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Abstract

A seller of a divisible good faces several identical buyers. The quality of the good
may be low or high, and is the seller’s private information. The seller has strictly convex
preferences that satisfy a single-crossing condition. Buyers compete by posting menus
of non-exclusive contracts, so that the seller can simultaneously and privately trade
with several buyers. We provide a necessary and sufficient condition for the existence
of a pure-strategy equilibrium. Aggregate equilibrium allocations are unique. Any
traded contract must yield zero profit. If a quality is indeed traded, then it is traded
efficiently. Depending on parameters, both qualities may be traded, or only one of
them, or the market may break down to a no-trade equilibrium.
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Pompeu Fabra, Universität Zürich-ETH Zürich Workshop in Honor of Ivar Ekeland, Université de Cergy-
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1 Introduction

The recent financial crisis has spectacularly recalled that the liquidity of financial markets

cannot be taken for granted, even for markets that usually attract many traders and on which

exchanged volumes tend to be very high. For instance, Adrian and Shin (2010) document

that the issuance of asset-backed securities declined from over three hundred billion dollars

in 2007 to only a few billion in 2009. Similarly, Brunnermeier (2009) emphasizes the severe

liquidity dry-up of the interbank market over the 2007–2009 period, when many banks chose

to keep their liquidity idle instead of lending it even at short maturities. It is tempting to

associate these difficulties with asymmetries in the allocation of information among traders.

Indeed, during the crisis, one of the banks’ main concern was the unknown exposure to

risk of their counterparties.1 Moreover, structured financial products such as mortgage-

backed securities, collateralized debt obligations, and credit default swaps often involve many

different underlying assets, and their designers clearly have more information about their

quality; as pointed out by Gorton (2009), this may create an adverse selection problem and

reduce liquidity provision.2 Finally, most of these securities were traded outside of organized

exchanges on over-the-counter markets, with poor information on the trading volumes or

on the net positions of traders. Hence agents were able to interact secretly with multiple

partners, at the expense of information release. These two features, adverse selection and

non-exclusivity, are at the heart of the present paper.

Theoretical studies of adverse selection in competitive environments have been mainly

developed in the context of two alternative paradigms. Akerlof (1970) studies an economy

where privately informed sellers and uninformed buyers act as price takers. All trades are

assumed to take place at the same price. Competitive equilibria typically exist, but feature

a form of market failure: because the market-clearing price must be equal to the average

quality of the goods offered by the sellers, the highest qualities are generally not traded

in equilibrium. It seems therefore natural to investigate whether such a drastic outcome

can be avoided by allowing buyers to screen goods of different qualities. In this spirit,

Rothschild and Stiglitz (1976) consider a strategic model in which buyers offer to trade

different quantities at different unit prices, thereby allowing sellers to credibly communicate

their private information. They show that low-quality sellers trade efficiently, while high-

quality sellers end up trading a suboptimal, but nonzero quantity. For instance, on insurance

1See, among others, Taylor and Williams (2009), and Philippon and Skreta (2011).
2In addition, there is some evidence that lending standards and the intensity of screening have been

progressively deteriorating with the expansion of the securitization industry in the pre–2007 years. See, for
instance, Keys, Mukherjee, Seru, and Vig (2010), and Demyanyk and van Hemert (2011).

1



markets, high-risk agents are fully insured, while low-risk agents only obtain partial coverage;

no pure-strategy equilibrium exists if the proportion of low-risk agents is too high.

The present paper revisits these classical approaches by relaxing the assumption of

exclusive competition, which states that each seller is allowed to trade with at most one

buyer. This assumption plays a central role in Rothschild and Stiglitz’s (1976) model, and

it is also satisfied in the simplest versions of Akerlof’s (1970) model, in which sellers can

only trade one or zero unit of an indivisible good. However, situations where sellers can

simultaneously and secretly trade with several buyers naturally arise on many markets—one

may even say that non-exclusivity is the rule rather than the exception. In addition to the

contexts we have already mentioned, well-known examples include the European banking

industry, the US credit card market, and the life insurance and annuity markets of several

OECD countries.3 The structure of annuity markets is of particular interest because some

legislations explicitly rule out the possibility of designing exclusive contracts: for instance,

on September 1, 2002, the UK Financial Services Authority ruled in favor of the consumers’

right to purchase annuities from suppliers other than their current pension provider (Open

Market Option).

Our aim is to study the impact of adverse selection in markets with such non-exclusive

trading relationships. To do so, we allow for non-exclusive trading in a generalized version of

Rothschild and Stiglitz’s (1976) model. This exercise is interesting per se: as we shall see, the

reasonings that lead to the characterization of equilibria are quite different from those put

forward by these authors. The results are also different: the equilibria we construct typically

involve linear pricing, possibly with a bid-ask spread, and trading is efficient whenever it

occurs. On the other hand, pure-strategy equilibria may fail to exist, as in Rothschild and

Stiglitz (1976), and some types may be excluded from trade, as in Akerlof (1970). It might

even be that the only equilibrium is a no-trade equilibrium. This variety of outcomes may

help to better understand how financial markets react to informational asymmetries.

