Thus, we

show that the socially optimal level of investment in fast trading technology is in general not

zero, and we analyze the tradeoff giving rise to the socially optimal level of that investment.

Du and Zhu (2013) study the welfare consequences of changing the frequency of uniform

price auctions for a risky asset. In their model, trading is faster when auctions are more

frequent. Investors are strategic with interdependent and decreasing marginal valuations for

owning a risky asset. They privately observe their inventory and signals about their valuations

before trading. In this context, as in Vayanos (1999), slowing trading can be beneficial, because

it reduces the scope for strategic behavior. Yet, with stochastic news arrivals, fast trading can

be socially useful because it reduces the delay until the asset can be reallocated in response to

news. This is in line with the finding, by Pagnotta and Phillipon (2013), that in faster markets,

investors can realize gains from trade more rapidly.

In our analysis, each investor chooses the speed at which it operates on a given market. This

contrasts with Pagnotta and Phillipon (2013) and Du and Zhu (2013), in which the frequency of

trades is determined, for all investors, at the market level. Excessive market investment in speed

6



can arise in Pagnotta and Phillipon (2013) because competing markets seek to differentiate

from one another. In contrast, in our model, excessive investment arises because investors do

not internalize the adverse selection cost they inflict on others. This problem arises even when

there is no competition between markets – a case in which investment in speed is always socially

optimal in Pagnotta and Phillipon (2013).

Our analysis of investors’ choices between fast and slow markets echoes the analysis by Zhu

(2014) of investors’ choices between lit exchanges and dark pools. In both models, one market

segment (dark pools in Zhu (2014) or slow markets in our case) is relatively more attractive

for uninformed traders. However, the two papers focus on different economic mechanisms and

different issues. A key driving force in Zhu (2014) is that the price formation mechanism is

different in the dark–pool and the lit venue. In contrast, a key driving force in our model is

the dual role of fast trading technologies (improving traders’ ability to find attractive quotes

and obtaining advance information about asset payoffs). In this context, Zhu (2014) focuses on

price discovery, while we focus on gains from trade and welfare.

3. Model

Asset: Consider a risky asset trading at dates τ = 1, 2, ..., t, ...,∞. At the end of each

trading round τ , the asset pays off cash-flow θτ , equal to +σ > 0 or −σ.7 Across periods,

cash-flows are i.i.d. For simplicity, we normalize to zero the unconditionally expected stream

of cash-flows by setting Pr(θτ = +σ ) = 1
2
.

Markets: To capture the fragmentation of the market, we assume there is a size–one

continuum of trading venues, distributed on a circle and indexed clockwise from 0 to 1. More-

over, to model variations in liquidity conditions across trading venues, we assume that, at each

period, only a fraction λ < 1 of the trading venues are liquid, in the sense that they offer

7Alternatively, one can assume that the asset pays off VT =
∑τ=T
τ=1 θτ at some random date T̃ and that

θτ is publicly observed by all participants at date τ + 1. With this interpretation, the θτs are innovations in
the expected payoff of the asset due to the arrival of information over time. Results are identical with this
specification but notations are slightly more complex because the expected payoff of the asset varies over time
(it is

∑τ=t
τ=1 θτ at date t).
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attractive quotes. The other venues are illiquid, i.e., they post spreads that are too large to

warrant trades, which, for simplicity, we model as lack of quotes. The set of venues offering

attractive quotes varies from one period to the other. At date τ , the liquid venues are located

on the circle in the interval of size λ, starting at xτ ; xτ is uniformly distributed on the [0, 1]

circle, and i.i.d across periods. If xτ + λ ≤ 1 then the set of trading venues offering attrac-

tive quotes is [xτ , xτ + λ]. If xτ + λ > 1 then the set of venues offering attractive quotes is

[xτ , 1] ∪ [0, λ− (1− xτ )].

Investors: In each period, a continuum of institutions enter the market. All are risk

neutral and discount the future at rate r. For simplicity, each institution can only i) buy one

unit of the asset, or ii) sell one unit of the asset, or iii) refrain from trading. To execute its

desired trade, an institution must find a trading venue posting attractive quotes. When they

enter the market, institutions are uncertain about which venues are liquid, i.e., they do not

know xτ . There are two types of institutions: fast and slow, with different abilities to search

for quotes.

Fast institutions have extremely rapid connections with the markets. Thus, they can inspect

all trading venues instantaneously and find a liquid one with certainty upon arrival. Rapid

connections with markets also enable a fast institution to simultaneously observe prices of

other assets with payoffs correlated with θτ [e.g., futures as suggested by Zhang (2013)]. These

prices provide a signal on θτ , which, for simplicity, we assume to be perfect.

Slow institutions are less efficient at receiving price information from markets and searching

for quotes. Hence, unlike fast institutions, they do not observe recent value relevant prices

from other market, i.e., they do not observe signals about θτ . Moreover, it takes them longer

to detect liquid trading venues. To capture this we assume that, within one period, a slow

institution can inspect only one of the trading venues in the circle. Since it does not know xτ , a

slow institution randomly sends its orders to one of the trading venues, uniformly drawn from

the unit circle. With probability λ, this trading venue is liquid, and the slow institution can

trade. With the complementary probability, it is illiquid and the slow institution cannot trade

during this period.

If a slow institution does not find a liquid trading venue during the period, then, with
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probability π, it can wait until the next period to search again for quotes. With the comple-

mentary probability, 1 − π, the institution exits the market and obtains a zero payoff. Thus,

the likelihood, λs, that a slow institution eventually finds a liquid market is:

λs(λ, π) =
t=∞∑
t=τ

((1− λ)π)t−τ λ = λ(1− (1− λ)π)−1. (1)

λs increases in π and λ and is equal to one when π or λ equal one.

Once an institution has found a liquid market, it decides optimally whether to trade or

not. Then it leaves the market. Denote by α (resp. 1 − α) the mass of new fast (resp. slow)

institutions entering the market at each period and let Iτ be the mass of slow institutions that

entered the market before date τ and are still in the market, searching for quotes at date τ .

Given our assumptions, the law of motion for Iτ is:

Iτ+1 = F (Iτ ) ≡ (1− α)(1− λ)π + Iτ (1− λ)π. (2)

The stationary level of Iτ , is the fixed point, I∗, of F (·), i.e.,

I∗ =
(1− α)(1− λ)π

(1− (1− λ)π)
. (3)

We hereafter focus on the stationary regime, in which, at each period, a mass

((1− α) + I∗)λ = (1− α)λs (4)

of slow institutions find quotes (where the equality follows from Eq. (3)).8

Valuations: We assume institutions’ preferences are linear in common and private values.

Formally, an institution with position y ∈ {−1, 0, 1} and private value δ obtains utility flow

8The process by which slow institutions search for quotes in our model has the flavor of Duffie, Garleanu,
and Pedersen (2005)’s model of search in over the counter (OTC) markets. The reason is that finding a good
quote takes time both in fragmented lit markets or in OTC markets.
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y × (θτ + r(1 + r)−1δ) in period τ .9 The common value, θτ , reflects the stream of cash flows.

In addition, as in Duffie, Garleanu, and Pedersen (2005), each institution is endowed with its

own private valuation, δ.10 Differences in δ, across institutions capture in a simple way that

other considerations than expected cash–flows affect investors’ willingness to hold assets. For

example, regulation can make it costly or attractive for certain investors, such as insurance

companies, pension funds, or banks to hold certain asset classes. Differences in tax regimes can

also induce differences in private values.

Denote by v(δ, iθτ ) the total valuation for the asset of an institution at date τ , with i = 0

if the institution is slow and i = 1 if it is fast. For a slow institution,

v(δ, 0) = E(Σt=∞
t=τ (1 + r)−(t−τ)(θt + r(1 + r)−1δ)) = δ, (5)

and for a fast institution,

v(δ, θτ ) = E(Σt=∞
t=τ (1 + r)−(t−τ)(θt + r(1 + r)−1δ) |θτ ) = δ + θτ . (6)

We assume private valuations, δ, are i.i.d. across institutions and continuously distributed

on [−δ, δ] with cumulative distribution function G(·) and density g(·); g(.) is symmetric around

zero so that G(0) = 1
2
, E(δ) = 0, and G(δ) = Pr(δτ ≤ δ) = Pr(δτ ≥ −δ). Furthermore, we

assume

δ ≥ 2σ. (7)

As shown below, Condition (7) implies that institutions with large valuations are always willing

to trade at the equilibrium bid or ask price. This feature simplifies the exposition without

qualitatively affecting results. In several examples, we shall consider the limit case in which

δ →∞ and private valuations are normally distributed with standard deviation σδ.

9The scaling factor r(1 + r)−1 is just a convenient way to simplify computations. Removing it would not
change any qualitative result.

10For simplicity, unlike in Duffie, Garleanu, and Pedersen (2005), the private valuation of an institution (δ)
does not evolve stochastically through time.
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Trading: We focus on stationary symmetric equilibria. In these equilibria, quotes are the

same across all periods and all liquid trading venues and are symmetrically positioned around

the unconditional expected payoff of the asset (zero). This is natural since all probability

distributions are symmetric around zero and constant over time in our model. Hence, in each

liquid venue, the institutions buy the asset at the ask price S and sell it at the bid price, −S,

i.e., S is the half–spread or effective spread.

Since equilibrium quotes are the same in all liquid venues, fast institutions are indifferent

between all of them. Correspondingly, we assume fast institutions are uniformly distributed

across all liquid venues. Similarly, we assume that slow institutions who find liquid venues are

distributed uniformly across these venues. Thus, each liquid venue is contacted by a mass α of

fast institutions and a mass (1− α)λs of slow institutions.

Denote by ωa(S, θτ ) (resp. ωb(S, θτ )) the mass of institutions buying (resp. selling) the asset

at date τ in each liquid venue. An institution that finds a liquid market optimally chooses to

buy the asset if its valuation is greater than the ask price (v(δ, iθτ ) ≥ S), to sell if its valuation

is smaller than the bid price (v(δ, iθτ ) ≤ −S), and to refrain from trading otherwise. Hence, if

θτ = σ, we have:

ωa(S, σ) = αPr(v(δ, σ) ≥ S) + (1− α)λs Pr(v(δ, 0) ≥ S)

= αG(S − σ) + (1− α)λsG(S), (8)

ωb(S, σ) = αPr(v(δ, σ) ≤ −S) + (1− α)λs Pr(v(δ, 0) ≤ −S)

= αG(S + σ) + (1− α)λsG(S), (9)

where G(x) = 1−G(x). By symmetry, we have ωb(S,−σ) = ωa(S, σ ) and ωa(S,−σ) = ωb(S, σ).

Our modeling of the trading process in each liquid market is similar to Zhu (2014). At the

beginning of each period, in each liquid venue, quotes are posted by risk neutral competitive

market makers, with zero private valuation for the asset. Then institutions’ market orders arrive

simultaneously and, in each venue, all buy orders are executed at the ask price, S, while all sell

orders are executed at the bid price, −S. The equilibrium condition is that the competitive

market makers break even in expectation.11 Thus, the equilibrium (break–even) half–spread,

11This is slightly different from Glosten and Milgrom (1985) in which orders arrive one at a time and dealers
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S∗, solves:

E
(
ωa(S∗, θτ )(S

∗ − Σt=∞
t=τ (1 + r)t−τθt) + ωb(S∗, θτ )(Σ

t=∞
t=τ (1 + r)t−τθt + S∗)

)
= 0, (10)

where the expectation is taken over θt, t ≥ τ .

That fast institutions send informed market orders is in line with stylized facts. For exam-

ple, Brogaard, Hendershott, and Riordan (2014) find that high–frequency traders trade in the

direction of permanent price changes with market orders, and Baron, Brogaard, and Kirilenko

(2014) that most of high–frequency traders’ profits are generated by aggressive, liquidity–taking,

trades.

Investment in the fast trading technology: All institutions entering the market at a

given date simultaneously decide whether to be fast or slow, before observing their valuation for

the asset. This choice determines the level of fast trading in the market, i.e., α (see Section 5).

