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1 Introduction

Taking stock of Modigliani and Miller’s (1958) celebrated result that, with perfect capital

markets, financial structure is irrelevant, corporate finance has studied how various market

imperfections will make different capital structures more or less attractive. In line with the

seminal insights of Jensen and Meckling (1976), a large fraction of the literature has focused

on the conflicts of interests arising between investors and managers. When the latter have

more information about their firms and their own actions than outside investors, an agency

problem arises. Managers can take actions that are in the interest of investors, such as

working hard to improve cash flows. Alternatively, they can choose to enjoy private benefits,

at the expense of investors. For example, when it comes to hiring staff, managers could

prefer friendly but inefficient family members, rather than more competent but potentially

threatening outsiders. Or, they could engage in loss-making empire-building and prestige-

driven activities. In the financial sector, managers might rely on ratings and brokers’ advice,

rather than conducting time- and resource-consuming checks on the quality of the assets they

consider for their portfolios. When such actions are unobservable by investors and managers

have limited liability, a moral-hazard problem arises.

In this context, the first generation of corporate finance models analyzed the equilibrium

interaction between managers and investors, for a given type of financial contract, such as,

for instance, debt or equity. As noted by Harris and Raviv (1992),

“A much deeper question, however, is what determines the specific form of the

contract (security) under which investors supply funds to the firm. [...] Therefore

financial contract design must resolve the problem of allocating the cash flows

generated to investors.”

The financial contracting literature therefore characterizes optimal contracts designed

to mitigate the agency conflicts between investors and managers. Seminal contributions

along these lines were offered by Townsend (1979), Gale and Hellwig (1985), Innes (1990),

and Bolton and Scharfstein (1990), among many others. This literature identified conditions

under which debt contracts are optimal. Tirole (2001, 2006) provides a comprehensive unified

treatment of corporate finance within an optimal contracting framework.

Although these approaches have proven fruitful, their applicability is limited by their

reliance on models that typically feature one or two periods. In practice, however, financial

contracting is inherently dynamic. Correspondingly, finance data sets include time series

of cash flows and balance-sheet variables, as well as sequences of corporate events such as
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security issuances, dividends, or default. Dynamic models are needed to confront theoretical

implications to such data. Furthermore, asset-pricing models are also generally dynamic,

and often set up in continuous time. Analyses of dynamic financial contracting are therefore

needed to bridge the gap between corporate finance and asset pricing, thus providing a

unified theory of the design and valuation of securities.

Early contributions to the dynamic analysis of financial contracts were offered by Hart and

Moore (1994) and Gromb (1999), in line with Bolton and Scharfstein (1990). More recently,

the literature on dynamic financial contracting has made significant progress by relying

on the recursive approach to dynamic contracting pioneered by Green (1987), Spear and

Srivastava (1987), Thomas and Worall (1990), Phelan and Townsend (1991), and Atkeson

and Lucas (1992). This led to the discrete-time models of Clementi and Hopenhayn (2006)

and DeMarzo and Fishman (2007a, 2007b), followed by Biais, Mariotti, Plantin, and Rochet

(2004, 2007). Further progress was made possible by the martingale methods introduced

by Sannikov (2008). This led to the continuous-time models of DeMarzo and Sannikov

(2006), Biais, Mariotti, Rochet, and Villeneuve (2010), and DeMarzo, Fishman, He, and

Wang (2010). The goal of this paper is to survey some of the main results of this stream of

literature in the context of a synthetic model.

In Section 2, we present our basic framework, drawing from Biais, Mariotti, Plantin,

and Rochet’s (2004) simple model of dynamic moral hazard. A principal and an agent

dynamically interact in discrete time. Both are risk neutral. The agent has limited liability

and must exert costly unobservable effort to make a project profitable. The principal funds

the initial investment as well as the operating costs. Whereas we focus on hidden effort, one

could alternatively model the agency problem in terms of cash-flow diversion, as Bolton and

Sharfstein (1990) do. Indeed, as long as the agent is always requested to exert effort, the two

models are isomorphic. Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007b),

and Biais, Mariotti, Plantin, and Rochet (2007) analyze dynamic contracting when managers

can divert cash. DeMarzo and Fishman (2007a) offer a general analysis encompassing several

contractual imperfections, including hidden effort and cash-flow diversion.

Within this framework, in Sections 2 and 3, we revisit some of the results of Clementi and

Hopenhayn (2006), DeMarzo and Fishman (2007b), and Biais, Mariotti, Plantin, and Rochet

(2004, 2007). The optimal contract relies on two state variables: the continuation utility of

the agent, and the size of the project. Incentive compatibility requires that the continuation

utility of the agent be raised after success and reduced after failure. Thus this state variable

reflects the cumulative performance of the project. That the optimal contract depends on
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cumulative performance illustrates the memory property first identified by Rogerson (1985).1

When performance reaches a milestone, the agent gets paid. By contrast, when performance

is poor, the project can be downsized or even liquidated. Then, in Section 4, we consider

two continuous-time limits of this model, namely, a Brownian limit, as in DeMarzo and

Sannikov (2006) and Biais, Mariotti, Plantin, and Rochet (2007), and a Poisson limit, as in

Biais, Mariotti, Rochet, and Villeneuve (2010).

Throughout the analysis, our main emphasis is on the implementation of the abstract

optimal contract with financial instruments, and the empirical implications to which it leads.

The project is undertaken within a firm. On the asset side of its balance sheet are its cash

reserves and the value of its physical capital, as well as intangible assets corresponding to

the net present value of the investment project. On the liability side of the balance sheet

are the securities issued by the firm, namely, debt, held by the investors, and stocks, held in

part by the investors and in part by the manager. The latter cannot sell his shares, lest this

should jeopardize his incentives to exert effort.

This implementation of the optimal contract exhibits several features that are in line

with stylized facts and empirical evidence. The greater the severity of the moral-hazard

problem, the greater the fraction of the shares held by the manager. Unlike the optimal

securities obtained in one-period models, which are defined as functions of a single cash

flow, the securities implementing the optimal contract are defined as functions of streams

of cash flows. Whereas debt pays a steady stream of coupons, stocks pay dividends only

when performance milestones are reached, in line with the empirical findings of Kaplan

and Strömberg (2003). When its liquidity ratio falls below a threshold, the firm must be

downsized. This endogenizes why firms are at least partially liquidated when they run out

of cash, even if their projects still have positive net present value.

In the Brownian limit, the dynamics of the stock price are given by a stochastic differential

equation similar to that posited in Black and Scholes (1973) and Merton (1973). Two major

differences are that the stock price can drop to zero, corresponding to the liquidation of the

firm, and that its volatility is decreasing in the level of the stock price, in line with the leverage

effect pointed out by Black (1976), Christie (1982), and Nelson (1991). Furthermore, the

stock price decreases, and the credit yield spread increases, when the moral-hazard problem

becomes more severe. Also, the payment scheme to the manager in the optimal contract has

the same structure as the high-water-mark compensation schemes used in the hedge-fund

industry: for the manager to receive a payment, it must be that cumulative performance

1See Laffont and Martimort (2002, Chapter 8) for an extensive discussion of this point.
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exceeds its previous maximum.2 In the Poisson limit, we also characterize the endogenous

dynamics of firm size. We show that if the maximum feasible rate of investment in the

project is low, then firm size shrinks to zero in the long run. By contrast, if the investment

rate can be large, the firm grows without bounds in the long run, despite the agency problem.

2 The Discrete-Time Model when the Principal and

the Agent Are Equally Impatient

2.1 The Model

There is a principal (referred to as “she”) and an agent (referred to as “he”). Both are risk

neutral and discount future payments at rate r. The principal has deep pockets, whereas

the agent has limited liability and initial wealth A. They have access to an investment

opportunity for which the managerial skills of the agent, as well as the funds of the principal,

are needed.3 Together they form a firm to operate this project.

The firm is started at initial size X0 ≤ 1. The unit cost of investment is c, so that the

initial investment is X0c. The firm can operate in periods n = 1, . . . , N , with N possibly

infinite. Its size in period n is Xn. There are constant returns to scale. Thus, in period n,

the project generates a cash flow equal to XnRn, where the size-adjusted cash flow Rn is

independent of Xn. The firm can be successful, and generate revenues greater than its costs,

resulting in a size-adjusted benefit Rn = R+ > 0. Or it can fail, and generate revenues lower

than its costs, resulting in a size-adjusted loss Rn = R− < 0. Denote ∆R ≡ R+ −R−.

In any period, the probability of a high or a low cash-flow realization depends only on

the current effort exerted by the agent, so that, for a given effort profile, cash flows are

independent over time. Moreover, the technology that generates these cash flows is the

same in all periods. If the agent exerts effort in period n, which we denote by en = 1, the

probability of a high cash-flow realization is p > 0. If the agent exerts no effort in period n,

which we denote by en = 0, the probability of a high cash-flow realization is p − ∆p < p,

where 0 < ∆p < p. Thus shirking reduces the profitability of the project.

If the agent exerts no effort in period n, he enjoys private benefits XnB from shirking.4

2Goetzmann, Ingersoll, and Ross (2003) discuss the features of high-water-mark contracts and offer an
analysis relying on asset-pricing tools. Whereas they take high-water marks as given, we show how they
emerge as part of an optimal contract.

3Empirically, the assumption that the agent has unique necessary skills to run the project is particularly
relevant in the case of small businesses, where the entrepreneur-manager is often indispensable for operating
the firm efficiently (Sraer and Thesmar (2007)).

4We follow Holmström and Tirole (1997) and Tirole (2006) in reasoning in terms of a private benefit from
shirking. One could equivalently cast the model in terms of a cost of exerting effort.
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Note that we impose a constant-returns-to-scale assumption to private benefits as well as

to cash flows. It is natural to assume that private benefits and cash flows are increasing in

firm size. What is less obvious is why they should be proportional to firm size. We make

this assumption because it allows us to reduce the number of relevant state variables and to

derive fairly explicit results.5

At the beginning of period n, the firm can be irreversibly downsized from Xn−1 to Xn =

xnXn−1, where xn ∈ [0, 1].6 Thus the size of the firm in period n is

Xn = X0

n∏

k=1

xk.

For simplicity, the proceeds from liquidating a fraction of the firm are normalized to zero.7

We assume that the project has positive net present value if the agent always exerts effort,

N∑

k=1

pR+ + (1− p)R−

(1 + r)k−1
> c, (1)

and that it is inefficient to operate the project if the agent shirks,

(p−∆p)R+ + (1− p + ∆p)R− + B < 0. (2)

Assumptions (1)–(2) imply that exerting effort is efficient,

∆p∆R > B.