Our analysis builds on the following simple model of trade. There is a finite number of

buyers, who compete for a divisible good offered by a single seller. The seller is privately

informed of the quality of the good, which may be low or high. The seller’s preferences are

strictly convex, but otherwise arbitrary, provided they satisfy a single-crossing condition.

Buyers compete by simultaneously posting menus of contracts, where a contract specifies

3Ongena and Smith (2000) and Detragiache, Garella, and Guiso (2000) document that multiple banking
relationships have become very widespread in Europe. Rysman (2007) provides recent evidence of multi-
homing in the US credit card industry. Cawley and Philipson (1999) and Finkelstein and Poterba (2004)
report similar findings for the US life insurance market and the UK annuity market.
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both a quantity and a transfer. After observing the menus offered, and taking into account

her private information, or type, the seller chooses which contracts to trade. Our model

encompasses pure trade and insurance environments as special cases.4

In this context, we provide a full characterization of the seller’s aggregate trades in any

pure-strategy equilibrium. First, we provide a necessary and sufficient condition for such an

equilibrium to exist. This condition can be stated as follows: let v be the average quality of

the good. Then, a pure-strategy equilibrium exists if and only if, at the no-trade point, the

low-quality type would be willing to sell a small quantity of the good at price v, whereas the

high-quality type would be willing to buy a small quantity of the good at price v. Second,

we show that there exists a unique aggregate equilibrium allocation. Any contract traded in

equilibrium yields zero profit, so that there are no cross-subsidies across types. In addition,

if the willingness to trade at the no-trade point varies enough across types, equilibria are

first-best efficient: the low-quality type sells the efficient quantity, while the high-quality

type buys the efficient quantity. By contrast, if the two types have similar willingness to

trade at the no-trade point, there is no trade in equilibrium. Finally, in intermediate cases,

one type of the seller trades efficiently, while the other type does not trade at all.

These results suggest that, under non-exclusivity, the seller may only signal her type

through the sign of the quantity she proposes to trade with a buyer. This is however a very

rough signalling device, and it is only effective when one type acts as a seller, while the other

one acts as a buyer. In particular, there is no equilibrium in which both types of the seller

trade nonzero quantities on the same side of the market. Overall, non-exclusive competition

exacerbates the adverse selection problem: if the first-best outcome cannot be achieved, a

nonzero level of trade for one type of the seller can be sustained in equilibrium only if the

other type of the seller is left out of the market. That is, the market breakdown originally

conjectured by Akerlof (1970) also arises when buyers compete in arbitrary non-exclusive

menu offers.

From a methodological viewpoint, the analysis of non-exclusive competition under

adverse selection gives rise to interesting strategic insights. On the one hand, each buyer

can build on his competitors’ offers by proposing additional trades that are attractive to

the seller. Thus new deviations become available to the buyers compared to the exclusive

competition case. On the other hand, the fact that competition is non-exclusive also implies

that each buyer gets access to a rich set of devices to block such deviations and discipline

his competitors. In particular, he can issue latent contracts, that is, contracts that are not

4The labels seller and buyers are only used for expositional purposes. On financial markets, one may sell
as well as buy assets. This translates in our model into allowing for negative as well as positive quantities.
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traded by the seller on the equilibrium path, but which she finds it profitable to trade in case

a buyer deviates from equilibrium play, in such a way that this deviating buyer is punished.

Such latent contracts are in particular useful to deter cream-skimming deviations designed

to attract one specific type of the seller.

In principle, the best response correspondence of any buyer could be determined by

considering a situation where he would act as a monopsonist facing a seller with preferences

represented by an indirect utility function that would depend on the menus offered by his

competitors. However, because we impose very little structure on the menus that can be

offered by the buyers, we cannot assume from the outset that this indirect utility function

satisfies useful properties such as, for instance, a single-crossing condition. Moreover, we

do not assume that, if the seller has multiple best responses in the continuation game, she

necessarily chooses one that is best from the buyer’s viewpoint. This rules out using standard

mechanism-design techniques to characterize each buyer’s best response.

To develop our characterization, we consider instead a series of deviations by a single

buyer who designs his menu offer in such a way that a specific type of the seller will select

a particular contract from this menu, along with some other contracts offered by the other

buyers. We refer to this technique as pivoting, as the deviating buyer makes strategic use

of his competitors’ offers to propose attractive trades to the seller. For instance, consider

the equilibrium allocation characterized by Rothschild and Stiglitz (1976). Because the

low-risk agent pays a low unit price to obtain partial coverage, an insurance company can

propose a high-risk agent to benefit from this low unit price offered by its competitors,

while providing additional coverage at a mutually beneficial price. Our analysis thus shows

that this allocation cannot be supported in equilibrium when competition is non-exclusive.