To be fast, an institution must invest in a fast trading technology, at cost C. This is the cost of

the investment in infrastructures (computers, colocation, etc.) and intellectual capital (skilled

traders, codes, etc.) required for quickly receiving information from markets, processing this

information, and acting upon it.

Fig. 1 summarizes the description of the model by showing the sequence of play within one

period.

[Insert Fig. 1 About Here]

4. Trading with fast and slow investors

In this section, we analyze equilibrium prices and trading decisions in a given trading round,

for a given α. This sets the stage for studying the equilibrium level of fast trading, which is

the focus of Section 5.

expect zero–profit on each order. As in Zhu (2014), while simplifying, this modeling choice is innocuous. In a
previous version of this paper, trading was modeled as in Glosten and Milgrom (1985) and results were identical
to those presented here.
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4.1. Equilibrium Bid-Ask Spread: Existence, and Uniqueness

As (i) ωb(S,−σ) = ωa(S, σ), (ii) ωa(S,−σ) = ωb(S, σ), and (iii) cash-flows are i.i.d with

mean zero, Eq. (10) is equivalent to:

[
ωa(S∗, σ) + ωb(S∗, σ)

]
S∗ =

[
ωa(S∗, σ)− ωb(S∗, σ)

]
σ. (11)

The left–hand–side is the gross profit of a market maker, which is strictly positive whenever the

spread is. The right–hand–side is the adverse selection cost borne by the market maker, which

is strictly positive, as soon as α > 0 and σ > 0. This adverse selection cost reflects that the net

order flow in period τ (ωa(S∗, θτ ) − ωb(S∗, θτ )) is positively correlated with the innovation in

the cash–flow process (θτ ). That is, there are more buyers than sellers (ωa(S∗, σ) > ωb(S∗, σ))

when the period cash–flow is high (and, symmetrically, fewer buyers than sellers when it is low:

ωa(S∗,−σ) < ωb(S∗,−σ)).

In our trading environment, an equilibrium is a spread S∗, such that Eq. (11) holds. In

equilibrium, market makers must charge a bid-ask spread (S∗ > 0) to cover the adverse selection

cost. Thus, institutions with valuations in [−S∗, S∗] choose not to trade because their expected

gain from trade is smaller than their trading cost, S∗. This generates a welfare loss because,

for all δ 6= 0, gains from trade exist between market makers and institutions.

As shown in the appendix, Eq. (11) always has at least one solution, 0 ≤ S∗ ≤ σ. Hence,

we can state the following lemma.

Lemma 1. Equilibrium exists. When α = 0 or σ = 0, the unique equilibrium is S∗ = 0.

Otherwise, equilibrium is not necessarily unique but in all equilibria 0 < S∗ < σ.

The equilibrium bid-ask spread is not necessarily unique because an increase in the spread

can generate an increase in both the revenue and the adverse selection cost for the market

maker. For instance, suppose that fast institutions receive a good signal. An increase in

the spread, S, decreases the fraction of fast institutions who buy and sell the asset but the

effect can be stronger for those who decide to sell. In this case, the adverse selection cost

((ωa(S, σ) − ωb(S, σ)) increases with S. When this happens, market makers’ net expected

profit (the difference between the left and right hand sides of Eq. (11)) is not necessarily
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monotonic in the half spread and, for this reason, there might be multiple spreads for which

market makers break even, i.e., for which Eq. (11) holds.12 The next example illustrates this

point.

Example 1. Suppose that institutions’ private valuations are normally distributed with

standard deviation σδ. Fig. 2 plots market makers’ net expected profit when α = 0.1, σ = 3,

λ = 0.8, and π = 1, for σδ = 0.9 or σδ = 2. Equilibrium bid-ask spreads are those for which

market makers’ net expected profit is zero. When σδ = 0.9, the market makers’ net expected

profit is non monotonic in S. For this reason, there are several values of S∗ such that Eq. (11)

holds: S∗ = 0.47, S∗ = 1.37, and S∗ = 2.96. In contrast, when σδ = 2, market makers’ net

expected profit decreases in S everywhere and, as a result, there is a unique equilibrium spread,

S∗ = 0.29.�

[Insert Fig. 2 about here]

When there exist multiple solutions to Eq. (11), economic reasoning suggests to select

spreads that cannot be profitably undercut, as other spreads would attract competition. Con-

sider Fig. 2 again. Bid-ask spreads S∗ = 1.37 and S∗ = 2.96 satisfy the zero net profit condition

(i.e., they solve Eq. (11)) but they can be profitably undercut because any spread sufficiently

close to and above S∗ = 0.47 yields a strictly positive expected profit. This is a more gen-

eral principle: When several bid-ask spreads solve Eq. (11), only the smallest one cannot be

profitably undercut.

Lemma 2. Let S∗min(α) be the smallest solution to Eq. (11). This equilibrium bid-ask spread is

the only one that cannot be profitably undercut.

Hence, if one adds the natural economic requirement that an equilibrium spread should not

be profitably undercut, then equilibrium is always unique. Therefore we hereafter focus on

12Glosten and Milgrom (1985) and Dow (2005) underscore the possibility of multiple equilibria in financial
markets because of virtuous circles (traders anticipate the market will be liquid, hence they submit lots of
orders, hence the market is liquid) or vicious circles (where illiquidity is a self–fulfilling prophecy). The same
phenomenon is at play here.
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S∗min(α), to which we refer when we write “the equilibrium spread”. For our purpose, focusing

on S∗min(α) is conservative because we analyze welfare losses generated by excessive investment

in the fast trading technology. Larger spreads would increase these losses.

4.2. Bid-ask spreads, Trading Volume, and Fast Trading

The next proposition spells out how the level of fast trading, α, affects the spread and

trading volume.

Proposition 1. The equilibrium bid-ask spread increases in the level of fast trading, α, and

the volatility of the asset fundamental value, σ. It (weakly) decreases with the likelihood that a

slow institution finds a trading opportunity, λ.

When α increases or λ decreases, orders are more likely to come from fast institutions.

Hence, the adverse selection cost is higher for market makers. Thus, the bid-ask spread in-

creases. Fig. 3 illustrates this testable implication when the distribution of traders’ private

valuation is normal.

[Insert Fig. 3 about here]

Denote by ∆Vol(S∗(α), α) the difference between the likelihood of a trade by a fast and a

slow institution. As institutions buy the asset if their valuation is higher than S∗(α) and sell

it if their valuation is lower than −S∗(α), we have:

∆Vol(S∗(α), α) = [Pr(v(δ, θτ ) ≥ S∗(α))− λs Pr(v(δ, 0) ≥ S∗(α))]

+ [Pr(v(δ, θτ ) ≤ −S∗(α))− λs Pr(v(δ, 0) ≤ −S∗(α))]. (12)

Because of the symmetry of institutions’ private valuations around zero, we have

∆Vol(S∗(α), α) = 2 [(Pr(v(δ, θτ ) ≥ S∗(α))− λs Pr(v(δ, 0) ≥ S∗(α))] . (13)
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∆Vol(S∗(α), α) reflects the difference between the respective contributions of fast and slow

institutions to trading volume. As such it offers a measure of the toxicity of the order flow.

Moreover, since the gains from trade of each of the two categories of institutions are related to

their trading volume, ∆Vol(S∗(α), α) is also related to the difference between the gains from

trade of fast and slow institutions. Because of the important role played by ∆Vol(S∗(α), α) in

our analysis (see, e.g., Eq. (24)), it is useful to analyze its economic determinants.

Straightforward manipulations of Eq. (13) yield

∆Vol(S∗(α), α) = 2(1− λs)(1−G(S∗)) + (G(S∗)−G(S∗ − σ)) + (G(S∗)−G(S∗ + σ)). (14)

The first two terms in Eq. (14) are positive while the latter is negative. Thus, the sign of ∆Vol

is ambiguous. To explain why, we now discuss the economic interpretation of Eq. (14).

Consider an institution with private valuation δ and without advance information on the

period cash flow. This institution is willing to trade if |δ| > S∗, which happens with probability

2(1−G(S∗)). The institution is able to trade if it finds a liquid venue before leaving the market.

The probability of this event is one if the institution is fast and λs if it is slow. Thus, the first

term in Eq. (14), 2(1− λs)(1−G(S∗)), reflects the increase in the likelihood of a trade for an

institution due to more efficient search for quotes.

Now, the fast trading technology also provides advanced information on cash-flows, which

affects an institution’s valuation for the asset. This effect cuts both ways in term of incentives

to trade for a fast institution. First, cash–flow news can trigger trading by an institution that

would not have traded without information. This effect plays out when |δ| ∈ [S∗ − σ, S∗] and

corresponds to the second term in Eq. (14). On the other hand, cash–flow news can prevent

trading by an institution that would have traded without information. This happens when

|δ| ∈ [S∗, S∗ + σ ] and corresponds to the third, negative, term in Eq. (14).13

There exist specifications of G, the distribution of institutions’ private valuations (see Ex-

13For instance, consider an institution with S∗ < δ < S∗ + σ. If it is slow, this institution buys the asset.
However, if it is fast and learns that the cash-flow of the asset is low, this institution does not trade because
its valuation, δ − σ, is then within the bid-ask spread. The same effect happens when the asset cash flow is
high and −(S∗ + σ) < δ < −S∗. Thus this effect reduces the likelihood of trading for a fast institution by the
probability that |δ| ∈ [S∗, S∗ + σ ], which is G(S∗ + σ)−G(S∗).
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ample 2 in Section 5.2) such that, for some values of α, the third (negative) term in Eq. (14)

dominates the two other (positive) ones. In these cases, ∆Vol(S∗(α), α) < 0. That is, in spite of

their efficacy at searching for quotes, fast institutions trade less than slow ones in equilibrium.

This is because they are often conflicted between a positive (resp. negative) private valuation

and a negative (resp. positive) cash–flow signal. As a result, their valuation is neither large,

nor small enough to overcome the cost of trading, S∗.

The next lemma provides a sufficient condition on the distribution of institutions’ pri-

vate valuations such that fast institutions are more likely to trade than slow institutions (i.e.,

∆Vol(S∗(α), α) > 0) for all values of α. Let hg(.) be the hazard rate of the distribution of

institutions’ private valuations, that is, hg(δ) = g(δ)/(1−G(δ)).

Lemma 3. In equilibrium ∆Vol(S∗(α), α) > 0, ∀α, i.e., fast institutions are more likely to

trade than slow institutions, if one of the following conditions is satisfied:

1. hg(δ) decreases in δ.

2. hg(δ) increases in δ , and either (i) λs ≤ 1
2
, or (ii) λs > 1

2
and

2G(σ) +

(
1−G(2σ)

1−G(σ)

)
≥ 2λs. (15)

The second case in Lemma 3 is maybe more relevant because, for a large class of probability

distributions (e.g., all log concave distributions such as the normal distribution or the uniform

distribution), the hazard rate is increasing [see Bagnoli and Bergstrom (2005)]. Condition (15)

is satisfied if σ ≥Max{G−1(λs), 0}, i.e., when the asset volatility is sufficiently high.

Equilibrium trading volume is

Vol(S∗(α), α) = ωa(S∗(α), σ) + ωb(S∗(α), σ) (16)

= α(2− (G(S∗(α)− σ) +G(S∗(α) + σ)) + λs(1− α)(1−G(S∗(α)),
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where the second equality comes from Eq. (8) and (9). We deduce that:

dVol(S∗, α)

dα
=
∂Vol(S∗, α)

∂α
+
∂Vol(S∗, α)

∂S∗
∂S∗

∂α
= ∆Vol(S∗(α), α) +

∂Vol(S∗, α)

∂S∗
∂S∗

∂α︸ ︷︷ ︸
<0

. (17)

An increase in the level of fast trading, α, has two effects. First, it shifts some institutions

from the pool of slow to the pool of fast investors. This increases trading volume iff fast

institutions are more likely to trade than slow institutions (i.e., ∆Vol(S∗(α), α) > 0). Second,

the increase in the level of fast trading raises the bid-ask spread (∂S
∗

∂α
> 0). This effect leads a

larger fraction of institutions to abstain from trading, which reduces trading volume. Thus, the

effect of an increase in the level of fast trading on volume is ambiguous, and, for this reason,

trading volume is in general non monotonic in this level.