A dynamic contract maps in any period the history of the firm up to that period into

downsizing and compensation decisions. The first-best case arises when the agent’s actions

are observable and contractible. It follows from (1)–(2) that, in this first-best benchmark, it is

optimal to undertake the project at full scale, and to require the agent to always exert effort;

compensation decisions are irrelevant as long as they provide the agent with his required

intertemporal utility. Under unobservable action choices and limited liability, the first-best

5It would be interesting, in future research, to investigate to which extent these results are robust when
the constant-returns-to-scale assumption is relaxed. Biais, Mariotti, Rochet, and Villeneuve (2010) offer a
heuristic analysis of a model in which private benefits given firm size X are given by Bε(X) ≡ XB+εXβ(X),
for some small number ε and some bounded function β. Their analysis suggests that, under regularity
conditions, the qualitative properties of the optimal contract can reasonably expected to be upheld for such
a small perturbation. One can similarly conjecture that the results are robust to a small perturbation in the
specification of cash flows.

6The possibility of increasing the size of the firm through investment will be considered in Section 3.3.
7One could easily allow for a positive resale value. Setting the resale value below c captures the notion

that distressed firms’ assets often trade at unfavorable prices. Even if the resale price were equal to c,
downsizing would generate inefficiencies, to the extent that it would imply an irreversible reduction in the
scale of operation of a positive net present value project.
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outcome may not be attainable. The second-best contract maximizes expected surplus,

subject to feasibility, participation, limited-liability, and incentive-compatibility constraints.

To focus on a single imperfection, namely, managerial moral hazard, we assume that the

principal and the agent can fully commit to a long-term contract.

At the beginning of the contractual relationship, the contract is designed and X0c is

invested in the firm. Then, in any period n, the timing of events is the following:

• First, there may be downsizing, xn < 1, or no change in firm size, xn = 1.

• Second, the agent may decide to exert effort, en = 1, or to shirk, en = 0.

• Third, the project may be successful, Rn = R+, or unsuccessful, Rn = R−.

• Fourth, the agent receives a compensation Xnun ≥ 0, and the principal receives the

remaining cash flow Xn(Rn − un).

Let Hn be the publicly available information at the beginning of period n, that is, the history

of realized cash flows and investment and downsizing decisions until period n. Then Xn is

measurable with respect to Hn, whereas un also depends on the realization of the period n

cash flow Rn.

2.2 The One-Period Case

To build intuition, consider the one-period case, N = 1, which corresponds to the baseline

corporate finance model analyzed in Holmström and Tirole (1997) and further developed in

Tirole (2006). The size-adjusted compensation of the agent is u+ if the project is successful,

and u− otherwise. The incentive-compatibility constraint of the agent is

pu+ + (1− p)u− ≥ (p−∆p)u+ + (1− p + ∆p)u− + B,

where the left-hand side is the size-adjusted expected utility of the agent when he exerts

effort, and the right-hand side its counterpart when he shirks. This simplifies to

∆p(u+ − u−) ≥ B. (3)

To relax the incentive-compatibility constraint, it is optimal to set u− ≡ 0, yielding

u+ ≥ B

∆p
. (4)

The ratio B
∆p

is the minimum rent that must be promised to the agent in case of success to

induce him to exert effort, and measures the severity of the moral-hazard problem. As B
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increases, it becomes more tempting for the agent to shirk, and as ∆p decreases, it becomes

more difficult for the principal to detect shirking. Inequality (4) implies that, in size-adjusted

terms, the one-period pledgeable income, that is, the maximum expected revenue that can

be promised to the principal without jeopardizing the incentives of the agent, is

pR+ + (1− p)R− − p
B

∆p
.

The participation constraint of the principal is

X0[p(R+ − u+) + (1− p)(R− − u−)] ≥ X0c− IA,

where the left-hand side is the expected net cash flow received by the principal, whereas

the right-hand side is the initial funding she provides, with IA ≤ A denoting the initial

investment of the agent. Setting u− ≡ 0, the participation constraint of the principal is

consistent with the incentive-compatibility constraint of the agent if and only if

X0

[
pR+ + (1− p)R− − p

B

∆p
− c

]
≥ −IA. (5)

If the one-period pledgeable income is not less than the investment cost, so that the bracketed

term in (5) is nonnegative, the venture can be undertaken at full scale with no funding from

the agent, that is, with X0 = 1 and IA = 0. By contrast, if

pR+ + (1− p)R− − p
B

∆p
< c,

funding by the agent is requested. Binding the incentive-compatibility and participation

constraints then yields the largest possible initial scale of operation for the firm,

X0 = min

{
A

c + p B
∆p
− pR+ − (1− p)R− , 1

}
. (6)

This foreshadows a result we will obtain in the dynamic model: when the moral-hazard

problem is severe, that is, when B
∆p

is high, and the wealth A of the agent is low, it is

necessary to operate the project at a smaller scale than what would be efficient in the first-

best benchmark. In the following, we maintain the assumption that

pR+ + (1− p)R− < p
B

∆p
.

Hence the moral-hazard problem is so severe that the one-period pledgeable income is

negative. Yet we will see that, for some parameter values, when the principal and the

agent interact over several periods, that is, N > 1, the project can be undertaken even if

the agent has no initial wealth, that is, A = 0. Thus dynamic contracting alleviates the

moral-hazard problem.

7



2.3 The Infinite-Horizon Case

Now, consider the case where N = ∞. The analysis below is then in line with the infinite-

horizon analyses of Clementi and Hopenhayn (2006) and Biais, Mariotti, Plantin, and Rochet

(2004, 2007), and is the stationary counterpart of the finite-horizon analysis of DeMarzo and

Fishmann (2007b).8 Notice that Clementi and Hopenhayn (2006) also allow for short-lived

investment in working capital, which raises the scale of operations in the current period. In

that respect, their framework is richer than the present one. For simplicity, we restrict the

analysis to the case where the agent must always exert effort, that is, en = 1 for all n ≥ 1.

Biais, Mariotti, Plantin, and Rochet (2004, Proposition 13) show that when the adverse

consequences of shirking are severe, it is indeed optimal to always request high effort from

the agent.

2.3.1 Continuation Utilities

On the equilibrium path, where effort is exerted, the expected continuation utility of the

agent at the beginning of period n is

Wn ≡ E

[ ∞∑

k=0

Xn+kun+k

(1 + r)k
|Hn

]
,

and the expected discounted future profit of the principal at the beginning of period n is

Fn ≡ E

[ ∞∑

k=0

Xn+k(Rn+k − un+k)

(1 + r)k
|Hn

]
,

where E[ · |Hn] is the expectation operator conditional on Hn and the agent always exerting

effort, and the controls are Xn+k and un+k. The size-adjusted continuation utility of the

agent and the size-adjusted value of the principal are

wn ≡ Wn

Xn−1

,

fn ≡ Fn

Xn−1

.

Because xn is measurable with respect to Hn, these can be recursively expressed as

wn = xnE

[
un +

wn+1

1 + r
|Hn

]
, (7)

fn = xnE

[
Rn − un +

fn+1

1 + r
|Hn

]
. (8)

The equality (7) is often referred to as the promise-keeping constraint.

8One of the advantages of the finite-horizon analysis of DeMarzo and Fishman (2007b) is that it clarifies
the recursive nature of the problem, operating backward from a finite value of N . On the other hand, one
advantage of the stationary setting we focus on is that it simplifies the computations, and hence enables one
to obtain more explicit results.
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2.3.2 The Optimal Contract

It can be shown that the optimal dynamic contract is contingent on two state variables

only: the size-adjusted continuation utility of the agent, w, and the size of the project, X.

Furthermore, because of the constant-returns-to-scale assumption, the downsizing factor, x,

the size-adjusted compensation of the agent after a success, u+, or after a failure, u−, and

the size-adjusted continuation utility of the agent after a success, w+, or after a failure, w−,

only depend on w. Thus the promise-keeping constraint (7) rewrites as

w = x

[
pu+ + (1− p)u− +

pw+ + (1− p)w−

1 + r

]
, (9)

whereas (8) leads to the following Bellman equation:

f(w) = max

{
x

[
p(R+ − u+) + (1− p)(R− − u−) +

pf(w+) + (1− p)f(w−)

1 + r

]}
, (10)

where the maximization in (10) is over the controls x, u+, u−, w+, and w−, subject to the

feasibility and limited-liability constraints

(x, u+, u−, w+, w−) ∈ [0, 1]× [0,∞)4, (11)

the promise-keeping constraint (9), and the incentive-compatibility constraint

pu+ + (1− p)u− +
pw+ + (1− p)w−

1 + r

≥ B + (p−∆p)u+ + (1− p + ∆p)u− +
(p−∆p)w+ + (1− p + ∆p)w−

1 + r
.

The latter constraint simplifies to

∆p

[(
u+ +

w+

1 + r

)
−

(
u− +

w−

1 + r

)]
≥ B. (12)

Constraint (12) is similar to its one-period counterpart (3). In both, the left-hand side is

the effect of effort on the expected size-adjusted compensation of the agent, whereas the

right-hand side is the size-adjusted private benefit from shirking. The difference between

(12) and (3) lies in the continuation utilities w+ and w−, which reflect the effect of current

effort on expected future compensation. Relying on such deferred payments helps relaxing

the incentive-compatibility constraint.

Using standard techniques (see, for instance, Stokey and Lucas, with Prescott (1989)),

one can show that there exists a unique solution f to (10) subject to (9), (11), and (12) (Biais,

Mariotti, Plantin, and Rochet (2004, Proposition 1)). The value function f is continuous,

9



concave, and vanishes at w = 0. To spell out the optimal contract, define the two following

thresholds for the agent’s size-adjusted continuation utility:

wl ≡ pB

∆p
, (13)

wp ≡ 1 + r

r

pB

∆p
. (14)

The following result, a proof of which can be found in Biais, Mariotti, Plantin, and Rochet

(2004, Proposition 3), characterizes an optimal contract.9

Proposition 1 Suppose that p > r. Then, in any optimal contract, there is no downsizing

as long as w ≥ wl, and the agent receives no payment in case of failure as long as w ≤ wp.

The following describes an optimal contract:

(i) wp is an absorbing boundary for the continuation utility of the agent. Once it is reached,

the project is operated with certainty forever, and in any subsequent period, the agent

is paid u+ = B
∆p

in case of success, whereas in case of failure he is not paid, u− = 0.

(ii) When w ∈ [wl, wp), the agent is paid u+ = max
{
w − (

wp − B
∆p

)
, 0

}
in case of success

and his continuation utility then moves up to w+ = min
{
(1 + r)

[
w + (1− p) B

∆p

]
, wp

}
,

whereas in case of failure he is not paid, u− = 0, and his continuation utility moves

down to w− = (1 + r)
(
w − p B

∆p

)
.

(iii) When w ∈ (0, wl), the firm is downsized, x = w
wl , and there are no immediate payments,

u+ = u− = 0. The continuation utility of the agent moves up to w+ = min
{
(1+r)

[
wl+

(1− p) B
∆p

]
, wp

}
in case of success, whereas in case of failure it moves down to w− = 0

and the firm is liquidated.