Although this intuition dates back to Jaynes (1978), our paper generalizes this pivoting

technique to derive a full characterization of the set of aggregate equilibrium trades.

Related Literature The implications of non-exclusive competition have been extensively

studied in moral-hazard contexts. Following the seminal contributions of Hellwig (1983) and

Arnott and Stiglitz (1993), many recent works emphasize that, in financial markets where

agents can take non-contractible effort decisions, the impossibility of enforcing exclusive

contracts can induce positive profits for financial intermediaries and a reduction in trades.

Positive profits arise in equilibrium because none of the intermediaries can profitably deviate

without inducing the agents to trade several contracts and select inefficient levels of effort.5

5See, for instance, Parlour and Rajan (2001), Bisin and Guaitoli (2004), and Attar and Chassagnon
(2009) for applications to loan and insurance markets.
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The present paper rules out moral-hazard effects and argues that non-exclusive competition

under adverse selection drives intermediaries’ profits to zero.

Pauly (1974), Jaynes (1978), and Hellwig (1988) pioneered the analysis of non-exclusive

competition under adverse selection. Pauly (1974) suggests that Akerlof-like outcomes can

be supported in equilibrium when buyers are restricted to offer linear price schedules. Jaynes

(1978) points out that the separating equilibrium characterized by Rothschild and Stiglitz

(1976) is vulnerable to entry by an insurance company proposing additional trades that can

be concealed from the other companies. He further argues that the non-existence problem

identified by Rothschild and Stiglitz (1976) can be overcome if insurance companies can share

the information they have about the agents’ trades. Hellwig (1988) discusses the relevant

extensive form for the inter-firm communication game.

Biais, Martimort, and Rochet (2000) study a model of non-exclusive competition among

uninformed market-makers who supply liquidity to an informed insider whose preferences

are quasilinear, and quadratic in the quantities she trades. Although our model encompasses

this specification of preferences, we develop our analysis in the two-type case, whereas Bi-

ais, Martimort, and Rochet (2000) consider a continuum of types. Despite the similarities

between the two setups, their results stand in stark contrast with ours. Indeed, restricting

attention to equilibria where market-makers post convex price schedules, they argue that

non-exclusivity leads to a Cournot-like equilibrium outcome, in which each market-maker

earns a positive profit. This is very different from our Bertrand-like equilibrium outcome, in

which each traded contract yields zero profit.

Attar, Mariotti, and Salanié (2011) consider a situation where a seller is endowed with

one unit of a good, the quality of which she privately knows. The good is divisible, so

that the seller may trade any quantity of it with any of the buyers, as long as she does

not trade more than her endowment in the aggregate. Both the buyers’ and the seller’s

preferences are linear in quantities and transfers. Using pivoting arguments, it is shown that

pure-strategy equilibria always exist, and that the corresponding aggregate allocations are

generically unique. Pivoting is made simpler than in the present paper by the fact that agents

have linear preferences and that the seller faces a capacity constraint that is independent

of her type. Depending on whether quality is low or high, and on the probability with

which quality is high, the seller may either trade her whole endowment, or abstain from

trading altogether. Buyers earn zero profit in any equilibrium. These results offer a fully

strategic foundation for Akerlof’s (1970) classic study of the market for lemons, based on

non-exclusive competition. Besides equilibrium existence, a key difference with our setting
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is that equilibria in Attar, Mariotti, and Salanié (2011) may exhibit non-trivial pooling and

hence cross-subsidies across types. This reflects that trades are subject to an aggregate

capacity constraint. By contrast, the present paper considers a situation where the seller’s

trades are unrestricted, as in a financial market where agents can take arbitrarily long or

short positions. Another key feature of our model is that we consider general preferences

for the seller, provided that they are strictly convex and satisfy a single-crossing condition.

Thus the range of applications of the present paper is wider than in Attar, Mariotti, and

Salanié (2011).

Ales and Maziero (2011) study non-exclusive competition in an insurance context similar

to the one analyzed by Rothschild and Stiglitz (1976). Relying on free-entry arguments,

they argue that only the high-risk agent can obtain a positive coverage in equilibrium. This

is consistent with the results derived in the present paper; however, a distinguishing feature

of our analysis is that it is fully strategic and avoids free-entry arguments. Our results are

also more general in that we do not rely on a particular parametric representation of the

seller’s preferences, which allows us to uncover the common logical structure of a large class

of potential applications.

This paper also contributes to the common-agency literature that analyzes situations

where several principals compete through mechanisms to influence the decisions of a common

agent. In our bilateral-contracting setting, the trades between the seller and the buyers are

not public, and the seller may choose to trade with any subset of buyers. Moreover, in line

with our focus on competitive markets, the profit of each buyer only depends on the trade

he makes with the seller, and not on the other trades his competitors may make with her.