[Insert Fig. 4 about here]

Fig. 4 illustrates this point when investors’ private valuations are normally distributed.

It depicts equilibrium trading volume (Vol(S∗(α), α)) as a function of α for various values of

λ. The possibility of a negative effect of fast trading on the volume of trade is in line with

Jovanovic and Menkveld (2011), who find that, for Dutch stocks, the entry of a fast trader on

Chi-X led to a drop in volume.14

5. Equilibrium investment in fast trading technologies

We now turn to the equilibrium determination of α. To do so, we first analyze the gains of

fast and slow institutions, which are then compared to determine investment decisions.

14Anecdotal evidence also suggests that, as high–speed trading expands, trading volume can increase or
decrease. For example, an article entitled “Electronic trading slowdown alert” published in the Financial Times
on September 24, 2010 (page 14) describes a sharp drop in trading volume in 2010 from a high of about $7,000
billions in April 2010 to a low of $4,000 billions in August 2010. The article explicitly points to changes in
market structures as a cause for this reversal in trading volume.
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5.1. Comparing the gains of fast and slow institutions

Denote the ex-ante expected gains of slow and fast institutions by ψ(α) and φ(α), respec-

tively.15 Let ω(δ, iθτ ) be the market order of an institution with private valuation δ and type

i ∈ {1, 0} (i = 1 if the institution is fast and i = 0 if slow), in equilibrium. Thus, for fast

traders,

φ(α) = E((v(δ, θτ )− S∗(α))ω(δ, θτ )). (18)

Recall that ω(δ, iθτ ) = 1 if v(δ, iθτ ) ≥ S∗, ω(δ, iθτ ) = −1 if v(δ, iθτ ) ≤ −S∗, and ω(δ, iθτ ) = 0,

otherwise. Hence, using the symmetry of the distribution of institutions’ private valuations

around zero,

φ(α) =

∫ δ

S∗(α)−σ
(δ + σ − S∗(α))g(δ)dδ +

∫ δ

S∗(α)+σ

(δ − σ − S∗(α))g(δ)dδ. (19)

The first term in Eq. (19) is the gain of fast institutions when they trade in the direction

of the asset cash-flow (e.g., buy it when its cash-flow is high). The second term is their gain

when they trade against the asset cash flow. For instance, they might buy the asset even when

its cash-flow is low when v(δ,−σ) ≥ S∗(α). The mass of such institutions is never zero when

Condition (7) holds, that is, when δ ≥ 2σ, because S∗(α) + σ ≤ 2σ.

In a given period, a slow institution finds a liquid venue with probability λ. With probability

(1− λ), it does not. In that case, with probability π, it keeps searching for quotes at the next

period. The discounted expected gains from trade of a slow institution are therefore:

ψ(α) =
t=∞∑
t=τ

(
(1− λ)π

1 + r

)t−τ
λE((v(δ, 0)− S∗(α))ω(δ, 0)). (20)

Using the symmetry of the distribution of institutions’ private valuations around zero and

15Ex-ante means just before institutions learn their private valuations and enter the market. Alternatively, all
institutions could choose to be fast or slow at date τ = 0. In this case, one must discount their expected payoff
at arrival date, ψ(α) and φ(α), appropriately. As the discount factor is identical for all institutions, results
in this case are identical to those obtained when institutions decide to be slow or fast just before entering the
market.

19



simplifying, we obtain:

ψ(α) = 2µ(λ, π, r)

∫ δ

S∗(α)

(δ − S∗(α))g(δ)dδ, (21)

where

µ(λ, π, r) =
λs(π, λ)(1− (1− λ)π)

(1− (1− λ)π(1 + r)−1)
. (22)

The integral in Eq. (21) accounts for the gains from trade of the institution when it finds a

liquid venue. The scaling term, µ(λ, π, r), reflects the cost of delayed execution induced by the

search for quotes in fragmented markets. This cost is large (µ is small) when the discount rate,

r, is high or when the risk of exiting the market without trading is high (i.e., π is small). In

contrast, an increase in λ reduces the cost of delayed execution because it increases the speed

(λs) at which an institution finds a counterparty.

It is clear from Eq. (21) that the risk free rate, r, affects institutions’ payoffs only through

its effect on µ. This is the only effect of r on the variables of interest in the model. Thus,

the economic effect of a decrease in r is similar to that of an increase in π: it makes delays in

execution less costly for institutions. For simplicity, from now on, we assume r = 0. In this

case, the expression for µ(λ, π, r) simplifies to µ(λ, π, 0) = λs(π, λ). This lightens the exposition

without affecting any findings (see the on-line appendix).

Fast institutions obtain higher expected gains than slow institutions because (i) they have

zero delay costs and (ii) they obtain speculative profits by trading on advance information.

These speculative profits, however, generate adverse selection costs for other market partici-

pants. Thus, fast traders generate a negative externality for the other market participants. The

larger the level of fast trading, α, the larger this negative externality. The next proposition

summarizes the above discussion.

Proposition 2. In equilibrium, the expected profit of fast institutions, gross of the technological

cost, is always higher than the expected profit of slow institutions: φ(α) > ψ(α). Moreover, an

increase in the level of fast trading, α, reduces the expected gains of slow and fast institutions.
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5.2. Strategic substitutability or complementarity

For a given level of α, the net expected profits of fast and slow institutions are φ(α) − C
and ψ(α), respectively. Thus, an institution is better off investing if and only if:

φ(α)− ψ(α) ≥ C. (23)

As φ and ψ vary with α, the profitability of investment for one institution depends on other

institutions’ decisions. Thus, investment choices are interdependent. If φ − ψ decreases in α,

then fast institutions loose more than slow ones when α goes up. In this case, institutions’

investment decisions are strategic substitutes: the greater the level of fast trading, the lower

the relative value of fast trading. In contrast, if φ−ψ increases in α, slow institutions are hurt

more than fast ones by an increase in α. Institutions’ investment decisions are then strategic

complements and mutually reinforcing: the greater the level of investment in the fast trading

technology, the more profitable it is to invest in it.

Let ∆(α) = φ(α)−ψ(α) denote the relative value of being fast. Institutions’ decision to be

fast are substitutes if ∂∆(α)
∂α

< 0 and complements if ∂∆(α)
∂α

> 0. Using Eq. (19) and (21), we

obtain after some algebra (see the on-line appendix) that:

∂∆(α)

∂α
= −∂S

∗

∂α
×∆Vol(S∗(α), α), (24)

where ∆Vol(S∗(α), α) (given in Eq. (14) ) is the difference between the likelihood of a trade

for a fast and a slow institution in equilibrium.

The equilibrium bid-ask spread increases with α (Proposition 1). Hence, by Eq. (24),

institutions’ decisions are locally substitutes if ∆Vol(S∗(α), α) > 0 and locally complements

if ∆Vol(S∗(α), α) < 0. This is intuitive: the increase in the cost of trading (S∗(α)) due to

an increase in the level of fast trading hurts more those institutions that trade more. If the

distribution of institutions’ private valuations satisfies one of the conditions in Lemma 3 then

∆Vol(S∗(α), α) > 0 for all values of α. Thus, we obtain the following result.
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Corollary 1. Under the conditions of Lemma 3, ∆Vol(S∗(α), α) > 0, ∀α. In this case, the

relative value of being fast (∆(α)) decreases in α for all values of α: ∂∆(α)
∂α

< 0, ∀α.

Hence, under fairly general conditions (given in Lemma 3), institutions’ decisions to invest

in the fast trading technology are globally (i.e., for all values of α) substitutes. In contrast,

institutions’ investment decisions are never globally complements because they are always sub-

stitutes for α sufficiently close to zero.16 Yet, when the conditions of Lemma 3 are not satisfied,

institutions’ decisions can be complements for some range of α, as illustrated by the next

example.

Example 2. Define γ =
(
δ − ϕ

(
δ − σ

))
/σ with ϕ ∈ [1, δ

δ−σ ]. Assume g(δ) = ϕ(2δ)−1 if

−δ ≤ δ ≤ −σ , g(δ) = γ(2δ)−1 if −σ ≤ δ ≤ σ , and g(δ) = ϕ(2δ)−1 if σ ≤ δ ≤ δ. The conditions

on γ and ϕ guarantee that the cumulative probability distribution of δ is symmetric around

zero and that it is equal to one when δ = δ. If ϕ = 1 then γ = 1 and private valuations are

uniformly distributed. If ϕ > 1 then γ < 1. In this case, the mass of institutions with extreme

valuations (between [−δ,−σ] or [σ, δ]) is greater than the mass of traders with intermediate

private valuations (in [−σ, σ]). In this context we obtain the following corollary.

Corollary 2. Suppose the distribution of institutions’ private valuations is as defined in exam-

ple 2. If λs(λ, π) >Min{1, 2δ−(γ+ϕ)S∗(1)

2(δ−γS∗(1))
} then there exists a threshold α0, such that ∆Vol(S∗(α), α) <

0 iff α > α0, i.e., institutions’ investment decisions are substitutes for α ≤ α0 and complements

for α > α0. If λs(λ, π) ≤Min{1, 2δ−(γ+ϕ)S∗(1)

2(δ−γS∗(1))
} then ∆Vol(S∗(α), α) > 0 for all α and, therefore,

institutions investment decisions are substitutes for any level of fast trading.

Fig. 5 illustrates the corollary when ϕ = 1.5, σ = 3, δ = 7, λ = 0.5, and π = 0.99 (so that

λs ≈ 0.99). In this case, α0 ≈ 0.25. Thus, institutions’ decisions are complements for α > 0.25

and substitutes when α ≤ 0.25.�

[Insert Fig. 5 about here]

16Eq. (14) yields ∆Vol(S∗(0), 0) = (1−λs) > 0 because S∗(0) = 0. Thus, at least at α = 0 (and by continuity
for values of α close to zero), a small increase in fast trading always reduces the relative value of being fast.
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5.3. Equilibrium fast trading

If

φ(1)− ψ(1) > C, (25)

then institutions prefer to invest when they expect all the others to do so. Hence, α∗ = 1 is an

equilibrium if Condition (25) holds. Symmetrically, if

φ(0)− ψ(0) < C, (26)

then institutions prefer not to invest when they expect the others also will not. Hence, α∗ = 0 is

an equilibrium if Condition (26) holds. Finally, α∗ is an interior equilibrium if, when institutions

expect that a fraction α∗ of institutions will invest, they are indifferent between investing and

not investing:

φ(α∗)− ψ(α∗) = C. (27)

As φ(α)−ψ(α) is continuous in α, at least one of these three equilibrium conditions must hold.

Thus, an equilibrium level of fast trading always exists. Furthermore, if ∆(0) = φ(0)−ψ(0) > C,

then each institution is better off being fast if it expects others to be slow. Thus, in this

case, it cannot be an equilibrium that all institutions prefer to be slow. The next proposition

summarizes the above discussion.

Proposition 3. An equilibrium level of fast trading exists. Moreover, there is some investment

in the fast trading technology (α∗ > 0) if ∆(0) > C.

To gain insights into the economics of the decision to be fast, it is useful to write ∆(0)

explicity:

∆(0) = (1− µ(λ, π, 0))E(|δ|) + 2(2G(σ)− 1)(σ − E(|δ| |δ| ≤ σ)). (28)

Hence, the increase in expected profit for an institution that becomes fast when all others are

slow, ∆(0), is the sum of two terms, which can be interpreted as the “search value” and the

“speculative value” of the fast trading technology, respectively (the formal derivation of Eq.

(28) is given in the on-line appendix for brevity).
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First consider the “search value”. When α = 0, the bid-ask spread is zero (S∗(0) = 0).