The value function f corresponding to the optimal contract stated in Proposition 1 is

linear over [0, wl], and affine with slope −1 over [wp,∞). As mentioned in Proposition

1, when w ≤ wp the agent gets no current compensation after a failure. This feature of

the optimal contract arises, like in the one-period case, in order to relax the incentive-

compatibility constraint. Once the agent’s size-adjusted continuation utility reaches wp,

the firm is insulated from the risk of liquidation, and financial constraints cease to bind.

Because the principal and the agent are risk neutral and discount future payments at the

same rate, there are actually many ways to induce the agent to exert effort from that point

9All quantities in the statement of Propositions 1 and 3 are in size-adjusted terms. This is not mentioned
systematically in order to make the exposition more concise.
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on. Proposition 1 focuses on the case where incentives are provided by current size-adjusted

payments of B
∆p

in case of success; consistent with this, wp as given by (14) is the value of a

perpetual annuity paying B
∆p

with probability p in every period. Note that, although the firm

faces no risk of liquidation once the agent’s size-adjusted continuation utility has reached

wp, say, in period n, this does not mean that the first-best outcome is always attained in

such case. Indeed, the firm may have been downsized prior to period n, resulting in Xn < 1.

Then, the project is not operated at full scale, unlike in the first-best benchmark.

According to Proposition 1, the agent is not paid until his size-adjusted continuation

utility exceeds wp − B
∆p

and the project is successful, which finally brings his size-adjusted

continuation utility to the absorbing boundary wp. Why not reward the agent earlier, that

is, for lower values of w? The reason is that this would be dominated by promising the same

expected discounted payment, contingent on his size-adjusted continuation utility reaching

this upper bound, which would provide stronger incentives to the agent, at the same cost

for the principal. The result that it is optimal to defer payments to the agent is in line with

Becker and Stigler (1974).

Over the range
[
wl, wp− B

∆p

)
, the agent is solely motivated by promises: his size-adjusted

continuation utility evolves as a function of the performance of the project, increasing after

successes and decreasing after failures, so that

wn+1 = (1 + r)(wn + kεn), (15)

where εn ≡ Rn − E[Rn] is the innovation in the cumulative cash flow under effort, and

k ≡ B

∆p∆R
< 1 (16)

measures the sensitivity of the agent’s reward to the performance of the project, which

increases in the severity of the moral-hazard problem, as measured by B
∆p

. Over this range,

the size-adjusted continuation utility of the agent is an r–discounted martingale,

E[wn+1 |Hn] = (1 + r)wn.

Deviations around this deterministic trend reflect the performance of the project.

Consider finally the range [0, wl). To motivate the agent, his continuation utility must

be reduced after a failure. However, for w < p B
∆p

, such a reduction conflicts with the

limited-liability constraint. To restore the consistency between limited liability and incentive

compatibility, downsizing is then necessary. Downsizing reduces the private benefit from

shirking, thus making it commensurate with the reduction in the agent’s continuation utility

that can be implemented without violating the limited-liability constraint.
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2.3.3 Initialization

If, at the outset of the contractual relationship, the size-adjusted continuation utility of the

agent is set at a level greater than or equal to wp, downsizing is completely avoided. This is

feasible if, for the principal, the corresponding size-adjusted value f(wp) is greater than the

investment cost, that is,

1 + r

r
[pR+ + (1− p)R−]− wp ≥ c− A. (17)

The first term on the left-hand side of (17) is the present value of the cash flows generated

by the firm, if it is never downsized and the agent always exerts effort. The second one is

the present value of the payments to the agent. If condition (17) holds, the firm can be

indefinitely operated at full scale, and the first-best outcome is achieved.

When condition (17) does not hold, this outcome cannot be immediately attained. But

can the project be operated, and at which scale? The maximum size-adjusted expected

income that can be pledged to the principal is

max
w∈[0,wp]

{f(w)}.

Denote by w∗ < wp the value of w for which f(w) is maximal. The participation constraint

of the principal is

X0[f(w∗)− c] ≥ −IA,

which is the dynamic counterpart of (5). If the left-hand side of this inequality is nonnegative,

the project can be initially operated at full scale, no matter the initial wealth A of the agent.

Otherwise, the maximum possible initial size of the project is

X0 = min

{
A

c− f(w∗)
, 1

}
.

It is obtained when IA = A, and is the dynamic counterpart of (6).

2.4 Implementing the Optimal Contract with Cash and Securities

We now study which financial instruments can be used to implement the optimal contract

characterized in Proposition 1. In general, several implementations are possible. Indeed,

as long as feasibility, participation, limited-liability, and incentive-compatibility constraints

are satisfied, the Modigliani and Miller (1958) logic applies: slicing and dicing of cash flows

is irrelevant. To narrow down the set of implementations, we shall therefore impose two

restrictions.
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First, we impose that the stake of the principal be implemented with securities, that

is, claims with limited liability, excluding negative payoffs. These claims can be held by

a diffuse investor basis.10 Now, cash flows are negative in case of failure. Hence, to avoid

negative payoffs to outside investors, the firm must hold cash reserves. Denote the period

n cash reserves by Mn. The change in the level of these reserves is equal to the sum of the

interest received on them and of the operating cash flow, minus the compensation to the

agent and the payments to the investors. Thus Mn corresponds to initial cash holdings plus

accumulated earnings until period n. Second, we impose that the firm be liquidated when

it runs out of cash. It should be noted that these two restrictions on the implementation

of the optimal mechanism do not affect in any way the efficiency of the outcome: we are

implementing the optimal contract.

In the implementation of the optimal contract, the project is undertaken within a firm.

The initial balance sheet of this firm is depicted in Table 1.

Assets Liabilities

Current assets M0 Debt D0

Tangible fixed assets X0c Equity S0

Intangible assets NPV0

Table 1 The initial balance sheet of the firm.

On the liability side is the market value of the securities issued by the firm: debt, D0,

held by the investors, and equity, S0, held in proportion k by the agent, and 1 − k by the

investors. On the other side of the balance sheet, one must distinguish between tangible and

intangible assets. Tangible assets are the sum of current assets, M0, and of tangible fixed

assets, X0c. Intangible assets are the difference between the total market value of the firm,

S0 + D0, and its book value X0c + M0. This difference is equal to the net present value of

the project, NPV0 ≡ E
[ ∑∞

k=1
XkRk

(1+r)k−1

]−X0c.
11

10This is in line with the assumption of full commitment to the contract, because coordination problems
make renegotiation difficult for dispersed claim holders.

11To the extent that it reflects the gap between the market value and the book value, this difference can
be interpreted in terms of goodwill.
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Dividing current assets, Mn, by tangible fixed assets, Xnc, one obtains the liquidity ratio

mn ≡ Mn

Xnc
.

To characterize the implementation of the optimal contract, we define two thresholds for

this liquidity ratio, in line with (13) and (14):

ml ≡ wl

kc
=

p∆R

c
,

mp ≡ wp

kc
=

1 + r

r

p∆R

c
,

where k is defined by (16). The following result, a proof of which can be found in Biais,

Mariotti, Plantin and Rochet (2004, Proposition 4), shows how to implement the optimal

contract with cash reserves and securities.

Proposition 2 The optimal contract can be implemented with cash reserves, stocks, and

bonds, in such a way that the liquidity ratio is equal to

mn =
wn

kc
(18)

in any period n. Specifically,

(i) The firm initially issues stocks and bonds, and grants a fraction k of the stocks to the

agent, who is prohibited from selling them. With the proceeds from the issuance, the

firm acquires its assets and hoards cash corresponding to an initial liquidity ratio m0.

(ii) The stock distributes a size-adjusted dividend φn ≡ max{c(mn−mp)+∆R, 0} in case of

success in period n. The bonds are consol bonds distributing in any period n a constant

size-adjusted coupon ψ ≡ pR+ + (1− p)R−.

(iii) When mn ∈ (0,ml), the firm is not liquid enough to meet its short-term commitments

in period n. It is therefore downsized, xn = mn

ml , after which the implementation starting

with a size-adjusted liquidity ratio ml is immediately executed. When mn = 0, the firm

is liquidated.

In the dynamic optimal contract characterized in Proposition 1, one of the key state

variables is the rent of the agent, wn. In the implementation of the contract, payout and

downsizing decisions are contingent on the liquidity ratio mn, which, according to (18),

perfectly co-moves with wn.

14



The roles of inside and outside equity and the nature of dividends in Proposition 2 are

similar to those obtained by DeMarzo and Fishman (2007b). There is, however, a difference

between their implementation and the one presented above, in that they consider a credit

line instead of cash reserves. The mechanism is then as follows: when cash flows are not

high enough to cover costs, the firm draws on its credit line. If the firm repeatedly draws on

its credit line and eventually exhausts it, it is liquidated.

2.5 Empirical Implications and Stylized Facts

The implementation of the optimal contract emphasizes the role of the firm’s cash reserves.

In particular, it shows that the firm must maintain a minimum liquidity ratio, and be

downsized when its liquidity ratio falls below this threshold. This endogenizes why firms

enter financial distress and are partially liquidated when they run out of cash, even if their

projects still have positive net present value.12

Unlike the optimal securities obtained in one-period models, which are defined as claims

on a single cash flow, the securities implementing the optimal contract are defined as claims

on streams of cash flows. Debt is a claim on a steady stream of coupons, equal to expected

operating cash flows. Equity is a claim on a more irregular stream of cash flows, paid only

when cash reserves reach a contractually specified threshold. As pointed out by Brealey,

Myers, and Allen (2008, Chapter 25), bond covenants typically include clauses restricting

the set of circumstances in which dividends can be paid. In particular, contractual clauses

often preclude dividend payments when the firm does not have a sufficiently large ratio of

liquid assets to total assets, as predicted by the model. The above theoretical results are

also consistent with the empirical findings of DeAngelo, DeAngelo, and Stulz (2006), who

observe a significant positive relationship between the distribution of dividends and the level

of retained earnings, which amount to cash reserves in the model. In line with our emphasis

on the liquidity ratio, firms that consistently paid dividends in their sample displayed a

large ratio of cash balances to total assets. The model also implies that dividends are paid

only after the firm has established a sufficient performance record. This is in line with

the stylized fact that dividends are paid by large and mature firms, whereas young firms,

especially in the high-tech industry, pay no cash to shareholders for long periods of time

(Bulan, Subramaniam, and Tanlu (2007)).

In line with stylized facts on executive compensation (Dial and Murphy (1995), Murphy

(1999)), the agent who manages the project is compensated with restricted stocks, which he

12Denis and Shome (2005) offer empirical evidence on the downsizing of financially distressed firms.
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cannot sell; if he could, this would curb his incentives to exert effort. This is consistent with

the empirical findings of Kaplan and Strömberg (2003) that financial contracts typically

specify that managers receive cash compensation only when performance milestones are

reached. Another implication of the model is that the agent’s equity share k increases with

the severity of the moral-hazard problem, as measured by B
∆p

. This is consistent with the

empirical findings of Kaplan and Strömberg (2004) that the use of performance benchmarks

increases with asymmetric information about the operations of the firm.