In the standard terminology of common agency, our model is thus a private and delegated

common-agency game with no direct externalities between principals.6 In contrast with

most of the common-agency literature, our analysis yields a unique prediction for aggregate

equilibrium trades and equilibrium payoffs. In our view, this uniqueness result is tied to three

key ingredients of our model. First, there are no direct externalities between principals.7

Second, each buyer’s profit is linear in the allocation he trades; whereas if some convexity

6The distinction between delegated common-agency games, in which the agent can trade with any subset
of principals, and intrinsic common-agency games, in which the agent must either trade with all principals
or with none of them, has been introduced by Bernheim and Whinston (1986). Martimort (2006) formulates
the distinction between public-agency settings, in which each principal’s transfer can be made contingent on
all the agent’s decisions, and private-agency settings, in which the transfer made by each principal is only
contingent on the trades that the agent makes with him. Finally, the role of direct externalities between
principals has been emphasized by Martimort and Stole (2003) and Peters (2003).

7Direct externalities between principals typically lead to multiple equilibrium outcomes even in complete-
information environments, as shown by Martimort and Stole (2003) and Segal and Whinston (2003).
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were introduced in the buyers’ preferences, then multiple equilibrium outcomes would arise

even in a complete-information version of our model.8 Finally, each type of the seller cares

only about the aggregate quantity she sells to the buyers and the aggregate transfer she

receives in return; whereas if the buyers’ offers were not perfectly substitutable from the

seller’s viewpoint, then one would again expect multiple equilibrium outcomes to arise even

under complete information.9

Finally, it should be stressed that our uniqueness result obtains despite the fact that

very few restrictions are imposed on the set of instruments available to the buyers, who are

basically free to propose arbitrary menus of contracts. In this respect, our results contrast

with the literature on supply-function equilibria, which considers oligopolistic industries

where firms compete in supply schedules instead of simple price or quantity offers. Wilson

(1979) and Grossmann (1981) were the first to observe that this additional degree of freedom

may significantly expand the set of equilibrium outcomes. Klemperer and Meyer (1989) and

Kyle (1989) suggest that the introduction of some uncertainty, either in the form of imperfect

information over market demand or in the form of noise traders, may limit the multiplicity

of equilibria. Vives (2011) develops these intuitions in a general setting where rational

traders interact in the presence of idiosyncratic shocks; he shows that there exists a unique

symmetric equilibrium in which supply functions are linear.

The paper is organized as follows. Section 2 describes the model. Section 3 characterizes

pure-strategy equilibria. Section 4 derives necessary and sufficient conditions under which

such equilibria exist. Section 5 concludes.

2 The Model

Our model features a seller who can simultaneously trade with several identical buyers. We

put restrictions neither on the sign of the quantities of the good traded by the seller, nor

on the sign of the transfers she receives in return. The labels seller and buyers, although

useful, are therefore conventional.

8This setting is analyzed by Chiesa and De Nicolò (2009), who show that, although the aggregate quantity
traded in equilibrium always coincides with the first-best quantity, equilibrium transfers and payoffs are not
uniquely determined.

9Examples in this direction are provided by d’Aspremont and Dos Santos Ferreira (2010), who analyze the
strategic competition between firms selling differentiated goods to a representative consumer under complete
information, both in the cases of intrinsic and delegated agency.
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2.1 The Seller

The seller is privately informed of her preferences. She may be of two types, L or H, with

positive probabilities mL and mH such that mL + mH = 1. Subscripts i and j are used to

index these types, with the convention that i 6= j. Each type cares only about the aggregate

quantity Q she sells to the buyers and the aggregate transfer T she receives in return. Type

i’s preferences over aggregate quantity-transfer bundles (Q, T ) are represented by a utility

function ui defined over R2. For each i, we assume that ui is continuously differentiable,

with ∂ui/∂T > 0, and that ui is strictly quasiconcave. Hence type i’s marginal rate of

substitution of the good for money

τi ≡ − ∂ui/∂Q

∂ui/∂T

is everywhere well defined and strictly increasing along her indifference curves. Note that

τi(Q, T ) can be interpreted as type i’s marginal cost of supplying a higher quantity, given

that she already trades (Q, T ). We do not impose any a priori restriction on the sign of

τi(Q, T ). The following assumption is key to our results.

Assumption SC For each (Q, T ), τH(Q, T ) > τL(Q, T ).

Assumption SC expresses a strict single-crossing condition: type H is less eager to sell a

higher quantity than type L is. As a result, in the (Q, T ) plane, a type-H indifference curve

crosses a type-L indifference curve only once, from below.

2.2 The Buyers

There are n ≥ 2 identical buyers. There are no direct externalities across them: each

buyer cares only about the quantity q he purchases from the seller and the transfer t he

makes in return. Each buyer’s preferences over individual quantity-transfer bundles (q, t)

are represented by a linear profit function: if a buyer receives from type i a quantity q

and makes a transfer t in return, he earns a profit viq − t. We do not impose any a priori

restriction on the sign of vi. The following assumption will be maintained throughout the

analysis.