Thus, expected gains from trade are E(|δ|) for all institutions finding a trading venue because

the spread is zero in this case. Slow institutions, however, can only appropriate a fraction

µ of this gain because of delayed execution. In contrast, fast institutions obtain 100% of

the expected gains from trade because they bear no delay costs. Thus, adoption of the fast

trading–technology generates an increase in expected profit due to more efficient search equal

to (1−µ)E(|δ|) for the first adopter. Hence, the first term in (28) measures the “search value”of

the trading technology (when α = 0).

Now turn to the “speculative value”of the fast trading technology, which arises when σ > 0

and is given by the second term in Eq. (28). To grasp the economic intuition of that term, first

observe that the technology has speculative value only when it leads an institution to trade

differently than if it were slow. Suppose that a fast institution learns that the asset cash flow is

high (θτ = σ). As α = 0, it buys the asset iff δ + σ − S∗(0) > 0, i.e., iff δ ≥ −σ. However, the

institution would have purchased the asset anyway if slow when δ ≥ 0. Thus, the technology has

speculative value only when −σ ≤ δ < 0. In this case, if fast, the institution buys the asset and

earns δ+σ whereas if slow it sells the asset and earns −(δ+σ). Thus, the net speculative gain

of the technology is δ+σ− (−(δ+σ)) = 2(δ+σ), conditional on −σ ≤ δ < 0 and θτ = σ. This

generates an average speculative gain of 2(G(0)−G(−σ)) (σ − E(|δ| ||δ| ≤ σ)) when θτ = σ.17

By symmetry, this is also the average speculative gain when θτ = −σ. Thus, the total average

speculative value of the fast trading technology is 2(G(0) − G(−σ)) (σ − E(|δ| ||δ| ≤ σ)) =

(2G(σ)− 1)(σ − E(|δ| ||δ| ≤ σ)) because G(.) is symmetric around 0.

The previous calculations hold for α = 0 (i.e., for very first adopters of the fast trading

technology). More generally, for any value of α, the gain of being fast, ∆(α) = φ(α)−ψ(α), has a

search value and a speculative value component. Closed-form expressions for these components,

however, cannot be obtained for α > 0 because they depend on the equilibrium spread, S∗(α),

which in general cannot be computed in closed-form for α > 0. However, if one of the conditions

of Lemma 3 holds, then ∂∆(α)/∂α < 0,∀α and we have the following proposition.

Proposition 4. When ∆(α) decreases for all values of α, then there exists a unique equilibrium

17Indeed, E(θτ + δ |θτ = σ,−σ ≤ δ < 0) = σ−E(|δ| ||δ| ≤ σ) because of the symmetry of institutions’ private
valuations.
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level of fast trading. This level is such that: if (a) C ≥ ∆(0), α∗ = 0, if (b) ∆(1) < C < ∆(0),

0 < α∗ < 1, and if (c) C ≤ ∆(1), α∗ = 1. Furthermore, as C increases, the level of fast trading

declines in equilibrium.

Fig. 6 illustrates the determination of α∗ when institutions’ private valuations are normally

distributed. This level is obtained at the intersection of i) the horizontal line that gives the

value of C and ii) the downward sloping curve reprsenting ∆(α). In this example, ∆(0) = 3.64

and ∆(1) = 1.42. Thus, for C = 3, there is an interior equilibrium, α∗ ≈ 0.26. As the cost of

fast trading increases (the horizontal line shifts up in Fig. 6), the level of fast trading declines.

[Insert Fig. 6 about here]

Now consider the case in which, at least for some ranges of α, institutions’ decisions are

complements. In that case, ∆(α) does not decrease everywhere and, for this reason, there

might be multiple equilibrium levels of fast trading. This is particularly striking when ∆(0) ≤
C < ∆(1). In this case, there are at least two equilibria: one in which no institution finds it

optimal to invest because each expects others not to invest and one in which all institutions

find it optimal to invest because each expects others to invest. In each of the two equilibria,

institutions’ beliefs about other institutions’ decisions are self-fulfilling. Yet, all institutions

would prefer to coordinate on not being fast because their expected profit (ψ(0)) in the “All-

Slow” equilibrium is larger than their expected profit (φ(1)−C) in the “All-Fast” equilibrium

when ∆(0) ≤ C. Indeed, this condition implies that: ψ(0) ≥ φ(0)− C, which is strictly larger

than φ(1) − C since φ(.) is decreasing. Thus, the All-Slow equilibrium Pareto dominates the

All-Fast equilibrium. The All-Fast equilibrium can be interpreted as the outcome of an arms

race, similar to Glode, Green, and Lowery (2012): every institution chooses to invest in the

fast trading technology in the fear that others do so. This belief is indeed self-fulfilling.

Fig. 5 illustrates these points. In this case, ∆(α) is a U-shape function of α with a minimum

in αmin = 25% and a maximum in αmax = 1. Institutions’ decisions are complements for

α ∈ [αmin, 1]. Furthermore, ∆(0) = 0.25 and ∆(1) = 0.27. Thus, for any C, in (0.25, 0.27),

there are three equilibria: the two corner equilibria and one interior equilibrium. For instance,

as Fig. 5 shows, when C = 0.264, there are three possible equilibrium levels of fast trading: (i)
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All Slow (α∗ = 0), (ii) All Fast (α∗ = 1), and (iii) α∗3 = 83.5%. Following Manzano and Vives

(2012), we say that an equilibrium α∗ is stable if when one slightly perturbates α around α∗

and, at this point, (i) reduces α if ∆(α) < C or (ii) increases α if ∆(α) > C then one is brought

back to α∗. Inspecting Fig. 5, one can immediately see that the interior equilibrium, α∗3, is not

stable: a small increase in the fraction of fast institutions at this point triggers a domino effect

that leads all institutions to be fast. This would appear as an investment wave in fast trading

technologies, as if fast trading were contagious. In contrast, the corner equilibria are stable.18

6. Social Optimum and Policy Intervention

As explained in the previous section, the decision to become fast by one institution exerts a

negative externality on other institutions (see Proposition 2). As institutions do not internalize

this externality in making their investment decision, one expects the equilibrium level of fast

trading to be too high relative to the level that maximizes social welfare. We show that this

is indeed the case in Section 6.1. We then analyze possible policy responses to this problem in

Section 6.2.19

6.1. Excessive Fast Trading

Utilitarian welfare is equal to20

W (α) = α (φ(α)− C) + (1− α)ψ(α). (29)

18When an interior equilibrium, α∗, is stable, ∆(α) must necessarily be decreasing at α = α∗. This is
consistent with Manzano and Vives (2012), who find that only equilibria in which agents’ actions are strategic
substitutes are stable. This principle, however, does not apply for corner equilibria. For instance, in Fig. 6,
∆(α) is increasing at α = 1. Yet, α∗ = 1 is a stable equilibrium.

19All institutions optimally decide to trade or not (see Section 3). Hence, there are no noise traders in our
setting and all investors optimally adjust their trading strategies when the market structure (e.g., the fraction
of fast institutions) changes. We can therefore conduct welfare and policy analyses because all investors’ welfare
and responses to changes in market structure are well defined.

20Market makers are risk neutral and obtain zero–expected profits. Hence, their contribution to utilitarian
welfare is equal to zero.
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Thus, a marginal increase in the level of fast trading has the following effect on welfare:

∂W (α)

∂α
= ∆(α)− C −

[
−α∂φ(α)

∂α
− (1− α)

∂ψ(α)

∂α

]
. (30)

The term within brackets is positive because an increase in α reduces fast and slow institutions’

expected gains (∂φ(α)
∂α
≤ 0 and ∂ψ(α)

∂α
≤ 0; see Proposition 2). It measures the externality cost

incurred by all institutions when α increases. Denoting this cost by Cext(α), we have

∂W (α)

∂α
= ∆(α)︸ ︷︷ ︸

Social Value of Fast Trading

− (C + Cext(α))︸ ︷︷ ︸
Social Cost of Fast Trading

. (31)

Thus, a marginal increase in α has two opposite effects on social welfare. On the one hand,

institutions who become fast are better off. This benefit is captured by the first term in Eq.

(31). On the other hand, institutions who become fast pay a cost C and exert a negative

externality on all institutions.

The socially optimal level of fast trading, αSO, (i.e., the value of α maximizing W (α)) trades

off the social benefit of fast trading (∆(α)) and its social cost (C + Cext(α)). This level is not

necessarily zero because, at α = 0, the social value of the fast trading technology can exceed

its social cost (see Proposition 6 below). Yet, when σ > 0, the socially optimal level of fast

trading is always smaller (and in most cases strictly smaller) than the equilibrium level of fast

trading, as stated in the next proposition.

Proposition 5. When σ > 0, the socially optimal level of fast trading is smaller than the

equilibrium one (αSO ≤ α∗), with a strict inequality when equilibrium is interior (0 < α∗ < 1).

When C ≥ ∆(0), the socially optimal level of fast trading is zero and this level is also an

equilibrium (but not necessarily the unique equilibrium). When C ≤ ∆(1), α∗ = 1 is an

equilibrium and the socially optimal level of fast trading is either lower than or equal to the

equilibrium level.

Thus, in general, there is overinvestment in the fast trading technology in equilibrium.
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Fig. 7 illustrates this result. It depicts social welfare when σ = 5 and institutions’ private

valuations are normally distributed with σδ = 10 for C = 4.77 or 5 (π = 0.9 and λ = 0.0356 so

that λs = 0.27). For C = 4.77, the social optimum is strictly positive and equal to αSO ≈ 25%

whereas for C = 5, the social optimum is zero. In either case, however, the unique equilibrium

is such that all institutions inefficiently choose to be fast (α∗ = 1).

[Insert Fig. 7 about here]

Overinvestment in the fast trading technology arises as soon as α∗ ∈ (0, 1), whether insti-

tutions’ decisions are substitutes or complements. Complementarity in institutions’ decisions,

however, aggravates the overinvestment problem because it tends to disconnect investment de-

cisions from the technological cost. For instance, suppose that ∆(0) ≤ C < ∆(1), which can

occur when there is complementarity in institutions’ decisions. In this case, the socially optimal

level of fast trading is αSO = 0 because C ≥ ∆(0) (Proposition 5). Yet there are two possible

stable equilibria in this case: α∗ = 0 and α∗ = 1. There is no overinvestment in the former

but maximal overinvestment in the latter. This happens because each institution anticipates

that if it remains slow when others are fast then it will obtain a very low profit. This makes

the value of being fast relatively high, despite the fact that the technological cost is so large

(∆(0) ≤ C) that any investment in the fast trading technology is inefficient.

Overinvestment in the fast trading technology does not mean that one should necessarily

bar institutions from using it. In fact a necessary and sufficient condition for αSO > 0 is:

∂W (0)

∂α
= ∆(0)− Csoc(0) > 0. (32)

Using the expression for ∆(0) in Eq. (28), we deduce the following result.

Proposition 6. The socially optimal level of investment in fast trading technologies is strictly

larger than zero if and only if λ < λ̂(σ,C, π) where λ̂(σ,C, π) is a threshold strictly smaller than

one (the expression of this threshold is given in the proof of the proposition). This threshold

decreases with C, σ, and π. It is zero when σ or C are large enough or when π = 1.
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The social value of the fast trading technology comes from its search value, i.e., the reduction

in the cost of delayed execution for those using the technology. As explained previously, at

α = 0, this efficiency gain is equal to (1 − µ(λ, π, 0))E(|δ|). Investment in the fast trading

technology is socially optimal only if this gain is large enough relative to the social cost of

the technology. As slow institutions’ delay cost decreases in λ, the socially optimal level of

investment is strictly positive only if λ is smaller than a threshold λ̂. This threshold decreases

in π because an increase in π reduces delay costs, other things equal.21 The threshold λ̂

also decreases with σ because a higher σ enlarges the range of private valuations for which

institutions make socially inefficient trading decisions (i.e., do not trade or sell when they

should buy and vice versa). Last, it decreases in C because the reduction in delay costs due to

the fast trading technology must at least exceed its cost for investment in this technology to

be socially optimal.