3 The Discrete-Time Model when the Agent Is More

Impatient than the Principal

When the principal and the agent are equally impatient, the optimal contract allows for

several optimal compensation policies. One of them, stated in Proposition 1, is to pay the

agent as soon as his size-adjusted continuation utility reaches wp. Equivalently, one could

delay payments further, while capitalizing them at rate r. Because this is the discount rate

of the agent as well as of the principal, and because both of them are risk neutral, they would

be indifferent to such a variation. By contrast, when the agent is more impatient than the

principal, this multiplicity problem does not arise, and the agent’s optimal compensation is

uniquely determined, as we will see below.

Now, in practice, it is plausible that the agent will indeed be more impatient to consume

than the principal. Consider a large population of potential principals, with different discount

rates, some equal to r, and some higher. The most impatient of them, with discount rate

higher than r, will incline towards consuming immediately and borrowing on the market at

rate r, rather than investing in a project. The most patient of them, with discount rate equal

to r, are the best placed to fund a project. They will naturally constitute the population of

investors serving as principals in the model. By contrast, in presence of moral hazard, an

agent managing an investment project cannot freely borrow to consume early. Delaying his

consumption until the cumulative performance of his project reaches a milestone is necessary

to ensure incentive compatibility. Moreover, to preserves incentives, the optimal contract

must preclude him from borrowing from third parties and consuming early. Therefore, high

impatience is a key consideration for the agent.

In this section, we study a dynamic moral-hazard model that is identical to the model

considered in the previous section, except that the discount rate of the agent, ρ, is strictly

greater than the discount rate of the principal, r. This will pave the way to the analysis of

the different continuous-time limits of the model that we explore in Section 4.
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3.1 The Optimal Contract

Like in the previous section, the optimal contract hinges on two thresholds. For simplicity,

we still denote them by wl and wp. But, unlike when the principal and the agent are equally

impatient, we no longer have explicit expressions for wl and wp. In addition, it is useful to

define a third threshold wr ≡ (1 + ρ)
(
wp − p B

∆p

)
, which turns out to be lower than wp in

the optimal contract. Under parameter restrictions spelled out in Biais, Mariotti, Plantin,

and Rochet (2004, Proposition 6), the optimal contract is as follows.13

Proposition 3 Suppose that ρ > r. Then, in the optimal contract, there is no downsizing

as long as w ≥ wl, and the agent receives no payment in case of failure as long as w ≤ wp.

The optimal contract is as follows:

(i) When w ∈ [wl, wp), the agent is paid u+ = max
{
w − (

wp − B
∆p

)
, 0

}
in case of success

and his continuation utility then moves up to w+ = min
{
(1 + ρ)

[
w + (1− p) B

∆p

]
, wr

}
,

whereas in case of failure he is not paid, u− = 0, and his continuation utility moves

down to w− = (1 + ρ)
(
w − p B

∆p

)
.

(ii) When w ∈ (0, wl), the firm is downsized, x = w
wl , after which the optimal contract

starting with a continuation utility wl is immediately executed. When w = 0, the firm

is liquidated.

There are similarities between Proposition 1 and Proposition 3. The value function f

corresponding to the optimal contract stated in Proposition 3 is continuous, concave, and

vanishes at w = 0. Moreover, it is linear over [0, wl], and affine with slope −1 over [wp,∞).

A further similarity is that, over the range
[
wl, wp − B

∆p

)
, the size-adjusted continuation

utility of the agent is a ρ–discounted martingale,

wn+1 = (1 + ρ)(wn + kεn), (19)

in analogy with (15).

The main difference between Proposition 1 and Proposition 3 is that, whereas, in the

former, wp acted as an absorbing boundary for the agent’s size-adjusted continuation utility,

in the latter, wr < wp acts as a reflecting boundary. When wr is hit, after a success, the agent

receives an immediate payment. Then, in case of a further success, the agent’s size-adjusted

continuation utility remains at wr, whereas, in case of a failure, it is reflected downward. The

13These parameter restrictions ensure the existence of an intermediary region where the project is not
downsized, but the agent is compensated solely by promises of future payments.
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intuition is the following. Suppose the upper bound on the agent’s size-adjusted continuation

utility were absorbing. This would mean that the principal would have to wait for a long

string of successes until the agent would receive any payment, after which the project would

be insulated from downsizing risk. When the principal and the agent are equally impatient,

it is costless to wait that long. By contrast, when the agent is more impatient than the

principal, it is efficient to trade off increased downsizing risk for earlier consumption. As a

result, the reflecting boundary wr is lower than the value of a perpetual annuity paying B
∆p

with probability p in every period, and capitalized at rate ρ.

Proposition 3 implies that, when ρ > r, the firm is never insulated from the risk of

downsizing. This has dramatic consequences on the asymptotic size of the firm, as stated in

the next proposition, which is proven in the appendix.

Proposition 4 When ρ > r, the size of the firm shrinks to zero in the long run,

lim
n→∞

Xn = 0,

P–almost surely.

The intuition is the following. By Proposition 3, wn follows a Markov chain that is

reflected at wr. In particular, from any initial state w1, wn reaches the downsizing region

with strictly positive probability. Now, two cases must be distinguished. If wl = p B
∆p

, the

zero absorbing boundary can be reached from any initial state w1. As a result, the unique

ergodic distribution for wn has all its mass at zero, reflecting that the firm is liquidated in

finite time with probability one. By contrast, if wl > p B
∆p

, the zero absorbing boundary will

never be reached, unless of course the initial state w1 is zero. As a result, the firm will never

be liquidated. Yet one can show that, in this case, with probability one, wn visits infinitely

often the downsizing region, driving the size of the firm to zero. Note from Proposition 1 that

things are qualitatively different when the principal and the agent are equally impatient. In

that case, there are two absorbing boundaries for wn, namely, zero and wp. Thus, whereas

the ergodic distribution of wn still puts mass on zero, the firm may have strictly positive

size in the long run. This happens when the size-adjusted continuation utility of the agent

reaches wp in period n, after which the size of the firm forever remains at Xn.

That in the long run the continuation utility of the agent, Wn = Xn−1wn, goes to its

zero lower bound is reminiscent of the classical immiserization result of Thomas and Worall

(1990). The economic forces at play in the two models are different, however. In Thomas

and Worall (1990), the period utility function of the agent is concave and unbounded below.
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Therefore, providing incentives is cheaper, the lower the agent’s continuation utility, which

gives the principal an incentive to let it drift downwards. By contrast, in the present model,

both the principal and the agent are negatively affected when the latter’s continuation utility

becomes very low, because this raises the cost of incentives, and, consequently, the risk of

an inefficient liquidation. Yet the combined effect of impatience and incentive compatibility

is that the size of the firm, and, as a result, the agent’s continuation utility, drift down to

zero in the long run.

3.2 Implementation

As shown in Biais, Mariotti, Plantin and Rochet (2007, Proposition 2), one can implement

the optimal contract when ρ > r in a similar fashion as when ρ = r. The main difference is

that, when the agent is more impatient than the principal, debt service is no longer constant

per unit of size of the firm. Rather, the size-adjusted coupon decreases with size-adjusted

cash reserves, which reflect cumulative firm performance. Specifically, the size-adjusted

coupon in period n is now given by

ψn ≡ pR+ + (1− p)R− − (ρ− r)
Mn

Xn

. (20)

This is equal to expected size-adjusted operating cash flows, minus the opportunity cost

of holding cash for the agent. This implementation is consistent with clauses observed in

practice in financial contracts. Kaplan and Strömberg (2003) find that venture capitalists

often hold preferred shares, which are similar to bonds in that they deliver contractually

specified revenues, to be paid before any dividend. As observed by Kaplan and Strömberg

(2003, Table 3), the contracts defining these claims typically include clauses stating that

their revenue is reduced if performance goals are attained, or that their owner is entitled

to additional compensation if the performance of the firm lies below a certain threshold.

The payments on the bonds when ρ > r are also in line with those of step-up bonds, which

have been issued in large amounts over the recent years, especially in the European telecom

industry (see, for instance, Lando and Mortensen (2004), and Bielecki, Vidozzi, and Vidozzi

(2008)). Such bonds have provisions stating that the coupon payments increase as the credit

rating of the issuer deteriorates, which in the model corresponds to a decline in cash reserves.

The bonds in the implementation are also similar to performance-pricing loans, for which the

interest is tied to some pre-specified measure of the performance of the borrower.14 Asquith,

Beatty, and Weber (2005) document the prevalence of such clauses in bank loans.

14Tchistyi (2006) also obtains performance-pricing loans in a dynamic-contracting model.
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3.3 Investment

So far, we have restricted our attention to the case where investment is ruled out after the

initial date and firm size changes only when there is downsizing. Thus Xn ≤ Xn−1 in any

period n, where the inequality is strict when there is downsizing. We now turn to the more

general case where investment is possible throughout the life of the project, as in DeMarzo

and Fishman (2007a). Denote by gn the rate at which the firm grows, that is,

gn =
Xn −Xn−1

Xn−1

.

Positive growth gn > 0 entails a per unit investment cost, which we denote by c(gn). A

convenient formulation of this cost function is used in Biais, Mariotti, Rochet, and Villeneuve

(2010), who assume that, for some constants (c, γ) ∈ [0,∞)× (0, r),

c(g) =

{
cg if g ≤ γ,
∞ if g > γ.

(21)

Alternatively, one may consider a quadratic specification of the investment cost function,

as DeMarzo, Fishman, He, and Wang (2010) do. Under these specifications, firm growth

is limited, as large growth rates are very costly. This is in line with the macroeconomic

literature emphasizing the delays and costs associated with investment, such as time-to-build

constraints (Kydland and Prescott (1982)) or convex adjustment costs (Hayashi (1982)).

With investment, the recursive formulation of the value function of the principal is

F (Xn−1, Wn) = max

{
E

[
Xn(Rn − un) +

F (Xn,Wn+1)

1 + r
|Hn

]
− c(gn)Xn−1

}
, (22)

subject to the limited-liability, promise-keeping, and incentive-compatibility constraints.

The expectation in (22) is taken anticipating that the agent will exert effort in period n

and conditional on Hn. Note also that the maximization is over the controls (gn, un,Wn+1),

where un = u+ after success and un = u− after failure, Wn+1 = Xnw
+ after success and

Wn+1 = Xnw− after failure, and Xn = (1 + gn)Xn−1.

When there is no moral hazard, the social value generated by the firm does not depend

on the rent left to the agent, but only on the size of the project. Denoting the first-best

social value function by V ∗, we have

F ∗(Xn−1,Wn) = V ∗(Xn−1)−Wn.