Assumption CV vH > vL.

We let v ≡ mLvL + mHvH be the average quality of the good, so that vH > v > vL.

Assumption CV reflects common values: the seller’s type has a direct impact on the buyers’
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profits. Together with Assumption SC, Assumption CV captures a fundamental tradeoff

of our model: type H provides a more valuable good to the buyers than type L, but at a

higher marginal cost. These assumptions are natural if we interpret the seller’s type as the

quality of the good she offers. Together, they create a tension that will be exploited later

on: Assumption SC leads type H to offer less of the good, but Assumption CV would induce

buyers to demand more of the good offered by type H, if only they could observe quality.

2.3 The Non-Exclusive Trading Game

Trading is non-exclusive in that no buyer can control, and a fortiori contract on, the trades

that the seller makes with other buyers. The timing of events is as follows. First, buyers

compete in menus of contracts for the good offered by the seller.10 Next, the seller can

simultaneously trade with several buyers. Formally:

1. Each buyer k proposes a menu of contracts, that is, a set Ck ⊂ R2 of quantity-transfer

bundles that contains at least the no-trade contract (0, 0).11

2. After privately learning her type, the seller selects one contract from each of the menus

Ck offered by the buyers.

A pure strategy for type i is a function that maps each menu profile (C1, . . . , Cn) into a

vector of contracts ((q1, t1), . . . , (qn, tn)) ∈ C1 × . . . × Cn. To ensure that type i’s utility-

maximization problem

max

{
ui

(∑

k

qk,
∑

k

tk

)
: (qk, tk) ∈ Ck for each k

}

always has a solution, we require the buyers’ menus Ck to be compact sets. This allows us

to use perfect Bayesian equilibrium as our equilibrium concept. Throughout the paper, we

focus on pure-strategy equilibria.

2.4 Applications

The following examples illustrate the range of our model.

10As shown by Peters (2001) and Martimort and Stole (2002), there is no need to consider more general
mechanisms in this multiple-principal single-agent setting.

11This requirement allows one to deal with participation in a simple way. It reflects the fact that the seller
cannot be forced to trade with any particular buyer.
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Pure Trade In the pure trade model, each type i has quasilinear preferences:

ui(Q, T ) = T − ci(Q),

where the cost function ci is continuously differentiable and strictly convex. Assumption

SC requires that c′H(Q) > c′L(Q) for all Q. In line with the continuous-type model of Biais,

Martimort, and Rochet (2000), one may for instance consider a quadratic cost function

ci(Q) = θiQ + γ
2
Q2, for some positive constant γ. Assumption SC then reduces to θH >

θL. Biais, Martimort, and Rochet (2000) moreover assume that the first-best quantities

are implementable, a situation sometimes called responsiveness in the literature (Caillaud,

Guesnerie, Rey, and Tirole (1988)). In our two-type specification, this would amount to

assuming that vH − θH < vL − θL. Our analysis does not rely on such an assumption.

Insurance In the insurance model, an agent can sell a risk to several insurance companies.

As in Rothschild and Stiglitz (1976), the agent faces a binomial risk on her wealth, which

can take two values WG and WB, with probabilities πi and 1− πi that define her type. Here

WG −WB is the positive monetary loss that the agent incurs in the bad state. A contract

specifies a reimbursement r to be paid in the bad state, and an insurance premium p. Let

R be the sum of the reimbursements, and let P be the sum of the insurance premia. We

assume that the agent’s preferences have an expected utility representation

πiu(WG − P ) + (1− πi)u(WB − P + R),

for some von Neumann–Morgenstern utility function u which is assumed to be continuously

differentiable, increasing, and strictly concave. An insurance company’s profit from selling

the contract (r, p) to type i is p − (1 − πi)r, which can be written as viq − t if we set

vi ≡ −(1− πi), q ≡ r, and t ≡ −p, so that Q = R and T = −P . Hence the agent purchases

for a transfer −T a reimbursement Q in the bad state, and her expected utility writes as

ui(Q, T ) = πiu(WG + T ) + (1− πi)u(WB + Q + T ).

Then

τi(Q, T ) = − (1− πi)u
′(WB + T + Q)

πiu′(WG + T ) + (1− πi)u′(WB + T + Q)
,

so that Assumption SC requires that type H has a lower probability of incurring a loss,

πH > πL. Given our parametrization, this implies that vH > vL, so that Assumption CV

is satisfied. Therefore, our model encompasses the non-exclusive version of Rothschild and

Stiglitz’s (1976) model considered by Ales and Maziero (2011). Note that we could also allow

for non-expected utility in the modelling of the agent’s preferences.
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3 Equilibrium Characterization

An equilibrium specifies individual trades (qk
i , t

k
i ) between each type i and each buyer k,

and corresponding aggregate trades (Qi, Ti) =
(∑

k qk
i ,

∑
k tki

)
. In the present section, we

characterize these equilibrium trades, assuming that an equilibrium exists, and we provide

a simple necessary condition for the existence of an equilibrium.