Interestingly, λ̂(σ, 0, π) < 1. Hence, overinvestment can arise even when the fast trading

technology costs nothing (C = 0). Indeed, when C = 0, the only equilibrium is α∗ = 1. Yet, if

λ > λ̂(σ, 0, π) then αSO = 0 and even when λ < λ̂(σ, 0, π), αSO will be positive but strictly less

than one. The reason is that the social cost of fast trading includes the negative externality

generated by fast trading, not just real resources invested in the technology.

Proposition 5 focuses on σ > 0. For completeness, the next corollary considers the particular

case in which the fast trading technology has no speculative value because there is no uncertainty

about the cash flow of the asset (σ = 0).

Corollary 3. (Benchmark: no adverse selection): When σ = 0, the socially optimal level of

fast trading is αSO = 1 if λ < λ̂(0, C, π) and αSO = 0 if λ ≥ λ̂(0, C, π). Furthermore, in this

case, the equilibrium level of fast trading is unique and it coincides with the socially optimal

level of fast trading.

In the absence of adverse selection, the cost of fast trading is just the technological cost,

C. As this cost is independent of the level of fast trading, the socially optimal level of fast

21If π = 1 then λ̂ = 0 when r = 0 because there is then no cost of delaying execution (µ(λ, 1, 0) = 1).
However, if r > 0, the cost of delayed execution is strictly positive even if π = 1 (µ(λ, 1, r) < 1) for r > 0).

Hence, in general, λ̂ can be strictly positive even when π = 1 (see the on-line appendix).
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trading is either zero or one, depending on whether the social value of fast trading (i.e., (1 −
µ(λ, π, 0))E(|δ|)) is less than or higher than the technological cost. This comparison is exactly

that made by institutions in choosing to invest or not and as a result there is no divorce between

institutions’ investment decisions and social optimality.

6.2. Policy Responses

The previous section shows that investment in fast trading is in general too high relative to

the efficient level. In this section, we analyze two possible responses: (i) Pigovian taxes, and

(ii) “slow markets”.22

6.2.1. Pigovian taxation

Suppose that the social planner can levy a lump sum tax T on fast institutions. This tax

raises the total cost of being fast to C + T . Thus, for a tax T , let α∗∗(T ) be the equilibrium

level of fast trading, determined as in Section 5 with C + T replacing C. The central planner

wants to set T so that α∗∗(T ) = αSO.

When 0 < αSO < 1, the socially optimal level of fast trading solves:

∂W (αSO)

∂αSO
= φ(αSO)− ψ(αSO)− C + (αSO

∂φ(αSO)

∂αSO
+ (1− αSO)

∂ψ(αSO)

∂αSO
)︸ ︷︷ ︸

−Cext(αSO)

= 0. (33)

Set T ∗ = Cext(α
SO). Using Eq. (33), we have:

φ(αSO)− ψ(αSO) = C + T ∗. (34)

Thus, with the tax T ∗, there is an equilibrium in which the fraction of institutions choosing to

be fast is α∗∗(T ∗) = αSO.23 This tax is such that fast institutions bear the cost they impose on

22Another policy response would be to ban fast trading altogether. This approach can be implemented by
setting sufficiently high taxes for using the fast trading technology. In Section 6.2.1, we show that this is optimal
only when λ ≥ λ̂(σ,C, π). See Proposition 7.

23If institutions’ decisions are substitutes everywhere, this is the unique equilibrium whereas if institutions’
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other institutions, Cext(α
SO), when the level of fast trading is αSO. Thus, institutions internalize

this cost, which aligns private incentives with social optimality.

When αSO = 1, ∂W (1)
∂αSO > 1. Hence, using Eq. (33), φ(1) − ψ(1) > C + Cext(1). For this

reason, if αSO = 1 then α∗∗(T ∗) = 1 is the unique equilibrium when the tax is T ∗ = Cext(1).

In sum, the tax T ∗ = Cext(α
SO) implements the socially optimal level of fast trading when

αSO > 0, i.e., when λ < λ̂(σ,C, π) (see Proposition 6). When λ ≥ λ̂(σ,C, π), αSO = 0. Thus,

the social planner wants to prevent any investment in the fast trading technology. This can be

achieved either with a ban on fast trading or equivalently with a tax that exceeds the largest

possible value of ∆(α). The next proposition summarizes these results.

Proposition 7. When λ < λ̂(σ,C, π), a tax equal to T ∗ = Cext(α
SO), implements the socially

optimal level of fast trading, which, in this case, is strictly positive. When λ ≥ λ̂(σ,C, π), a

tax that exceeds the largest possible value of ∆(α) implements the socially optimal level of fast

trading, which in this case is zero.

Proposition 7 provides an economic rationale for recent proposals to tax fast traders.24 Cal-

ibrating the optimal tax is difficult, however, as it requires estimating the negative externality

generated by fast institutions at the socially optimal level of fast trading. Yet, our analysis

provides some insights on what optimal taxes should look like: the tax should be higher for

assets in which the negative externality of fast trading is higher, that is, more volatile assets

(σ higher) or assets in which gains from trade are smaller, i.e., assets for which the dispersion

of traders’ private valuations is smaller. Interestingly, this suggests that taxes on fast traders

should be asset specific.

decisions are complements for some range of α, there might be other equilibria. However, in these other
equilibria, the level of fast trading must be greater than αSO because, in any equilibrium, the level of fast trading
either coincides with or exceeds the socially optimal level (Proposition 5). This implies that the equilibrium
in which α∗∗ = αSO is Pareto dominant. Indeed, in any interior equilibrium α∗∗, the expected profit of fast
institutions net of the cost of being fast (including a tax if any) is ψ(α∗∗), which is also the expected profit of
slow institutions. When α∗∗ > αSO, we have ψ(α∗∗) < ψ(αSO). Hence, all institutions prefer the equilibrium
in which the level of fast trading is α∗∗ = αSO. If α∗∗ = 1, all institutions obtain φ(1)− C − T ∗ = W (1)− T ∗.
In contrast, in the equilibrium in which α∗∗ = αSO, institutions obtain: W (αSO) − T ∗. This is stricly larger
than W (1)− T ∗ by definition of αSO when αSO < 1.

24See “Robin Hood Tax: A Long Shot,” Financial Times, May 2013 and “Italy introduces tax on high speed
traders in equity derivatives,” Financial Times, September 1, 2013.
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Furthermore, a per trade tax is unlikely to be optimal, even if it affects fast traders only.

Indeed, a per trade tax is similar to an increase in the bid-ask spread. Thus, it widens the

range of private valuations for which fast institutions decide not to trade. This effect results in a

welfare loss (unrealized gains from trade) that does not arise with a lump sum tax. Thus, taxing

investment in fast trading technology is more efficient than taxing fast institutions’ trades.

Finally, observe that tax proceeds can be redistributed among all institutions so that they

all eventually share the welfare gain associated with fast trading (even if they remain slow).

Indeed, suppose that 0 < αSO < 1 and that the tax proceeds are redistributed equally among

all institutions, so that slow institutions receive in aggregate (1 − αSO)T ∗. Slow institutions’

aggregate welfare is therefore:

(1− αSO)ψ(αSO) + (1− αSO)αSOT ∗ = (1− αSO)W (αSO), (35)

where the second equality follows from the definition of W (.) and Eq. (34). Using the same

reasoning, fast institutions obtain αSOW (αSO). Thus, per capita, both fast and slow institution

obtain the same expected profit, W (αSO), after redistribution. They therefore equally benefit

from the improvement in welfare relative to the case in which fast trading is forbidden.

6.2.2. Slow and Fast Markets

Another way to alleviate the negative externality of fast trading is to create “slow–friendly”

markets. There are several ways in which trading venues can be “slow-friendly,” i.e., limit the

ability of fast traders to adversely select slower ones. For instance, they could batch incoming

orders (see “High-frequency traders face speed limits,” Financial Times, April 28, 2013), delay

the execution of market orders, provide no-colocation services, or simply deny entry to fast

traders.25 In this section, we show that introduction of slow-friendly markets can lead to

underinvestment in fast trading.

To this end, consider the following extension of our baseline model. A continuum of slow

25For instance, the Investors Exchange (IEX) (see http://www.iextrading.com/about/) is an electronic limit
order book market that delays execution of incoming market orders by 350 microseconds and offers no-colocation
services. According to IEX’s CEO, this is sufficient to deter “predatory” behavior by high frequency trading
firms. See “How IEX Is Combating Predatory Types Of High-Frequency Traders,” Forbes, April 23, 2014.
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markets (the “slow segment”) coexist with fast markets (“the fast segment”). In either segment,

a slow institution has a probability λ to execute its trade in a given period. Fast institutions

cannot access slow markets. In the context of our model this means that, in slow markets,

participants do not have private information. Before entering the market, institutions decide:

(i) whether to be fast or slow and (ii) if they are slow, whether to trade in the fast segment or

the slow segment.

Let β denote the fraction of slow institutions trading on slow markets and let S∗Fast(α, β)

be the equilibrium spread in fast markets. As in the baseline model, S∗Fast(α, β) is the smallest

spread for which market makers in the fast segment break even. The only difference with the

baseline model is that market makers receive fewer buy and sell orders from slow institutions

because a fraction β of these institutions trade in the slow market. Thus, market makers in

fast markets bear a higher adverse selection cost than without slow markets and must therefore

charge a larger bid-ask spread to break-even, as the next lemma shows.

Lemma 4. When a fraction β of slow institutions trade in slow markets, the equilibrium bid-ask

spread in fast markets is:

S∗Fast(α, β) = S∗(αFast(α, β)), (36)

where S∗(·) is the equilibrium bid-ask spread in the baseline model and

αFast(α, β) =
α

α + (1− β)(1− α)
. (37)

The equilibrium bid-ask spread on fast markets increases with α and β.

The bid-ask spread on slow markets is zero because they only attract uninformed institu-

tions.

Institutions’ expected gain on the fast market are obtained by replacing S∗(α) by S∗(αFast)

in Eq. (19) and (21). Thus:

φFast(α, β) = φ(αFast) and ψFast(α, β) = ψ(αFast), (38)
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where (i) αFast is defined in Lemma 4 and (ii) φFast(α, β) and ψFast(α, β) are respectively fast

and slow institutions’ expected gains when they trade on fast markets. Institutions’ expected

gain on the slow market, ψSlow, is identical to that obtained on the fast market when all

investors are slow in the baseline model. That is:

ψSlow(α, β) = ψ(0). (39)

Institutions’ expected gains on the fast market, φ(αFast) or ψ(αFast), decrease with αFast and

therefore β. Hence, slow institutions migrating to the slow market exert a negative externality

on those who remain on the fast market. Indeed, an increase in β results in a larger bid-ask

spread on the fast market because it increases the likelihood (αFast) that trades on this market

come from fast informed traders. This is stated in the next corollary.

Corollary 4. In equilibrium, an increase in β or α reduces the expected gain of fast and slow

institutions on fast markets and has no effect on the expected gain of slow institutions on slow

markets.

Now, consider institutions’ decisions to trade in fast or slow markets. For simplicity, and

because this is not key for our conclusions, we assume that there is no cost of joining a market.26

Slow institutions trade at the same speed in either type of markets but there is no adverse

selection on slow markets. Thus, trading exclusively on the slow market is a dominant strategy

for slow institutions. This implies that β = 1 in equilibrium.27 Hence, in any equilibrium with

α∗ > 0, fast institutions cannot make speculative profits at the expense of slow institutions,

which considerably reduces their expected gain from trade. Indeed, for any α, they obtain:

φFast(α, 1)− C = φ(1)− C, (40)

26In reality, markets compete in trading fees and differentiation in speed is a way to sustain non competitive
fees [see Pagnotta and Phillipon (2013)]. Analyzing this competition is beyond the scope of our paper. Fur-
thermore, by assuming zero fee on the slow market, we bias the model against finding that slow markets are
inefficient, which is the main finding of this section.

27When α = 0, institutions are indifferent between slow and fast markets because they obtain an expected
gain of ψ(0) in either case. In this case, any β is an equilibrium.
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which is the lowest possible expected gain for fast institutions because φ is minimal in α = 1.