Here V ∗ satisfies the following Bellman equation:

V ∗(Xn−1) = max
gn≥0

{
(1 + gn)Xn−1 E[Rn] +

V ∗((1 + gn)Xn−1)

1 + r
− c(gn)Xn−1

}
, (23)
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where the first term on the right-hand side of (23) is the current cash flow, the second term

is the discounted expected continuation value, and the third term is the cost of investment.

Because of constant returns to scale, the first-best social value function is linear in the size

of the firm; that is, the size-adjusted social value is a constant v∗:

V ∗(X) = v∗X (24)

for all X ≥ 0. Substituting (24) into (23), and focusing on the linear specification (21), it is

optimal to invest as soon as

E[Rn] +
v∗

1 + r
≥ c, (25)

where the right-hand side is the marginal cost of investment, whereas the left-hand side is

its marginal benefit. If this inequality holds, then it is optimal to invest in each period, and

the size-adjusted social value satisfies

v∗

1 + r
=

(1 + γ)E[Rn]− cγ

r − γ
,

which is the value of a perpetual annuity discounted at the appropriate rate, r − γ. In that

case, (25) becomes

E[Rn] +
(1 + γ)E[Rn]− cγ

r − γ
≥ c, (26)

or, equivalently, 1+r
r

E[Rn] ≥ c. Condition (26) only involves exogenous parameters. When

(26) holds, it is indeed optimal to continuously invest at rate γ. By contrast, if parameters

are such that (26) does not hold, it is optimal to never invest.15

Remark. In the continuous-time limit (which we analyze more precisely in Section 4.2.4

below), the terms E[Rn], r, and γ are of the order of the length h of a period. Neglecting

terms of order h, (26) then lead to

v∗ =
µ− cγ

r − γ
≥ c,

or equivalently µ
r
≥ c, where µ is the expected cash flow per unit of time if the agent exerts

effort. Note that, according to (24), v∗ is the ratio of the value of the firm to its assets,

which, as noted by DeMarzo, Fishman, He, and Wang (2010), can be interpreted as Tobin’s

q. Thus, without moral hazard, investment takes place as soon as Tobin’s q is greater than

or equal to the marginal cost of investment.

15Whereas our linear specification generates a bang-bang optimal policy, the quadratic specification in
Hayashi (1982) and De Marzo, Fishman, He, and Wang (2010) yields interior solutions.
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With this first-best benchmark in mind, let us come back to the analysis of the second-

best case. In size-adjusted terms, under the linear specification in (21), the maximand in

(22) rewrites as

Xn−1



E


(1 + gn)(Rn − un) +

(1 + gn)f
(

Wn+1

(1+gn)Xn−1

)

1 + r
|Hn


− cgn



. (27)

Taking the derivative of (27) with respect to gn, we obtain that the optimal contract entails

investment if and only if

E


Rn − un +

f
(

Wn+1

Xn

)
− Wn

Xn
f ′

(
Wn+1

Xn

)

1 + r
|Hn


≥ c. (28)

Equations (26) and (28) have a similar structure. In both cases, the first term on the left-

hand side is the per-period expected cash flow from operating the project, whereas the term

on the right-hand side is the marginal cost of investment. However, whereas the second

term on the left-hand side (26) reflects Tobin’s average q, its counterpart in (28) can be

interpreted in terms of Tobin’s marginal q. Thus, as pointed out by DeMarzo, Fishman,

He and Wang (2010), moral hazard induces a wedge between marginal q and average q, in

contrast with the neo-classical case analyzed by Hayashi (1982). As a result, under moral

hazard, empirical approaches relating investment to average q are misspecified.

In the present discrete-time, infinite-horizon setting, it is difficult to push the analysis

much further so as to get more explicit results. As shown below, the continuous-time limit is

more tractable, and we provide a fuller characterization of the optimal investment policy in

Sections 4.2.4 and 4.2.5. It should be noted, however, that the discrete-time finite-horizon

model of DeMarzo and Fishman (2007a) delivers rich qualitative insights. In particular, they

show that investment is lower with moral hazard than in the first-best case, and that the

growth in firm size is increasing in accumulated performance. This leads to the interesting

empirical implication that investment should be increasing in current and past cash flows,

and therefore should be positively serially correlated over time.

4 The Continuous-Time Case

We now turn to the continuous-time limit of the discrete-time model. This is a useful step

for the analysis, because the continuous-time model is more tractable, which enables one

to obtain additional results, and also because asset-pricing models are often formulated in

continuous time. One therefore obtains a natural framework to bridge the gap between
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the design of securities, studied by corporate finance, and the dynamics of their valuations,

studied by asset pricing.

To conduct this analysis, we need to slightly adjust our notation. Instead of indexing

variables by the number of periods since the beginning of the contract, n, we index them

by the time elapsed since the beginning of the contract, t. Denoting by h the length of a

period, we then have t = nh. The primitives of the model are also functions of h. Thus we

denote the probability of success under effort by ph, and its counterpart under no effort by

ph −∆ph. Similarly, we denote the size-adjusted cash flow in case of success by R+
h , and its

counterpart in case of failure by R−
h . Finally, the size-adjusted private benefit from shirking

and the discount rates over one period are linear in h, and denoted by Bh, rh, and ρh. We

assume throughout that ρ > r, so that the agent is more impatient than the principal. For

simplicity, and without loss of generality, we focus on the case where X0 = 1.

We shall consider two alternative limits of the discrete-time model as h goes to zero,

corresponding to Brownian and Poisson processes for cumulative cash flows. In this section,

we only offer a heuristic sketch of the continuous-time analysis, which aims at providing

economic intuitions. That is, we start from the discrete-time optimal contract characterized

in Proposition 3, taking for granted its convergence, as well as that of the value function of

the principal and the continuation utility of the agent. We refer to the original papers for

rigorous derivations of these results.16

4.1 The Brownian Limit

4.1.1 Cash Flows

The Brownian limit corresponds to the case where the expectation and the variance of cash

flows are linear in time. We also impose that the difference in expected returns between

effort and shirking be linear in time and that the variance of the cash flows be unaffected

by shirking. Therefore, we are looking for a specification of (ph, ∆ph, R
+
h , R−

h ) for which one

has E[Rnh | enh = 1] = µh, E[Rnh | enh = 1] − E[Rnh | enh = 0] = ∆µh, and Var[Rnh | enh =

1] = Var[Rnh |enh = 0] = σ2h, where (µ, ∆µ, σ) is a triplet of positive real numbers. There

exists a unique solution to this system of four equations in four unknowns. For this solution,

when h is small, we have

ph ' 1

2

(
1 +

∆µ

2σ

√
h

)
, ∆ph ' ∆µ

2σ

√
h, (29)

16Biais, Mariotti, Plantin, and Rochet (2004, 2007) establish the convergence of discrete-time optimal
contracts to their continuous-time counterparts, whereas DeMarzo and Sannikov (2006), Sannikov (2008),
and Biais, Mariotti, Rochet, and Villeneuve (2010) directly characterize continuous-time optimal contracts.
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and

R+
h '

(
µ− ∆µ

2

)
h + σ

√
h, R−

h '
(

µ− ∆µ

2

)
h− σ

√
h. (30)

As h goes to zero, conditional on high effort being exerted in all periods and no downsizing

taking place, the corresponding cumulative cash-flow process converges in law to a Brownian

motion with drift

Yt ≡ µt + σZt, (31)

where {Zt} is a standard Brownian motion. One can see from (29) why we need to assume

that ρ > r when characterizing the Brownian limit of the discrete-time optimal contract.

Indeed, for small values of h, substituting from (29) into (14), we obtain that the absorbing

boundary wp
h when ρ = r in the discrete-time optimal contracting model is

1 + rh

rh

phBh

∆ph

' Bσ

r∆µ
√

h
,

which goes to infinity when h goes to zero. As a result, when ρ = r, there exists no optimal

contract in the limit.

4.1.2 The Value Function

An important preliminary result is that, when h goes to zero, the discrete-time downsizing

threshold wl
h goes to zero (Biais, Mariotti, Plantin, and Rochet (2004, Proposition 7, 2007,

Lemma 4)). This reflects that, in the Brownian limit, no size adjustments need to take place

before the firm is liquidated, unlike in the discrete-time framework, so that the size of the firm

remains constant until it is liquidated. Intuitively, this is because, in the Brownian limit,

incentives can be provided to the agent through infinitesimal changes in his continuation

utility, unlike in the discrete-time model. Correspondingly, in the implementation of the

optimal contract, there will be no need for the firm to maintain a minimum liquidity ratio,

below which the firm must be downsized. In view of the evidence that financially distressed

firms are often downsized when they run short of liquid assets, this can be seen as a limitation

of the Brownian limit.

Now, consider the discrete-time value function fh over the range
[
wl

h, w
p
h− Bh

∆ph

)
in which

the agent receives no current compensation under the discrete-time optimal contract. Given

(19) and the specification (29)–(30), a Taylor–Young approximation yields

fh(w(n+1)h) ' fh(wnh) + [ρhwnh + kh(Rnh − µh)]f ′h(wnh) +
k2

h

2
(Rnh − µh)2f ′′h (wnh), (32)
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where kh ≡ Bh
∆ph∆Rh

. Substituting (32) into (10), and letting h go to zero, one formally

obtains the following ordinary differential equation for the continuous-time value function:

rf(w) = µ + ρwf ′(w) +
k2σ2

2
f ′′(w) (33)

for each w in the range in which the agent receives no current compensation. Here

k ≡ lim
h→0

Bh

∆ph∆Rh

=
B

∆µ
< 1.

In line with these heuristic remarks, Biais, Mariotti, Plantin, and Rochet (2004, Proposition

8, 2007, Proposition 3) prove the following result.

Proposition 5 In the Brownian limit of the discrete-time optimal contract characterized

in Proposition 3, the value function fh converges uniformly to the unique solution f to the

free-boundary problem characterized by (33) for w ∈ [0, wp) and f(w) = f(wp) + wp −w for

w ∈ [wp,∞), with boundary conditions

f(0) = 0, (34)

f ′(wp) = −1, (35)

f ′′(wp) = 0. (36)

Whereas Biais, Mariotti, Plantin and Rochet (2004, 2007) obtain this result by studying

the continuous-time limit of the discrete-time Bellman equation (10), DeMarzo and Sannikov

(2006, Proposition 1) derive it directly in a continuous-time model where cumulative cash

flows evolve according to (31). Condition (34) reflects that the firm is liquidated when the

agent’s continuation utility drops to zero. Condition (35) is a smooth-pasting condition

expressing the fact that wp is the payment boundary, at which the marginal cost for the

principal of an increase in the continuation utility promised to the agent is equal to the

marginal cost of an immediate payment of one dollar. Condition (36) is a super-contact

condition reflecting the optimality of the payment boundary wp.17

4.1.3 The Continuation Utility of the Agent

For any time t prior to liquidation, denote by wt the continuation utility of the agent at

time t and by Ut the cumulative payment to the agent up to time t in the Brownian limit

of the discrete-time optimal contract. Following Biais, Mariotti, Plantin, and Rochet (2007,

Proposition 5), one can prove the following result.