3.1 Pivoting

In line with Rothschild and Stiglitz (1976), we shall examine well-chosen deviations by a

buyer, and use the fact that in equilibrium deviations cannot be profitable. A key difference,

however, is that in Rothschild and Stiglitz (1976) competition is exclusive, whereas in our

setting competition is non-exclusive.

Under exclusive competition, what matters from the viewpoint of any given buyer k is

simply the maximum utility level U−k
i that each type i can get by trading with some other

buyer. A deviation by buyer k targeted at type i is then a contract (qk
i , t

k
i ) that gives type i

a strictly higher utility, ui(q
k
i , t

k
i ) > U−k

i . Type j may be attracted or not by this contract;

in each case, one can compute the deviating buyer’s profit.

By contrast, under non-exclusive competition, all the contracts offered by the other buyers

matter from the viewpoint of buyer k. Suppose indeed that the seller can trade a bundle

(Q−k, T−k) with the buyers other than k. Then buyer k can use this as an opportunity to

build more attractive deviations. For instance, to attract type i, buyer k can propose the

contract (Qi−Q−k, Ti−T−k+ε), for some positive number ε: combined with (Q−k, T−k), this

contract gives type i a strictly higher utility than her aggregate equilibrium trade (Qi, Ti).

In that case, we say that buyer k pivots on (Q−k, T−k) to attract type i. Type j may be

attracted or not by this contract; in each case, one can provide a condition on profits that

ensures that the deviation is not profitable.

The key difference between exclusive and non-exclusive competition is thus that, in the

latter case, each buyer k faces a single seller whose type is unknown, but whose preferences

are defined by an indirect utility function, rather than by the primitive utility function ui as

in the former case. Formally, type i’s indirect utility of trading a contract (q, t) with buyer

k is given by

z−k
i (q, t) = max

{
ui

(
q +

∑

l 6=k

ql, t +
∑

l 6=k

tl

)
: (ql, tl) ∈ C l for each l 6= k

}
,

so that in equilibrium Ui ≡ ui(Qi, Ti) = z−k
i (qk

i , t
k
i ) for all i and k. Notice that z−k

i (q, t) is

11



strictly increasing in t. Moreover, because ui is continuous and menus are assumed to be

compact, it follows from Berge’s maximum theorem that z−k
i is continuous.12

What makes the analysis difficult is that the functions z−k
i are endogenous, because they

depend on the menus offered by the buyers other than k, on which we impose no restriction

besides compactness. As a result, there is no a priori guarantee that the functions z−k
i

are well behaved, which prevents us from using mechanism-design techniques to determine

each buyer’s best response to the other buyers’ menus. Instead, we only rely on pivoting

arguments to fully characterize aggregate equilibrium allocations and individual equilibrium

payoffs, as in Attar, Mariotti, and Salanié (2011).

Remark. The idea of determining each principal’s equilibrium behavior by considering his

interaction with an agent endowed with an indirect utility function that incorporates the

optimal choices she makes with the other principals is a standard device in the common-

agency literature.13 In the context of private agency, this methodology has been applied

to games of complete information (Chiesa and De Nicolò (2009), d’Aspremont and Dos

Santos Ferreira (2010)), as well as to games of incomplete information (Biais, Martimort,

and Rochet (2000), Martimort and Stole (2003, 2009), Calzolari (2004), Laffont and Pouyet

(2004), or Khalil, Martimort, and Parigi (2007)). Although this approach has been used to

derive a full characterization of equilibrium payoffs under complete information, the analysis

of incomplete-information environments typically involves additional restrictions. Indeed,

attention is usually restricted to equilibria in which the screening problem faced by each

principal is regular enough, which amounts to considering well-behaved z−k
i functions that

are concave in quantities and satisfy a single-crossing condition.14 A distinguishing feature

of our analysis is that we provide a full characterization of aggregate equilibrium allocations

and individual equilibrium payoffs by exploiting only the continuity of the z−k
i functions and

the fact that each of them is strictly increasing in transfers.

Denote type-by-type individual profits by bk
i ≡ viq

k
i − tki , and expected individual profits

by bk ≡ mLbk
L + mHbk

H . The following lemma encapsulates our pivoting technique.

12This differs from Attar, Mariotti, and Salanié (2011), where the presence of a capacity constraint may
induce discontinuities in the seller’s indirect utility function.

13A similar approach has been followed in the literature on supply-function equilibria, in which each
supplier’s equilibrium behavior is determined by taking into account the residual demand he faces given
the supply functions offered by his competitors (see Wilson (1979), Grossman (1981), Klemperer and Meyer
(1989), Kyle (1989), and Vives (2011)).