Thus, the choice between being fast and slow boils down to a comparison between φFast(α, 1)−
C and ψSlow(α, 1), that is, φ(1) − C and ψ(0). If φ(1) − C > ψ(0), each institution is better

off investing in the fast technology and exploiting it on the fast market, independently of other

institutions’ choices (because, in this case, φFast(α, β) > φFast(α, 1) > ψ(0)). Thus, all institu-

tions choose to be fast in equilibrium. If instead φ(1)−C ≤ ψ(0), all institutions are better off

being slow and trading on slow markets only, for all values of α.

Proposition 8. If φ(1)− ψ(0) ≤ C no institution becomes fast and all trade on slow markets

(α∗ = 0 and β∗ = 1), while if C < φ(1) − ψ(0) all institutions are fast and only trade on fast

markets (α∗ = 1 and β∗ = 0).

Thus, the introduction of slow markets significantly affects equilibrium investment decisions.

In particular, equilibria in which an interior fraction of institutions invest in the fast technology

unravel and one ends up with only two corner equilibria: (i) the “All Fast” equilibrium with

no activity in slow markets or (ii) the “All Slow” equilibrium with no activity in fast markets.

For given values of α and β, utilitarian welfare is:

W (α, β) = β(1− α)ψSlow(α, β) + (1− β)(1− α)ψFast(α, β) + α(φFast(α, β)− C)

= β(1− α)ψ(0) + (1− β)(1− α)ψ(αFast) + α(φ(αFast)− C). (41)

Using Proposition 8, we deduce that with slow and fast markets, utilitarian welfare in equilib-

rium is either:

W (0, 1) = ψ(0), when φ(1)− ψ(0) ≤ C, (42)

or

W (1, 0) = φ(1)− C, when φ(1)− ψ(0) > C. (43)

When there is no slow market, β = 0 and the equilibrium level of fast trading is α∗.

Social welfare in equilibrium is therefore W (α∗, 0). We have W (α∗, 0) = ψ(0) when α∗ = 0,

W (α∗, 0) = φ(1)−C when α∗ = 1, and W (α∗, 0) = ψ(α∗) when 0 < α∗ < 1 because in this case

φ(α∗)−ψ(α∗) = C. When φ(1) −ψ(0) < C, equilibrium social welfare without slow markets is
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always less than or equal to equilibrium social welfare with slow markets (ψ(0)) because ψ(α)

is maximal at α = 0. When φ(1) −ψ(0) ≥ C, we have φ(α) − ψ(α) > C for all α because φ

and ψ decrease with α. Thus, with or without slow markets, all institutions choose to be fast

(α∗ = 1) and social welfare is φ(1)− C. This yields the following result.

Corollary 5. In equilibrium, social welfare with slow and fast markets is greater than social

welfare with fast markets only.

Thus, if one cannot tax fast institutions, opening slow markets improves welfare. However,

this market structure does not necessarily maximize social welfare. In fact, in general, it

does not, because it induces too many (all) institutions to remain slow, relative to the social

optimum.

To analyze this point, suppose that λ ≤ λ̂(σ,C, π) and φ(1) − ψ(0) < C. As λ̂(σ,C, π)

decreases with C, these two conditions are satisfied when C is small enough for investment

in the fast trading technology to be socially optimal but large enough for each institution to

prefer trading on slow markets (see Proposition 8). Thus, in equilibrium, social welfare is

W (0, 1) = W (0, 0). It is not maximal. Indeed, without slow markets, the socially optimal level

of fast trading, αSO, is strictly between zero and one (Proposition 6). Hence:

W (0, 0) < W (αSO, 0). (44)

This means that, if regulators could pick α and β, they could improve social welfare by imposing

β = 0 and setting the level of fast trading at αSO. Intuitively, in equilibrium, there is “too much”

trading on slow markets (β = 1) because institutions joining the slow market exert a negative

externality on those on the fast market.28

Thus, regulators are between a rock and a hard place: with only fast markets, there is

overinvestment in the fast trading technology in equilibrium, whereas with slow markets, there

can be underinvestment in the fast trading technology. To solve this conundrum, one should

tax both investment in the fast technology and access to the slow market. The next proposition

states that optimal taxation should preclude trading on the slow market.

28In other cases (λ > λ̂(σ,C, π) or C ≤ φ(1) − ψ(0)), the equilibrium outcome with slow markets coincide
with the outcome maximizing social welfare in the absence of slow markets.
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Proposition 9. If the regulator can use Pigovian taxes, it should choose (i) a tax larger than

ψ(0) for institutions trading on the slow market to preclude trading on this market and (ii) a

tax chosen as explained in Proposition 7 for fast institutions.

The next example illustrates the results obtained in this section.

Example 3: Consider the same parameters as in Fig. 7 with C = 4.77, so that αSO = 25%.

Without slow markets, all institutions choose to be fast in equilibrium. Utilitarian welfare is

W (1, 0) = φ(1)− C = 2.142. With slow markets, this equilibrium unravels and all institutions

choose to be slow. Investors’ welfare improves and becomes W (0, 1) = ψ(0) = 2.15. Yet, social

welfare is not maximal. As implied by Proposition 9, it can be improved by charging a tax

larger than 2.15 for trading in slow markets (so that no trader chooses to do so) and a tax

equal to T ∗ = 2.03 for investing in the fast trading technology. With this tax, α∗ = αSO = 25%

and social welfare is W (αSO, 0) = 2.16. If the tax is equally redistributed among all institutions

they all obtain an expected profit of 2.16 > ψ(0) after redistribution (see Section 6.2.1).�

7. Empirical implications

Our model implies that the informational content of trades should be inversely related to

the cost of fast trading (e.g., colocation fees). Indeed, at any stable equilibrium, an increase

in C triggers a drop in the level of fast trading (α) and hence in the informational content

of trades. In contrast, an increase in the cost of fast trading can have ambiguous effects on

trading volume (see the analysis in Section 4.2).

Anecdotal evidence suggests that the profitability of high frequency traders decreased in

recent years. For instance, the profits of GETCO, one of the early adopter of fast trading

technologies have constantly declined since 2007 (see “GETCO profit drops 82% on weak US

market” Financial Times, February 13, 2013). One simple explanation for this evolution is

that as the number of fast institutions increases, the profitability of fast trading declines.

Another possibility is that the cost of fast trading has increased. Anecdotal evidence suggests

that this is indeed the case (see “High-Speed Trading no Longer Hurtling Forward,” New-York

Times, October 14, 2012 and “High-speed stock traders turn to laser beams”, WSJ, March 10,
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2014). Both explanations are consistent with our model in which the net expected profit of fast

institutions, φ(α)− C decreases in the level of fast trading, α, and the cost of fast trading, C.

In addition, the model suggests two other, less obvious, explanations, highligted in Implications

1 and 2 below.

Implication 1: Holding the level of fast trading (α) constant, the expected gains of fast

institutions decrease in market fragmentation and in the fraction of trading that takes place on

slow markets.

As market fragmentation increases (i.e., λ goes down), it is more difficult for slow institutions

to quickly find attractive quotes. This hurts fast traders in our model because it increases the

spread. Accordingly, fast and slow institutions’ expected gains decline (see Eq. (19) and (21)).

Similarly, an increase in the fraction of institutions trading on slow markets (β) raises the

spread on the fast market, which lowers the profitability of fast trading.

Over the counter and dark markets are, by design, slower than centralized electronic limit

order book markets. The trading volume on these markets has grown in recent years and,

in line with the logic behind Proposition 8, this growth is in part driven by slow investors’

desire to insulate themselves from high frequency traders. For instance, a 2013 New-York

times article (“As markets heat up, trading slips into shadows”) notes that: “Investors also

have said that they have moved more of their trading into the dark because they have grown

more distrustful of the big exchanges like the NYSE and the Nasdaq. Those exchanges have

been hit by technological mishaps and become dominated by so-called high-frequency traders.”

Consistent with Implication 1, this evolution might also be responsible for the drop in fast

trading profitability in recent years.

Implication 2: The expected profit of fast institutions increases in the volatility of the

asset when the level of fast trading is low. However, it can decrease with volatility when the

level of fast trading is large.

In our model, the volatility of the asset payoff is σ.29 Its effect on the profitability of fast

29In reality high frequency traders seem to obtain information on short term price movements. Hence, for
empirical tests, σ should be proxied by the volatility of short term changes in asset fair values [see Hasbrouck
(2005) for various methods to estimate this volatility].
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trading are ambiguous. On the one hand, holding the bid and ask prices constant, an increase in

volatility raises the speculative value of fast trading. On the other hand, an increase in volatility

raises the spread, which lowers fast institutions’ expected gains. The former effect dominates

the latter when α is small but not necessarily when α is large (see the on-line appendix for an

example).

Now consider the effects of variations in market fragmentation (λ) and volatility (σ) on the

equilibrium level of fast trading, α∗. The model suggests that analyzing the effects of these

factors on the (net) expected profit of fast institutions is not sufficient to predict entry or exit

of fast institutions. Indeed, the decision to become fast is determined by the difference between

the profit of being fast and the profit of being slow rather than just the profit of being fast.

As a result, the effect of a parameter that negatively affects the profitability of fast traders

can, counterintuitively, increase the equilibrium level of fast trading if its negative impact on

slow institutions is stronger. Consider, for example, an increase in market fragmentation, i.e.,

a decrease in λ. For low levels of fast trading, an increase in market fragmentation reduces the

expected profit of fast and slow institutions, but the negative impact is more severe for slow

institutions. This follows directly from Eq. (28) and the continuity of ∆(α) with respect to

λ. Accordingly, for α∗ close enough to zero (i.e., C high), an increase in market fragmentation

should trigger entry of new fast institutions, even though it decreases fast institutions’ expected

profit. Similarly, for high values of C, an increase in volatility should raise the level of fast

trading in this asset.

Implication 3: For high values of the cost of trading fast, C, equilibrium investment in fast

trading should increase when (a) trading becomes more fragmented or (b) volatility increases.

This implication fits well with the idea that market fragmentation and volatility fostered the

development of fast trading technologies. However, as the level of fast trading grows, further

increases in market fragmentation or volatility can lower the profitability of fast trading and

force some fast trading firms to exit. This highlights the importance of controlling for the cost

and the level of fast trading in empirical studies considering the effects of market fragmentation

or volatility on fast trading. To illustrate this point, consider the following example: Private

valuations are normally distributed with σδ = 4; other fixed parameters are σ = 7; and π = 0.9.
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For a large cost of fast trading, C = 4, an increase in λ (from λ = 0.6 to λ = 0.3), generates an

increase in α∗, from 15.5% to 17.5%. In contrast, for a lower cost of fast trading, C = 3, the

same increase in fragmentation generates a decrease in α∗, from 32% to 28.2%.

8. Conclusion

Investment in fast trading technology helps financial institutions cope with market frag-

mentation. To the extent that this technology enhances their ability to reap mutual gains from

trade, it improves social welfare. However, fast trading technology also provide advance access

to value relevant information, which creates adverse selection, lowering welfare. Thus, fast

trading generates a negative externality. Because financial institutions do not internalize this

negative externality, equilibrium investment in fast trading technologies is in general excessive.

We show that, for some parameter values, institutions’ investment decisions can be strategic

complements. In this case, the overinvestment problem is particularly acute because the value

of being fast relative to remaining slow becomes increasingly large as the amount invested in

fast trading escalates. This leads to an arms’ race in which all institutions end up investing in

the fast technology, in the same spirit as in Glode, Green, and Lowery (2012).