17Essentially, (36) ensures that the function f is maximal among the class of solutions to (33)–(34) the
derivative of which attains −1. See Dumas (1991) for an insightful discussion of the super-contact condition
as an optimality condition for singular control problems.
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Proposition 6 In the Brownian limit of the discrete-time optimal contract characterized in

Proposition 3, the process {wt, Ut} is the unique solution to the Skorokhod problem

dwt = ρwtdt + kσdZt − dUt, (37)

wt ≤ wp, (38)

Ut =

∫ t

0

1{ws=wp} dUs (39)

for all t ∈ [0, τ ], where τ ≡ inf {t ≥ 0 |wt = 0} and wt = 0 for all t > τ .

(39) reflects that Ut increases only when wt hits the payment boundary wp, whereas

(37) and (38) express the fact that this causes wt to be reflected downwards. Hence wt

evolves according to (37) between a reflecting boundary, wp, and an absorbing boundary,

zero. Before wt drops to zero, the firm is never downsized, but, as soon as it does, the

firm is liquidated. It follows from standard results on the reflected Ornstein–Uhlenbeck

process that τ < ∞, P–almost surely.18 Thus the firm always ends up liquidated, consistent

with Proposition 4. In line with (19), (37) shows that, as long as the agent is not paid,

the continuation utility of the agent is a ρ–discounted martingale, the volatility of which is

equal to the underlying volatility of cash flows, σ, multiplied by the severity of the moral-

hazard problem, k. This multiplicative factor reflects the incentive-compatibility constraint:

the more severe the moral-hazard problem, the higher the sensitivity to performance of the

agent’s continuation utility, and thus the higher its volatility.

From the joint dynamics (37)–(39) of wt and Ut, one can derive using Itô’s formula a

probabilistic representation of the agent’s and of the principal’s utilities. Specifically, denote

by E[· | Ht] the expectation operator conditional on public information available at time

t, Ht, when the agent is expected to always exert effort. Then, the following holds (Biais,

Mariotti, Plantin, and Rochet (2007, Proposition 4)).

Proposition 7 In the Brownian limit of the discrete-time optimal contract characterized in

Proposition 3, the continuation utility of the agent and the continuation value of the principal

admit the following representations:

wt = E

[∫ τ

t

e−ρ(s−t) dUs |Ht

]
,

f(wt) = E

[∫ τ

t

e−r(s−t)(dYs − dUs) |Ht

]
.

18See, for instance, Ward and Glynn (2003).
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4.1.4 Asset-Pricing Implications

As in the discrete-time model, the optimal contract can be implemented with cash reserves,

stocks, and bonds. The dynamics of cash reserves are

dMt = dYt + rMtdt− dΦt − dΨt,

where dYt is the operating cash flow, rMtdt is the interest payment on cash reserves, dΦt is

the dividend payment, and dΨt is the coupon payment. As in the discrete-time model, the

liquidity ratio

mt ≡ Mt

c
=

wt

kc
. (40)

serves the role of state variable.19

Stock Prices The stocks are owned in proportion 1− k by the investors and in proportion

k by the agent. Thus the payments to the agent are a fraction k of the dividends,

dUt = kdΦt. (41)

The market value of the stock at time t is therefore

St = E

[∫ τ

t

e−r(s−t) dΦs |Ht

]
= E

[∫ τ

t

e−r(s−t) 1

k
dUs |Ht

]
. (42)

This is the present value of the dividend flow dΦt, discounted at rate r, the relevant rate for

investors who can trade the stock in the market, unlike the agent, who is prohibited from

selling his stock holdings. The stock price St is a deterministic function S(mt) of the state

variable mt. According to (37) and (40), the liquidity ratio evolves according to

dmt = ρmtdt +
σ

c
dZt − 1

kc
dUt,

where Ut is given by (39). Because of (38), mt ∈
[
0, wp

kc

]
at any time t. Using Itô’s formula,

one obtains that the function S is the solution over
[
0, wp

kc

]
to the boundary problem

rS(m) = ρmS ′(m) +
σ2

2c2
S ′′(m), (43)

S(0) = 0, (44)

S ′
(

wp

kc

)
= c. (45)

19Recall that, in the Brownian limit, the firm remains constant in size until it is liquidated, and that we
have normalized its size to one.
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One can check from (43)–(45) that the function S is strictly increasing and strictly concave

over
[
0, wp

kc

]
(Biais, Mariotti, Plantin, and Rochet (2007, Proposition 7)). Along with Itô’s

formula, (39) and (43)–(45) imply that the stock price evolves according to the following

stochastic differential equation:

dSt = rStdt + Stσ
S(St)dZt − 1

k
dUt, (46)

where SσS(S) ≡ σ
c
S ′(S−1(S)) is the volatility of the stock price. Equation (46) is reminiscent

of the stock price dynamics postulated by Black and Scholes (1973) and Merton (1973), but

differs from them in three major ways. First, the stock price is reflected downwards each

time dividends are paid, which happens when St hits S(
wp

kc

)
. Second, its volatility SσS(S)

is bounded away from zero, so that the stock price can drop to zero, which occurs when the

firm is liquidated. The third difference reflects the concavity of the function S and is stated

in the following proposition.

Proposition 8 The volatility of the stock price, SσS(S), and hence the volatility of the stock

return, σS(S), are decreasing in the stock price S.

This result is in line with the leverage effect pointed out by Black (1976), Christie (1982),

and Nelson (1991): stock volatility tends to rise in respond to bad news and to fall in response

to good news. The characterization (43)–(45) of stock prices also implies the following

comparative statics result (Biais, Mariotti, Plantin, and Rochet (2007, Proposition 13)).

Proposition 9 The stock price is decreasing in k.

Intuitively, an increase in the severity of the moral-hazard problem raises the risk of an

early liquidation, which lowers the value of the firm and hence its stock price. An implication

or Proposition 9 is that the magnitude of agency costs should be negatively correlated with

price-earnings ratios.

Bond Prices, Leverage, and Default Risk In line with (20), the coupon payment at

time t is given by

dΨt = [µ− (ρ− r)cmt]dt.

The market value of the bond at time t is therefore

Dt = E

[∫ τ

t

e−r(s−t) dΨs |Ht

]
= E

[∫ τ

t

e−r(s−t)[µ− (ρ− r)cms] ds |Ht

]
. (47)
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Like the stock price, the bond price is a deterministic function D(mt) of the state variable

mt. Using Itô’s formula, one obtains that the function D is the solution over
[
0, wp

kc

]
to the

boundary problem

rD(m) = µ− (ρ− r)cm + ρmD′(m) +
σ2

2c2
D′′(m), (48)

D(0) = 0, (49)

D′
(

wp

kc

)
= 0. (50)

Dividing (47) by (42) yields the leverage ratio, Dt

St
= D(mt)

S(mt)
, expressed in market values. Using

(43)–(45) along with (48)–(50) leads to the following result (Biais, Mariotti, Plantin, and

Rochet (2007, Proposition 8)).

Proposition 10 The leverage ratio is decreasing in the stock price.

The intuition for this result is as follows. When the firm is consistently successful, the

value of its stocks and that of its bonds increase. However, the sensitivity to performance of

the former is greater than that of the latter, in line with the standard intuition that coupons

are less risky than dividends. Proposition 10 implies that performance shocks and stock price

movements induce persistent changes in the leverage of the firm. Such persistent changes

are empirically well documented. In discussing these findings, Welch (2004) questions as to

why firms do not issue or repurchase debt or equity to counterbalance the impact of stock

price movements on their capital structure. This could sound puzzling if one were to rely

upon a one-period model, such as, for instance, the tradeoff theory, according to which there

exists an optimal leverage ratio to which the firm should endeavor to revert. By contrast,

in the implementation of the optimal contract, the financial structure of the firm optimally

adjusts through changes in the market values of its securities, without requiring further

issuing activities. Observe from Proposition 8 and 10 that an increase in leverage is tied to

an increase in the volatility of the stock, in line with Black’s (1976) interpretation of the

leverage effect.

As a measure of default risk, consider the credit yield spread ∆t on a consol bond paying

one dollar at each instant until default. At any time t prior to default, it is defined by
∫ ∞

t

e−(r+∆t)(s−t) ds = E

[∫ τ

t

e−r(s−t) ds |Ht

]
. (51)

Rearranging (51), we have

∆t =
rTt

1− Tt

, (52)
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where Tt ≡ E[e−r(τ−t) | Ht]. Using Itô’s formula, one obtains that Tt = T (mt), where T is

the solution over
[
0, wp

kc

]
to the boundary problem

rT (m) = ρmT ′(m) +
σ2

2c2
T ′′(m), (53)

T (0) = 1, (54)

T ′
(

wp

kc

)
= 0. (55)

One can check from (53)–(55) that the function T is strictly positive, strictly decreasing,

and strictly convex over
[
0, wp

kc

]
(Biais, Mariotti, Plantin, and Rochet (2007, Proposition

10)). The first two properties reflect that the firm is never insulated from the risk of default,

and that, if it is not successful, it runs out of cash, which increases its default risk. The

intuition for the convexity of T stems from the fact that the impact of cash-flow news

on default risk differs according to whether the liquidity ratio is high or low. When mt

is close to wp

kc
, positive cash-flow realizations do not further reduce default risk, because

they are distributed as dividends. By contrast, when mt is close to zero, positive cash-flow

realizations have a strong impact on default risk, because they move the firm away from the

liquidation boundary. Along with (52), the characterization (53)–(55) of the function T also

implies the following comparative statics result (Biais, Mariotti, Plantin, and Rochet (2007,

Proposition 12)).

Proposition 11 The credit yield spread is increasing in k.

Intuitively, when the moral-hazard problem becomes more severe, it is necessary to lower

the threshold liquidity ratio at which the agent is paid, wp

kc
, in order to strengthen his

incentives to exert effort. Such a generous compensation policy, however, increases the risk

that the firm will run out of cash and end up liquidated earlier.

4.1.5 High-Water Marks

The compensation of the agent can be interpreted in terms of high-water marks. Consider

the total flow of cash into the firm, net of debt service, and before dividends:

M0 + Yt +

∫ t

0

rMs ds−Ψt. (56)

Here Yt is the total cash flow generated by the project,
∫ t

0
rMs ds are the cumulative interests

on cash reserves, and Ψt is the sum of the coupons paid out to bondholders. Combining

Proposition 6 with equations (40), (41), and (56), we obtain the following result, the proof of
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which is a direct implication of Skorokhod’s equation (Karatzas and Shreve (1991, Chapter

3, Lemma 6.14).