14See Martimort and Stole (2009) for a general exposition of this methodology, and for a detailed analysis
of the conditions that need to be imposed on the agent’s preferences and on the corresponding virtual surplus
function to guarantee the regularity of each principal’s program.
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Lemma 1 Let i, k, q, and t be such that, in equilibrium, the quantity Qi − q can be traded

with the buyers other than k, in exchange for a transfer Ti − t. Then

viq − t > bk
i implies vq − t ≤ bk. (1)

The intuition for this result is as follows. If the bundle (Qi− q, Ti− t) can be traded with

the buyers other than k, then buyer k can pivot on it to attract type i, while still offering the

contract (qk
j , t

k
j ). If the contract (q, t) allows buyer k to increase the profit he earns with type

i, then it must be that type j also selects it instead of (qk
j , t

k
j ) following buyer k’s deviation;

moreover, this contract cannot increase buyer k’s average profit if traded by both types, for,

otherwise, we would have constructed a profitable deviation.

We are now ready to use our pivoting technique to gain insights into the structure of

aggregate equilibrium allocations. Because each type only cares about her aggregate trade,

and buyers only care about their individual trades and have identical linear profit functions,

in equilibrium aggregate trades and aggregate profits can be computed as if both types were

trading (Qj, Tj), with type i trading in addition (Qi−Qj, Ti− Tj). What can be said about

this additional trade? A first information comes from Assumption SC, which implies that

both QL−QH and TL−TH are nonnegative. More interestingly, Lemma 1 allows us to show

that, in the aggregate, buyers cannot make a profit by trading (Qi−Qj, Ti−Tj) with type i.

Formally, denote by Si ≡ vi(Qi −Qj)− (Ti − Tj) the corresponding aggregate profit. Then

the following result obtains.

Proposition 1 In any equilibrium, Si ≤ 0 for each i.

Proof. Choose i and k and set q ≡ qk
j + Qi − Qj and t ≡ tkj + Ti − Tj. Then the quantity

Qi − q =
∑

l 6=k ql
j can be traded with the buyers other than k in exchange for a transfer

Ti − t =
∑

l 6=k tlj. We can thus apply Lemma 1. One has

viq − t− bk
i = vi(q

k
j + Qi −Qj)− (tkj + Ti − Tj)− bk

i

= vi(Qi −Qj)− (Ti − Tj)− [vi(q
k
i − qk

j )− (tki − tkj )]

= Si − sk
i ,

where sk
i ≡ vi(q

k
i − qk

j )− (tki − tkj ), and

vjq − t− bk
j = vj(q

k
j + Qi −Qj)− (tkj + Ti − Tj)− bk

j

= −[vj(Qj −Qi)− (Tj − Ti)]

= −Sj.
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Therefore, according to (1),

Si > sk
i implies mi(Si − sk

i ) ≤ mjSj. (2)

Suppose by way of contradiction that Si > 0. Because Si =
∑

k sk
i by construction, one

must have Si > sk
i for some k. From (2), we obtain that Sj > 0, and thus that Si + Sj > 0.

As Si + Sj = (vi − vj)(Qi − Qj) and vH > vL, this implies that QL < QH , a contradiction.

Hence the result. Note for future reference that, because Sj ≤ 0, it actually follows from (2)

that Si ≤ sk
i for all i and k. ¥

The intuition for Proposition 1 can be easily understood in the context of a free-entry

equilibrium. Indeed, under free entry, the seller can trade (Qj, Tj) with the existing buyers,

so that an entrant can pivot on (Qj, Tj) to attract type i. That is, an entrant could simply

propose to buy a quantity Qi − Qj in exchange for a transfer slightly above Ti − Tj. This

contract would certainly attract type i; besides, if it also attracted type j, this would be

good news for the entrant, because vj(Qi − Qj) ≥ vi(Qi − Qj) as vH > vL and QL ≥ QH .

In a free-entry equilibrium, it must therefore be that vi(Qi − Qj) ≤ Ti − Tj. Proposition 1

shows that the same result holds when the number of buyers is fixed, although the argument

is more involved.

As simple as it is, this result is powerful enough to rule out equilibrium outcomes that have

been emphasized in the literature. Consider first the separating equilibrium of Rothschild

and Stiglitz’s (1976) exclusive-competition model of insurance provision. In this equilibrium,

insurance companies earn zero profit, and no cross-subsidization takes place. Using the

parametrization of Section 2.4, this means that the equilibrium contract (Qi, Ti) of each type

i lies on the line with negative slope vi = −(1− πi) going through the origin. Moreover, the

high-risk agent, that is, in our parametrization, type L, is indifferent between the contracts

(QL, TL) and (QH , TH). Hence, as QL > QH > 0, the line connecting these two contracts has

a negative slope strictly lower than vL. That is, TL − TH < vL(QL − QH), in contradiction

with Proposition 1. Therefore, the Rothschild and Stiglitz’s (1976) equilibrium is not robust

to non-exclusive competition.