One way to mitigate the adverse consequences of fast traders is to create “slow–only” mar-

kets. Yet, we show that this market structure can lower equilibrium investment in fast trading

technologies below its socially optimal level. On the other hand, if the regulator can impose

Pigovian taxes on investments in fast trading technology (equal to the externalities they gener-

ate), the socially optimal level of investment in fast trading technology can be implemented. To

the extent that institutions can game taxes on fast trading, the efficacy of Pigovian taxes will

be reduced. Some investments in fast trading (such as fiber–optic cables, microwave signals, or

colocation) are easily observable, however. To reduce the scope for gaming, the tax base could

be contingent on such easily observable investments.30

30Fast institutions could be tempted to collude with tax–exempt slow institutions by sharing their signals
with them. The attractiveness of this strategy, however, would be greatly reduced by the time it would take to
disseminate the signals to slow institutions.
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Appendix A. Proofs

Propositions 3, 7, 8, and Corollaries 1, 4, 5 follow directly from the arguments in the text.

Proof of Lemma 1. Let Π(S;α, λ, σ) denote a market maker’s net expected profit, i.e.,

the difference be the Right Hand Side (R.H.S) and the Left Hand Side (L.H.S) of Eq. (11).

Using Eq. (8) and (9), we obtain the expected profit of a market maker:

Π(S;α, λ, σ) =
[
α(G(S − σ) +G(S + σ)) + 2λs(1− α)G(S))

]
S

−
[
α(G(S − σ)−G(S + σ))

]
σ. (45)

Equilibrium spreads solve Eq. (11), i.e., they are such that Π(S∗;α, λ, σ) = 0. When α > 0 and

σ > 0, we have Π(0;α, λ, σ) < 0 and Π(σ;α, λ, σ) = [2α(1−G(2σ)) + 2λs(1− α)(1−G(σ))]σ >

0. Therefore, as Π(·) is continuous in S, there always exists at least one S∗ ∈ (0, σ), such that

Π(S∗;α, λ, σ) = 0. When α = 0 or σ = 0, Π(0;α, λ, σ) = 0 and, for S > 0, Π(S;α, λ, σ) > 0.

Hence, in these cases, S∗ = 0 is the unique equilibrium.

Proof of Lemma 2. By definition, S∗min(α) is the smallest positive spread, S∗, such

that Π(S∗;α, λ, σ) = 0 where Π(.) is defined in (45). Therefore, as Π(0;α, λ, σ) ≤ 0, we have

Π(S;α, λ, σ) < 0 for all S < S∗min(α), which in turn implies (i) that S∗min(α) cannot be profitably

undercut and (ii) that:
∂Π

∂S

∣∣
S=S∗

min(α) > 0. (46)

Hence, by continuity of Π(·), there is always a bid-ask spread S0 arbitrarily close to but larger

than S∗min(α) such that market makers’ net expected profit when they charge S0 is strictly

positive. Thus, any equilibrium spread above S∗min(α) can be profitably undercut.

Proof of Proposition 1. Remember that the equilibrium spread is the smallest S∗ such

that market makers break even, i.e., such that Π(S∗;α, λ, σ) = 0. Using the definition of Π(·)

41



in Eq. (45) and the implicit function theorem, we obtain

S∗′(α) = −
∂Π
∂α

∣∣
S=S∗(α)

∂Π
∂S

∣∣
S=S∗(α)

, (47)

where S∗′(α) denotes the first derivative of S∗(α) with respect to α. We know from Eq. (46)

that ∂Π
∂S

∣∣
S=S∗(α) > 0. From Eq. (45), we have that Π(.) is linear in α with an intercept equal

to 2λsG(S)S. Thus:

Π(S;α, λ, σ) =
∂Π

∂α
× α + 2λsG(S)S. (48)

At equilibrium, S = S∗, and Π(S∗;α, λ, σ) = 0. Thus, Eq. (48) implies that ∂Π
∂α

∣∣
S=S∗(α) ≤ 0

for α > 0 since S∗ ≥ 0 and therefore 2λsG(S∗)S∗ ≥ 0. When α = 0, S∗ = 0 and partial

differentiation of Eq. (45) with respect to α yields

∂Π

∂α

∣∣
S=S∗(0) = −(G(−σ)−G(σ))σ = (2G(σ)− 1)σ ≤ 0. (49)

Thus, ∂Π
∂α

∣∣
S=S∗(α) ≤ 0 for all α. Hence, ∂S∗

∂α
> 0. Proceeding in a similar way, we also obtain

(i) ∂S∗

∂λ
< 0 if π < 1 because then ∂Π

∂λ

∣∣
S=S∗(α) > 0 and (ii) ∂S∗

∂σ
> 0 because ∂Π

∂σ

∣∣
S=S∗(α) < 0.

When π = 1, λs = 1 and therefore the bid-ask spread does not depend on λ. Thus, the bid-ask

spread weakly decreases with λ.

Proof of Lemma 3. Define f(x, y) = 1−G(x+y)
1−G(x)

. Using Eq. (13), ∆Vol(S∗(α), α) > 0 iff:
1−G(S∗−σ)

1−G(S∗)
+ 1−G(S∗+σ)

1−G(S∗)
≥ 2λs, that is, iff:

f(S∗,−σ) + f(S∗, σ) ≥ 2λs. (50)

We have:
∂f(x, y)

∂x
=
−g(x+ y)(1−G(x)) + g(x)(1−G(x+ y))

(1−G(x))2
. (51)

Thus, f(x, y) increases with x iff g(x)
1−G(x)

≥ g(x+y)
1−G(x+y)

, that is, iff hg(x) ≥ hg(x+ y). Suppose first

that hg(.) decreases with x. Thus, hg(x + σ) < hg(x) < hg(x − σ). Hence, setting y = −σ,

42



f(S,−σ) decreases with S and is therefore minimal in S = σ. Symmetrically for y = +σ,

f(S, σ) increases with S and is therefore minimal in S = 0. Thus, Condition (50) is satisfied if

f(σ,−σ) + f(0, σ) ≥ 2λ, that is:

1−G(0)

1−G(σ)
+

(
1−G(0)

1−G(σ)

)−1

≥ 2λs. (52)

This condition is always satisfied if λs ≤ 1
2

because the first term in the L.H.S of this equation

is larger than 1 and the second term is positive. It is also satisfied when λs > 1
2

because the

L.H.S of the previous equation reaches its minimum for σ = 0, for which it is equal to 2. This

proves the first part of the proposition.

Now suppose that hg(.) increases with x. Thus, hg(x + σ) > hg(x) > hg(x − σ). Hence,

setting y = −σ, we deduce that f(S,−σ) increases with S and is therefore minimal in S = 0.

Symmetrically, f(S, σ) decreases with S and is therefore minimal in S = σ. Thus, Condition

(50) is satisfied if f(0,−σ) + f(σ, σ) ≥ 2λs, that is, using the symmetry of g(.):

2G(σ) +

(
1−G(2σ)

1−G(σ)

)
≥ 2λs. (53)

As G(σ) ≥ 1
2
, this condition is always satisfied for λs ≤ 1

2
. This proves the second part of the

proposition.

Proof of Proposition 2. As S∗(α) increases with α, it is immediate from Eq. (19) and

Eq. (21) that fast and slow institutions’ expected profits decrease with α. This is the second

part of the proposition. For the first part, observe that:

φ− ψ =

∫ δ

S∗(α)−σ
(δ + σ − S∗(α))g(δ)dδ +

∫ δ

S∗(α)+σ

(δ − σ − S∗(α))g(δ)dδ

− 2µ

∫ δ

S∗(α)

(δ − S∗(α))g(δ)dδ. (54)
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Thus:

φ− ψ =

∫ δ

S(α)−σ
(δ + σ − S∗(α))g(δ)dδ +

∫ δ

S∗(α)+σ

(δ − σ − S∗(α))g(δ)dδ

−2µ

[
1

2

∫ δ

S∗(α)

(δ + σ − S∗(α))g(δ)dδ +
1

2

∫ δ

S∗(α)

(δ − σ − S∗(α))g(δ)dδ

]
, (55)

and therefore

φ− ψ = (1− µ)

∫ δ

S∗(α)−σ
(δ + σ − S∗(α))g(δ)dδ + (1− µ)

∫ δ

S∗(α)+σ

(δ − σ − S∗(α))g(δ)dδ

+µ

∫ S∗(α)

S∗(α)−σ
(δ + σ − S∗(α))g(δ)dδ − µ

∫ S∗(α)+σ

S∗(α)

(δ − σ − S∗(α))g(δ)dδ. (56)

The two first terms on the R.H.S of the previous equation are clearly positive. The last two

terms are strictly positive as well because
∫ S∗(α)+σ

S∗(α)
(δ − σ − S∗(α))g(δ)dδ < 0 and

∫ S∗(α)

S∗(α)−σ(δ +

σ − S∗(α))g(δ)dδ > 0. Thus, φ− ψ > 0.

Proof of Corollary 2. Using the definition of g(.) in Example 2, we have G(S∗ + σ) =(
δ + γσ + ϕS∗

)
/(2δ), G(S∗ − σ) =

(
γS∗ + ϕ(δ − σ)

)
/(2δ), and G(S∗) = 1

2
+ γ

2δ
S∗. Hence,

using Eq. (14) and
(
γσ + ϕ

(
δ − σ

))
/2δ = 1/2, we obtain:

∆Vol(S∗(α), α) = (1− λs)− (ϕ+ γ(1− 2λs))S∗(α)

2δ
. (57)

As S∗(0) = 0, ∆Vol(S∗(0), 0) = 1− λs ≥ 0. Furthermore ∆Vol(S∗(α), α) decreases with α be-

cause S∗ increases with α and ϕ ≥ γ. Thus, there are two cases to consider. If λs <Min{1, 2δ−(γ+ϕ)S∗(1)

2(δ−γS∗(1))
}

then ∆Vol(S∗(1), 1) > 0. In this case, ∆Vol(S∗(α), α) > 0 for all α and institutions’ de-

cisions are globally substitutes (∂∆(α)
∂α

< 0, ∀α).31 If instead, λs >Min{1, 2δ−(γ+ϕ)S∗(1)

2(δ−γS∗(1))
} then

∆Vol(S∗(1), 1) < 0. Therefore, by continuity of ∆Vol(S∗(α), α), there is one value of α, denoted

α0, such that ∆Vol(S∗(α), α) < 0 iff α > α0.

31This is always the case if γ = ϕ = 1, that is, if the distribution of institutions’ private valuation is uniform.
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Proof of Proposition 4. When institutions’ decisions are substitutes everywhere, ∆(α)

is decreasing for all α. Thus, if ∆(0) − C ≤ 0 then ∆(α) − C < 0 for all α and α∗ = 0 is the

unique equilibrium. If ∆(1)− C ≥ 0 then ∆(α)− C > 0 for all α. Thus, α∗ = 1 is the unique

equilibrium. If C ∈ (∆(0),∆(1)), ∆(0)−C > 0 and ∆(1)−C < 0. As ∆(α)−C is continuous

and decreasing, there is a unique α∗ ∈ (0, 1) such that ∆(α∗)− C = 0.

Proof of Proposition 5. Consider first an interior equilibrium (0 < α∗ < 1). If σ > 0,

then such an equilibrium is never a social optimum because the social cost of fast trading

necessarily exceeds the benefit of fast trading. Indeed, such an equilibrium is characterized by

∆(α∗) = C (see Eq. (27)). Thus, ∆(α∗) < C + Cext(α
∗) when σ > 0, because Cext(α

∗) > 0

in this case. Hence, at equilibrium, the social cost of fast trading strictly exceeds the social

benefit, which implies αSO 6= α∗.32 Furthermore, as φ(α∗)− ψ(α∗) = C, Eq. (29) yields:

W (αSO)−W (α∗) = αSO
(
φ(αSO)− C

)
+ (1− αSO)ψ(αSO)− ψ(α∗),

= αSO
(
φ(αSO)− φ(α∗)

)
+ (1− αSO)(ψ(αSO)− ψ(α∗)) > 0, (58)

where the inequality is strict because αSO 6= α∗ and αSO maximizes W (.) by definition. As φ(·)
and ψ(·) decrease with α, this implies that αSO < α∗ when 0 < α∗ < 1.