Proposition 12 At any time t prior to liquidation, cumulative dividends satisfy

Φt = sup
s∈[0,t]

{
max

{
M0 + Yt +

∫ t

0

rMs ds−Ψt − wp

k
, 0

}}
. (57)

The intuition for formula (57) is the following. Take as a measure of the cumulative

performance of the firm the total flow of cash into the firm, net of debt service and before

dividends, as defined by (56). Then, as long as cumulative performance remains below

the threshold wp

k
, there is no dividend distribution; in particular, the agent receives no

compensation. After that, dividends are distributed, and the agent is compensated, but only

when cumulative performance reaches a new maximum. Thus, in the implementation of the

optimal contract, managerial compensation is structured along lines similar to those of high-

water-mark contracts in the hedge-fund industry.20 Specifically, if the manager accumulates

good performance, he gets paid, but, after that, if performance is poor, losses must be

recouped before he gets paid again. The above analysis thus provides an agency-theoretic

rationale for this aspect of the compensation of hedge-fund managers.

4.2 The Poisson Limit

This section, which is drawn from Biais, Mariotti, Rochet, and Villeneuve (2010), considers

an alternative continuous-time limit of the discrete-time model, in which cash flows are

subject to large but infrequent losses that occur according to a Poisson process.21

4.2.1 Cash Flows

Fix a quadruple (µ, λ, ∆λ, C) of positive real numbers, and, for h small enough, consider the

following specification of the parameters of cash-flow dynamics:

ph = 1− λh, ∆ph = ∆λh, R+
h = µh, R−

h = µh− C. (58)

In every period, the probability that a loss C occurs is proportional to the length h of the

period. It is equal to λh if the agent exerts effort, and (λ + ∆λ)h if he shirks. When h goes

20See Goetzmann, Ingersoll, and Ross (2003) for a description and asset-pricing analysis of such contracts.
21Myerson (2010) also studies optimal contracting with a Poisson noise structure, but the focuses of our

analyses differ, as he considers a political economy problem, whereas we consider a corporate finance setting.
Abreu, Milgrom, and Pearce (1991) and Sannikov and Skrzypacz (2010) also rely on Poisson processes to
study repeated games with imperfect monitoring. Our focus differs from theirs in that we consider a full
commitment environment, in which we explicitly characterize the optimal contract.
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to zero, this probability goes to zero, but the size of the loss does not, as ∆Rh = C. The

limit process of cumulative cash flows is therefore discontinuous, and satisfies

dYt = Xt(µdt− CdNt),

where {Nt} is a Poisson process of intensity λ when the agent exerts effort and λ + ∆λ

when he shirks, and {Xt} is a nonincreasing process describing the size of the firm. As

in the Brownian case, one can see from (58) why we need to assume that ρ > r when

characterizing the Poisson limit of the discrete-time optimal contract. Indeed, for small

values of h, substituting from (58) into (14), we obtain that the absorbing boundary wp
h

when ρ = r in the discrete-time optimal contracting model is

1 + rh

rh

phBh

∆ph

' B

r∆λh
,

which goes to infinity when h goes to zero. As a result, when ρ = r, there exists no optimal

contract in the limit.

4.2.2 The Continuation Utility of the Agent

When h goes to zero, the optimal contract characterized in Proposition 3 converges to

the optimal contract of the Poisson model. Biais, Mariotti, Rochet, and Villeneuve (2010,

Propositions 1 and 3) show that, in this contract, the size-adjusted continuation utility of

the agent remains in some interval [k, wp] and evolves according to

dwt = ρwtdt− k(dNt − λdt) (59)

as long as the agent is not paid and no downsizing takes place, where

k ≡ lim
h→0

Bh

∆ph∆Rh

=
B

∆λC
< 1.

Formula (59) is similar to (19) and (37). First, as the process {Nt−λt} is a martingale when

the agent exerts effort, his size-adjusted continuation utility is a ρ–discounted martingale as

long as he is not paid and no downsizing takes place. Second, the size-adjusted continuation

utility of the agent decreases each time he incurs a loss. However, unlike in the Brownian

case, this decrease is discontinuous, and takes the form of a downward jump of size k for wt

each time dNt = 1. Thus kdNt in (59) is the lumpy analogue of the infinitesimal term kσdZt

in (37), and represents the minimum penalty that gives the agent incentives to exert effort.

This, together with the necessity of preserving the agent’s limited liability, implies that wt

cannot stay below k. As a result, each time the agent incurs a loss while his before-loss
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size-adjusted continuation utility wt− is in the interval (k, 2k), his after-loss size-adjusted

continuation utility must be immediately reset at the level k, so that, if a new loss occurs

soon after, it is again possible to subtract k from it. But, while resetting wt from wt− − k to

k, it is necessary to maintain the continuity of Wt = wtXt+ in order to satisfy the promise-

keeping constraint after the loss. The size of the project must therefore be reduced by an

amount that exactly offsets the resetting of the agents’ size-adjusted continuation utility,

so that xt ≡ Xt+

Xt
=

wt−−k

k
. By contrast, if a loss occurs while the agent’s before-loss size-

adjusted continuation utility wt− is in the interval [2k, wp], no such downsizing is needed.

The following formula summarizes the dynamics of firm size:

Xt+ = Xt min

{
wt− − k

k
, 1

}
1{dNt=1}.

Thus, unlike in the Brownian case, the downsizing region does not shrink to zero in the

continuous-time limit. This is because the liquidation threshold wl
h converges to k > 0

in the Poisson limit, and not to zero as in the Brownian limit. Another difference is that

the process {Ut} which describes the cumulative payments to the agent is singular in the

Brownian case, but absolutely continuous in the Poisson case:

dUt = Xt(ρwp + λk)1{wt=wp}dt. (60)

Like in the Brownian case, the agent is not paid until wt reaches the payment boundary wp,

and there payments are interrupted after the first loss. But, contrary to the Brownian case,

it can take a while for this first loss to occur, during which the agent receives a constant

payment flow. Note that (60) expresses that the amount of this payment is exactly what is

needed to satisfy the promise-keeping constraint, while maintaining wt at wp.

4.2.3 The Value Function

Over the interval (k, wp), the size-adjusted value function of the principal, f , satisfies a first-

order delay-differential equation analogous to the second-order differential equation (33) in

the Brownian case:

rf(w) = µ− λC + (ρw + λk)f ′(w)− λ[f(w)− f(w − k)]. (61)

This equation is obtained by noting that, over the interval (k, wp), the principal does not

make any payment to the agent. Thus, over an infinitesimal time period of length dt,

the expected increase in the size-adjusted continuation value of the principal is just equal

to rf(w)dt, minus the expected size-adjusted cash flow (µ − λC)dt she receives from the
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project. Equation (61) is then obtained by applying the analogue of Itô’s formula to f to

compute the expected increase in her continuation value. By (59), this is given by

E[df(wt) |Ht] = (ρwt + λk)f ′(wt)dt− λ[f(wt)− f(wt − k)]dt.

For equation (61) to be well defined over the whole interval (k, wp), we need to define f(w−k)

for w ∈ (k, 2k). According to the above discussion, this is precisely the region where the

assets of the firm are downsized by a factor
wt−−k

k
after a loss, after which wt is reset at the

level k. Because of our assumptions of constant returns to scale and of a zero liquidation

value for productive assets, the continuation value of the principal after a loss in the interval

(k, 2k) is then exactly w−k
k

f(k). Defining f(w− k) by this value in the interval (k, 2k) then

completes the determination of the delay-differential equation (61) over the whole interval

(k, wp). The only unknowns left are the values of f(k) and wp. A simple way to find them

is first to set the function f equal to a linear function with slope f(k)
k

over the interval [0, k),

and then to solve (61) on each interval of the form [mk, (m + 1)k) by a simple recursion

on the integer m. The induction is stopped at the first value for which the derivative of

f attains −1. The optimal solution is then obtained by choosing the initial slope f(k)
k

so

that the value function of the principal is maximum (Biais, Mariotti, Rochet, and Villeneuve

(2010, Proposition 2)).

Remark. Sannikov (2005) also analyzes a dynamic moral-hazard model in a framework

with Poisson risk. In his analysis, however, jumps correspond to positive cash-flow shocks,

the probability of which is raised by managerial effort. The optimal contract arising in this

context is qualitatively different from that presented above. Specifically, there is no need

for downsizing, and, after a long period without positive cash-flow realization, the firm is

liquidated. Thus liquidation is a predictable event, in contrast with the downsizing episodes

in Biais, Mariotti, Rochet, and Villeneuve (2010).

4.2.4 Investment

So far in our continuous-time analysis, we have assumed away investment after the initial

date. We now relax this assumption and consider the continuous-time counterpart of the

discrete-time analysis of investment offered in Section 3.3. The firm can invest at rate gt ≥ 0,

so that dXt = gtXtdt. In line with (21), the marginal cost of such investment is constant

and equal to c, but the growth rate is bounded above by some parameter γ ∈ (0, r). In

the context of the Poisson model presented above, Biais, Mariotti, Rochet, and Villeneuve

(2010) show that it is optimal to invest if and only if the size-adjusted continuation utility
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wt of the agent has reached some threshold wi. The reason is that increasing the size of

the project is an indirect way of rewarding the agent. This is because the volume of the

payments to the agent, once the payment boundary wp has been reached, is increasing in the

size of the project. Therefore, just as payments are optimally delayed to improve incentives,

so are investments.

To better understand the economic forces at play, consider the dynamics of the size-

adjusted continuation utility of the agent when the project grows at rate gt, focusing on the

region where the agent receives no immediate payment and there is no downsizing:

dwt = (ρ− gt)wtdt− b(dNt − λdt).

As in the case without investment, the law of motion of wt is obtained by dividing the state

equation for the non-size-adjusted continuation utility of the agent, Wt, by the size of the

project, Xt, taking into account that the latter grows at rate gt. We see that increasing the

size of the project is akin to making the agent less impatient, by reducing the discount factor

from ρ to ρ− gt. In this context, the Bellman equation becomes

rf(w) = µ− λC + (ρw + λk)f ′(w)− λ[f(w)− f(w − k)] + max
g∈[0,γ]

{g[f(w)− wf ′(w)− c]}.

By linearity of the maximand, the solution is bang-bang: the optimal investment rate is

equal to γ if f(w)−wf ′(w) > c, and to zero otherwise. Note that the term f(w)−wf ′(w),

which is the marginal sensitivity of the value of the firm to new investment, is the exact

counterpart of the term identified in the discrete case, see (28).22

By concavity of f , f(w) − wf ′(w) is a nondecreasing function of w, which reaches its

maximum at wp. The investment region is thus empty when c > f(wp) − wpf ′(wp) =

f(wp) + wp. Otherwise, the investment region is an interval (wi, wp], and, in that case,

the optimal contract is characterized by three thresholds: the liquidation threshold k, below

which the project is downsized, the investment threshold wi, below which no new investment

takes place, and the payment boundary wp, below which the agent is not paid. When c is

small enough, it can be shown that wi < wp and that all three regions are nonempty.

4.2.5 Firm Size Dynamics

When new investments are possible, the dynamics of firm size are more complex than when

the firm can only be downsized. As in the latter case, the firm is downsized by a factor

xt ≡ min
{

wt−−k

k
, 1

}
each time there is a loss. But firm size now grows at rate γ as long

22Note that the same term arises in the Brownian motion case analyzed by DeMarzo, Fishman, He, and
Wang (2008).
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as wt stays above wi. As a result, the time-averaged growth rate of the firm is equal to the

difference between two terms. The first term corresponds to new investments, the second to

downsizing:

ln(Xt)− ln(X0)

t
=

γ

t

∫ t

0

1{ws>wi} ds− 1

λt

Nt−∑
m=1

λ max

{
ln

(
b

wT−m − b

)
, 0

}
, (62)

where Tm it the time at which the mth loss occurs. When t goes to infinity, the application

of an appropriate law of large numbers for Markov ergodic processes allows one to compute

the long-run growth rate of the firm. The time-averaged integral in the first term on the

right-hand side of (62) converges to the average time spent above wi by the process {wt}.
The time-averaged sum in the second term on the right-hand side of (62) converges to

the expectation over (b, 2b) of the function λ ln
(

b
w−b

)
under the unique invariant measure

associated with the agent’s before-loss size-adjusted continuation utility. When γ is small,

the second term dominates, and the size of the firm converges to zero. By contrast, when

γ is large enough, the size of the firm goes to infinity. Specifically, Biais, Mariotti, Rochet,

and Villeneuve (2010, Proposition 5) establish the following proposition.

Proposition 13 Fix some c such that f(k)− kf ′+(k) ≥ c. Then, if γ is close to zero,

lim
t→∞

Xt = 0,

P–almost surely, whereas if γ > λ2

ρ−γ+λ
,

lim
t→∞

Xt = ∞,

P–almost surely.

The condition f(k) − kf ′+(k) ≥ c ensures that wi = k, so that always investing at the

maximum rate γ is optimal. It is satisfied provided c is close enough to zero because the

function f has a kink at k, with f ′+(k) < f ′−(k) = f(k)
k

.

The asymptotic behavior described in Proposition 13 differs from that arising in Clementi

and Hopenhayn (2006). These authors study a discrete-time model similar to the one we

considered in Section 2. In particular, they assume that the agent and the principal are

equally impatient. As a result, the agent is paid when his size-adjusted utility reaches an

absorbing boundary, like in Proposition 1. In the long run, with some probability the firm is

liquidated, whereas with the complementary probability it becomes insulated from the risk

of liquidation. By contrast, in the Poisson limit of the discrete-time model where the agent
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is more impatient than the principal, the probability that the size of the firm eventually

shrinks to zero is either zero or one, and so is the probability that the firm grows without

bounds, depending on the values of the parameters (Biais, Mariotti, Rochet, and Villeneuve

(2010, Proposition 6)).

4.2.6 Empirical Implications

In DeMarzo and Fishman (2007a), Biais, Mariotti, Rochet, and Villeneuve (2010), and

DeMarzo, Fishman, He, and Wang (2010), firms invest only after a long enough record of

good performance. This is consistent with the empirical findings of Kaplan and Strömberg

(2004) that venture capital funding for new investment is contingent on both financial and

nonfinancial milestones. Kaplan and Strömberg (2004) also find that such conditioning is

more frequent when their proxy for agency problems is higher.

In Biais, Mariotti, Rochet, and Villeneuve (2010), small firms tend to be below the

investment threshold. They are thus more likely to be exposed to financial constraints on

investment, as documented by Beck, Demirgüç-Kunt, and Maksimovic (2005). Furthermore,

small firms are relatively more fragile, because a few negative shocks are enough to drive

them into the zone where further losses trigger downsizing. Conversely, large firms that have

enjoyed long periods of sustained investment are more likely to have long records of good

performance, which pushes them away from that zone. Overall, the probability of downsizing

is decreasing in firm size. This is in line with the empirical findings of Dunne, Roberts, and

Samuelson (1989) that failure rates decline with increases in firm or plant size. A further

testable implication of the model is that downsizing decisions should typically be followed

by relatively long periods during which no investment takes place, corresponding to the time

it takes for the firm to reach the investment threshold again and resume growing.

The model also sheds light on the relationship between CEO compensation and firm size.

Gabaix and Landier (2008) note that different theoretical explanations have been offered for

variations in CEO pay. Whereas some analyses emphasize incentive problems, Gabaix and

Landier (2008) propose to focus on firm size. Empirically, they find that CEO pay increases

with firm size. Consistent with these results, dynamic moral-hazard models imply that the

size of the firm and the compensation of the agent should be positively correlated: after a

long stream of good performance, the scale of operations is large and so are the payments to

the agent. Dynamic moral-hazard models also suggest that explanations based on size should

not be divorced from explanations based on incentives, and that investment and managerial

compensation are complementary incentive instruments, in line with the empirical findings
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of Kaplan and Strömberg (2003).

5 Conclusion

This paper surveyed studies of dynamic financial contracting when managers must exert

unobservable effort to reduce downside risk. Optimal contracts imply that managers should

be paid and firms should invest only after sufficiently high cumulative performance, and

that, after poor performance, firms should be downsized or liquidated. These results suggest

that maintaining large bonuses and large scale operations after severe losses could generate

inappropriate incentives, such as, for instance, in the financial industry. Tighter capital

requirements and bonus regulation could be called for, to reduce the gap between optimal

contracts and actual ones, if, for reasons outside the models we surveyed, contracts were to

diverge in practice from information-constrained optima.

The implications from dynamic-contracting models are in line with a wide spectrum of

empirical findings and stylized facts, ranging from stock price dynamics to venture capital

contracts. A promising avenue for future research would be to take a structural approach

to confront the theory to the data. Dynamic-contracting models imply that compensation

and investment decisions are contingent on a state variable, the agent’s continuation utility,

which increases when cash flows exceed their expectation, and decreases otherwise. Whereas

this variable is not observable by the econometrician, it is a function of the parameters of the

model (to be estimated) and of the cash flows (which can be observed). Furthermore, the

models impose restrictions on how this variable should correlate with decisions. For instance,

managers should receive bonuses only when their continuation utility reaches a milestone,

whereas investment should be positively correlated with it. Combining these restrictions

with firm-level data to estimate the parameters and test these models could significantly

enhance our understanding of dynamic financial contracting.
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Appendix

Proof of Proposition 4. We can assume without loss of generality that the Markov process

{wn} lives in the interval I ≡ [
(1 + ρ)

(
wl − p B

∆p

)
, wr

]
. Let P : I × B(I) → [0, 1] denote

the associated transition function, where B(I) is the Borel σ–field over I. Because {wn} is

reflected downward at wr, and the optimal contract starting with a size-adjusted continuation

utility wl is executed each time the firm is downsized, which results with probability 1−p in

a size-adjusted continuation utility inf I = (1 + ρ)
(
wl − p B

∆p

)
, there exists an integer N ≥ 1

and a number ε > 0 such that

PN(w, {inf I})≥ ε

for all w ∈ I. Hence the transition function P satisfies Condition M in Stokey and Lucas,

with Prescott (1989, Chapter 11, Section 4). Specifically, for each A ∈ B(I), the following

holds: either inf I ∈ A, and thus PN(w, A) ≥ ε for all w ∈ I, or inf I 6∈ A, and thus

PN(w, I \ A) ≥ ε for all w ∈ I. Let ∆(I) be the set of Borel probability measures over I,

and let T ∗ : ∆(I) → ∆(I) be the adjoint operator associated with P , defined by

(T ∗µ)(A) =

∫

I

P (w, A) µ(dw), (µ, A) ∈ ∆(I)× B(I).

Condition M stated above implies that T ∗N is a contraction of modulus 1− ε over the space

∆(I) endowed with the total variation norm ‖ · ‖TV (Stokey and Lucas, with Prescott (1989,

Lemma 11.11)). Because this is a complete metric space, it follows from the contraction

mapping theorem that T ∗ has a unique invariant measure µ∗. Using the fact that Condition

M is stronger than Doeblin’s condition (Condition D in Stokey and Lucas, with Prescott

(1989, Chapter 11, Section 4)), one can deduce from the uniqueness of the invariant measure

µ∗ that there exists a unique ergodic set.

If wl = p B
∆p

, inf I = 0 is an absorbing state for {wn} that can be reached from any state

in I; hence the unique invariant measure µ∗ is a Dirac mass at zero, and {0} is the unique

ergodic set. In that case, {wn} eventually drops to zero, and thus the firm is liquidated in

finite time, P–almost surely.

Suppose now that wl > p B
∆p

, so that inf I > 0. For each µ ∈ ∆(I),

lim
K→∞

1

K

K∑

k=1

T ∗kµ = µ∗

in the total variation norm (Stokey and Lucas, with Prescott (1989, Theorem 11.10)), and

therefore, a fortiori, in the topology of weak convergence. Moreover, the transition function P
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satisfies the Feller property. The strong law of large numbers for Markov processes (Stokey

and Lucas, with Prescott (1989, Theorem 14.7)) then implies that, for any continuous

function g : I → R,

lim
K→∞

1

K

K∑

k=1

g(wk) =

∫
g dµ∗, (63)

P–almost surely. It is easy to verify that inf I belongs to the support of µ∗. Along with (63),

this implies that, for each η > 0, wk ∈ [inf I, inf I + η) infinitely often, P–almost surely, that

is, P
[
limk→∞{wk ∈ [inf I, inf I + η)}] = 1. To see why, fix η > 0, and suppose that g in (63)

is strictly positive over [inf I, inf I + η) and vanishes elsewhere over I, so that
∫

g dµ∗ > 0

as inf I belongs to the support of µ∗. Now, if in some state there exists some k0 ≥ 1 such

that wk 6∈ [inf I, inf I + η) for all k ≥ k0, the limit on the left-hand side of (63) is zero as g

vanishes outside this interval. Because
∫

g dµ∗ > 0, this can only happen on a set of states

of measure zero, and the claim follows. To conclude the proof, choose η ∈ (0, wl − inf I),

and observe that, for each n ≥ 1,

Xn = X0

n∏

k=1

xk = X0

n∏

k=1

min
{wk

wl
, 1

}
≤ X0

(
inf I + η

wl

)κ(n)

,

where κ(n) ≡ #{k ≤ n |wk ∈ [inf I, inf I + η)}. By the above reasoning, limn→∞ κ(n) = ∞,

P–almost surely. Because inf I+η
wl ∈ (0, 1) by construction, limn→∞ Xn = 0, P–almost surely.

Hence the result. ¥
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