Now, let us analyze the corner equilibria. Suppose that there is an equilibrium level of

fast trading such that α∗ = 0. This implies that ∆(0) < C and therefore, given that ∆(0) =

φ(0)−ψ(0): 0 ≤ W (αSO)−W (0) ≤ αSO
(
φ(αSO)− φ(0)

)
+ (1−αSO)(ψ(αSO)−ψ(0)). As φ(·)

and ψ(·) decrease with α, the terms in parentheses on the R.H.S of the second inequality are

strictly less than zero if αSO > 0, which is impossible since the first inequality imply that the

sum of the terms in the second inequality is positive. Thus, the only possibility in this case

is that αSO = 0. In other words, if there is at least one equilibrium such that α∗ = 0 then

αSO = 0, so that αSO ≤ α∗. Finally, if there is an equilibrium in which α∗ = 1 (which requires

C ≤ ∆(1)), we obviously have αSO ≤ α∗.

32When ∆(α) < C + Cext(α
∗), a small decrease in α makes social welfare larger because ∂W (α)

∂α < 0 in this
case (see Eq. (31)).
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Proof of Proposition 6. We first show that Cext(0) = (2G(σ) − 1). By definition

Cext(0) = ψ′(0). Hence, using Eq. (21)

Cext(0) = −2µ(λ, π, 0)S∗′(0)(1−G(S∗(0)) = −µ(λ, π, 0)S∗′(0), (59)

because G(S∗(0)) = G(0) = 1
2

(S∗′(α) denotes the first derivative of S∗(α) with respect to α).

Furthermore, using Eq. (45), we have:

∂Π

∂S

∣∣
S=S∗(0) = λs(λ, π). (60)

Thus, using Eq. (47) and (49),

S∗′(0) = −
∂Π
∂α

∣∣
S=S∗(0)

∂Π
∂S

∣∣
S=S∗(0)

=
(2G(σ)− 1)σ

λs(λ, π)
. (61)

Finally, using Eq. (59),

Cext(0) = (2G(σ)− 1)σ, (62)

because µ(λ, π, 0) = λs(λ, π). Using Eq. (62) and the expression of ∆(0) in Eq. (28), Eq. (32)

is equivalent to:
E(|δ|)− C − (2G(σ)− 1)E(|δ| ||δ| ≤ σ)

E(|δ|)
> µ(λ, π, 0). (63)

As µ(λ, π, 0) = λs(λ, π), we deduce from Eq. (1) that Eq. (63) is equivalent to: λ < λ̂(σ,C, π),

where:

λ̂(σ,C, π) = Max{ (1− π)(E(|δ|)− C − (2G(σ)− 1)E(|δ| ||δ| ≤ σ))

E(|δ|)− π (E(|δ|)− C − (2G(σ)− 1)E(|δ| ||δ| ≤ σ))
, 0}. (64)

Thus, αSO > 0 iff λ < λ̂(σ,C, π). Clearly, λ̂(σ,C, π) decreases with C and π. Furthermore, it

decreases with σ because (2G(σ)− 1)E(|δ| ||δ| ≤ σ) increases with σ.
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Proof of Corollary 3. Using Eq. (64) for σ = 0,

λ̂(0, C, π) = Max{(1− π)(E(|δ|)− C)

E(|δ|)(1− π) + πC
, 0}. (65)

When σ = 0, the bid-ask spread is zero for all values of α. Hence, S∗′(α) = 0 and therefore

Cext(α) = 0 for all α. Moreover, Eq. (24) and (28) yield ∆(α) = ∆(0) = (1− µ(λ, π, 0))E(|δ|),
for all α. Hence, ∆(α) − (C + Cext(α)) = ∆(0) − C = (1 − µ(λ, π, 0))E(|δ|) − C, ∀α. Thus,

using Eq. (31), the fact that µ(λ, π, 0) = λs(λ, π), and the expression of λs(λ, π) in Eq. (1), we

deduce that
∂W

∂α
= ∆(0)− C = (1− λs(λ, π))E(|δ|)− C > 0,∀α, (66)

iff λ < λ̂(0, C, π). This implies that αSO = 1 if λ < λ̂(0, C, π) and αSO = 0 if λ ≥ λ̂(0, C, π).

Now consider an institution’s investment decision. For any level of α, an institution invests

in the fast trading technology if ∆(α) − C = ∆(0) − C > 0 and does not invest otherwise.

Thus, in equilibrium, α∗ = 1 when λ < λ̂(0, C, π) and α∗ = 0 if λ ≥ λ̂(0, C, π). This proves the

second part of the corollary.

Proof of Lemma 4. Proceeding as in the baseline model, in each period, there is a mass

(1 − α)(1 − β)λs of slow institutions trading in liquid fast markets. Hence, the masses of

institutions buying and selling the asset in fast markets at date τ when θτ = σ are:

ωa(S, σ) = αG(S − σ) + (1− α)(1− β)λsG(S), (67)

ωb(S, σ) = αG(S + σ) + (1− α)(1− β)λsG(S). (68)

Also as in the baseline model, ωa(S,−σ) = ωb(S, σ) and ωb(S,−σ) = ωa(S, σ) and the equilib-

rium spread in fast markets solves:

Π(S∗;α, λ) =
[
ωa(S∗, σ) + ωb(S∗, σ)

]
S∗ −

[
ωa(S∗, σ)− ωb(S∗, σ)

]
σ = 0. (69)
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Therefore, replacing ωa(S∗, σ) and ωb(S∗, σ) by their expressions given by Eq.(67) and (68) in

Eq.(69), we deduce that S∗(α, β) is the smallest positive root of

αFast(G(x− σ) +G(x− σ)) + (1− αFast)λsG(x)x− αFast(G(x− σ)−G(x+ σ)) = 0, (70)

where αFast(α, β) = α
α+(1−α)(1−β)

. When there is no slow market and the level of fast trading

is αFast, the equilibrium spread solves the same equation (see Eq. (45)). Thus, S∗(α, β) =

S∗(αFast). Hence S∗(α, β) increases in α and β because (i) αFast(α, β) increases in α and (ii) β

and S∗(α) increases in α.

Proof of Proposition 9. First, consider the case in which λ ≤ λ̂(σ,C, π). In this case,

αSO > 0. Now suppose that there exists a pair (α0, β0) such that 0 < α0 < 1 and 0 < β0 < 1

with W (α0, β0) > W (αSO, 0) (to be contradicted). In this case, the FOCs of the optimization

problem: Maxα,βW (α, β) must be satisfied for (α0, β0). This implies:

∂W

∂β
= (1− α0)(ψ(0)− ψ(αFast0 ))

+
∂αFast

∂β

(
α0
∂φ(αFast)

∂α
+ (1− α0)(1− β0)

∂ψ(αFast0 )

∂α

)
= 0, (71)

∂W

∂α
= φ(αFast0 )− C − (1− β0)ψ(αFast0 )− β0ψ(0)

+
∂αFast

∂α

(
α0
∂φ(αFast)

∂α
+ (1− α0)(1− β0)

∂ψ(αFast0 )

∂α

)
= 0. (72)

where αFast0 = αFast(α0, β0). At (α0, β0), ∂α
Fast

∂α
= (1−β0)

(α0+(1−α0)(1−β0))2
and ∂αFast

∂β
= α0(1−α0)

(α0+(1−α0)(1−β0))2
.

Using this and the fact that the expressions in large parentheses in Eq. (71) and Eq. (72) are

equal, (α0, β0) must satisfy the following condition:

(ψ(0)− ψ(αFast0 ))(α0β0 + (1− β0)) = α0(φ(αFast0 )− C − ψ(αFast0 )). (73)
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Moreover, if W (α0, β0) > W (αSO, 0) then W (α0, β0) > ψ(0). Thus, Eq. (41) implies

(1− α0)β0(ψ(0)− ψ(αFast0 )) + α0(φ(αFast0 )− C − ψ(αFast0 )) > ψ(0)− ψ(αFast0 ). (74)

Using Eq. (73), this implies: (ψ(0)− ψ(αFast0 ) > ψ(0)− ψ(αFast0 ), which is impossible.

The remaining possibility is that (α0, β0) = (0, 1) yields a larger social welfare than (αSO, 0).

However, as explained in the text, we have: W (0, 1) = W (0, 0) = ψ(0). Moreover, if λ ≤
λ̂(σ,C, π), we have W (αSO, 0) > W (0, 0). Hence, we deduce that W (αSO, 0) > W (0, 1).

Thus, we have shown that W (α, β) ≤ W (αSO, 0) for all 0 ≤ α ≤ 1 and β ≥ 0 when

λ ≤ λ̂(σ,C, π). When λ > λ̂(σ,C, π), αSO = 0. Thus, W (αSO, 0) = W (0, β), ∀β. In sum,

the allocation (α, β) = (αSO, 0) dominates (at least weakly and sometimes strictly) any other

allocations (α, β). The allocation (αSO, 0) can be implemented with (i) a tax larger than ψ(0)

imposed to institutions joining the slow market and (ii) a tax T ∗ on institutions investing in

the fast trading technology chosen as described in Proposition 7. Indeed, the first tax is larger

than institutions’ expected profit, ψ(0), on the slow market. Hence, it deters all institutions to

join the slow market. Furthermore, as Proposition 7 shows, the second tax induces a level of

fast trading just equal to αSO when there is no slow market or equivalently when β = 0.
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Figure 1: Timing of Institutions’ decisions. This figure shows the sequence of play within one 

period, say, .  

 

 

Figure 2: Equilibrium Uniqueness of the Bid-Ask Spread. This figure shows market makers’ 
expected profit (the difference between the left hand side and the right hand side of Eq. (11)) as a 
function of their bid-ask spread (S) when the distribution of traders’ private valuation is normal 
with standard deviation, =0.9 (plain line) and =2 (dashed line). Other parameter values are =0.1, 
=3,   = 0.8 and =1. Dots are values of zero profits bid-ask spreads.   
 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.2

0.0

0.2

0.4

Bid -Ask Spread S

M
ar

ke
tm

ak
er

s'
N

et
Ex

pe
ct

ed
P

ro
fit

x drawn from [0,1] determining 

which venues are liquid. 
Competitive market makers post 
quotes on liquid venues. 

Mass 1 continuum of 
new institutions enter.  
Fraction  of them 
decides to be fast, 

fraction 1‐ to be 
slow. 

All new institutions observe 

their private valuation, . 
Fast institutions observe the 

asset cash flow  and find liquid 
venues. Each slow institution 
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venue with probability  . 

Trading. Cash flow  realized 
and distributed. 

Fraction 1‐ of slow 
institutions who 
have not found a 
liquid venue exit the 
market. 



 

Figure 3: Bid-Ask Spreads and Fast Trading. This figure shows the equilibrium bid-ask 
spread (S*) as a function of the level of fast trading () when the distribution of traders’ private 
valuation is normal. Parameter values: =0.2 (plain line),  = 0.5 (small dashed line),  =0.9 
(large dashed line) for =5,    = 4, and =0.9.  
 
 

 

 

 

Figure 4: Trading Volume and Fast Trading. This figure shows equilibrium trading volume 
as a function of the level of fast trading () for different values of : 0.5 (large dashed line), 0.8 
(dotted line), and 1 (plain line) when  has a normal distribution with =3.5, =5, and =1. 
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Figure 5: Equilibrium Fast Trading When Institutions’ Decisions are Complements. The 

distribution of institutions’ private valuation is as in Example 2, with =1.5, C=0.264, =3, =7, 

=0.5, =0.99, and r=0. In this case, s=0.99. Equilibrium levels of fast trading are indicated by large 
dots.  
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Figure 6: Equilibrium Fast Trading When Institutions’ Decisions are Substitutes. 
Institutions’ private valuations have a normal distribution with standard deviation =4. Other 
parameters are =0.3, =0.9, =6, r=0, and C=3. In this case, s =0.8 and the equilibrium level 
of fast trading is indicated by the large dot (*=0.26). 
 

 

 

Figure 7: Social Welfare and Fast Trading. This figure shows social welfare as a function of the 
level of fast trading for C=4.77 (dashed line) and C =5 (plain line) when institutions' private valuations 

are normally distributed with  =10. Other parameters are =5, =0.9, r=0, and =0.0356 (so that 

s=0.27). 
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