Proposition 1 also rules out equilibria with linear prices in which both types trade nonzero

quantities on the same side of the market. To see this, suppose for instance that there exists

an equilibrium in which each buyer stands ready to buy any quantity at a unit price p, and

that in this equilibrium QL > QH ≥ 0. Because the expected aggregate profit B ≡ ∑
k bk

must be nonnegative, one must have v > p. Moreover, according to Proposition 1 and the

definition of SL, one must have p ≥ vL. In particular, buyers cannot make profits by trading
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with type L. Now, any buyer k can deviate by offering a contract (QH , TH + εH), for some

positive number εH . This contract certainly attracts type H. At worst, it also attracts type

L, and therefore one must have bk ≥ (v − p)QH by letting εH go to zero. Summing these

inequalities over k yields

B ≥ n(v − p)QH . (3)

Because one can compute the aggregate profit as if both types were trading (QH , TH), with

type L trading in addition (QL −QH , TL − TH), one has

B = vQH − TH + mLSL = (v − p)QH + mLSL. (4)

Merging (3) and (4) yields mLSL ≥ (n − 1)(v − p)QH . Because n ≥ 2, v > p, and SL ≤ 0

by Proposition 1, one must thus have QH ≤ 0. Because QH ≥ 0 by assumption, it follows

that QH = SL = 0: type H does not trade at all, while type L trades at the fair price vL.

Hence there is no equilibrium with linear prices in which both types trade nonzero quantities

on the same side of the market. This runs contrary to the presumption that non-exclusive

competition entails linear pricing, with different types of sellers actively trading (see, for

instance, Chiappori (2000)).

3.2 The Zero-Profit Result

In any Bertrand-like setting, the usual argument consists in making buyers compete for any

profit that may result from serving the whole demand. This also applies to our setting,

although the logic is different. Specifically, the following zero-profit result obtains.

Proposition 2 In any equilibrium, B = 0, so that bk = 0 for each k.

Proof. Denote type-by-type aggregate profits by Bi ≡
∑

k bk
i , and recall that the expected

aggregate profit is denoted by B. We first prove that, for each j and k,

Bj > bk
j implies B − bk ≤ miSi. (5)

Indeed, if Bj > bk
j , buyer k can deviate by proposing a menu consisting of the no-trade

contract and of the contracts ck
i = (qk

i , t
k
i + εi) and ck

j = (Qj, Tj + εj), for some positive

numbers εi and εj. Because Uj ≥ z−k
j (qk

i , t
k
i ) and the function z−k

j is continuous, it is

possible, given the value of εj, to choose εi small enough so that type j trades ck
j following

buyer k’s deviation. Turning now to type i, observe that she must trade either ck
i or ck

j

following buyer k’s deviation: indeed, because εi is positive, type i strictly prefers ck
i to any

15



contract she could have traded with buyer k before the deviation. If type i selects ck
i , then

buyer k’s profit from this deviation is mi(b
k
i − εi) + mj(Bj − εj), which, because Bj > bk

j

by assumption, is strictly higher than bk when εi and εj are small enough, a contradiction.

Therefore, type i must select ck
j following buyer k’s deviation, and for this deviation not to

be profitable one must have vQj − Tj − εj ≤ bk. In line with (4), this may be rewritten as

B −miSi − εj ≤ bk, from which (5) follows by letting εj go to zero.

Now, if B > 0, then B > bk for some k. Because Si ≤ 0 and Sj ≤ 0 by Proposition 1, it

follows from (5) that Bi ≤ bk
i and Bj ≤ bk

j for each k. Averaging over types yields B ≤ bk

for each k, a contradiction. Hence the result. ¥

The intuition for Proposition 2 can be easily understood in the context of a free-entry

equilibrium. Indeed, suppose for instance that the aggregate profit from trading with type

j is positive, Bj > 0. Then an entrant could propose to buy Qj in exchange for a transfer

slightly above Tj. This contract would certainly attract type j, which would benefit the

entrant; in equilibrium, it must therefore be that this trade also attracts type i, and that

vQj −Tj ≤ 0. Now, recall that the aggregate profit may be written as B = vQj −Tj +miSi.

Our first result in Proposition 1 was that Si ≤ 0, and we have just argued that vQj−Tj ≤ 0

when Bj > 0. Hence the aggregate profit must be zero. Proposition 2 shows that the same

result holds when the number of buyers is fixed, which is not a priori obvious.

Remark An inspection of their proofs reveal that Propositions 1 and 2 only require weak

assumptions on feasible trades, namely that if the quantities q and q′ are tradable, then so

are the quantities q + q′ and q − q′. Hence we allow for negative and positive trades, but

we may for instance have integer constraints on quantities. Finally, we did use in Lemma

1 the fact that the functions ui, and thus the functions z−k
i , are continuous with respect to

transfers, but, for instance, we did not use the fact that the seller’s preferences are convex.

3.3 Pooling versus Separating Equilibria

We say that an equilibrium is pooling if both types of the seller make the same aggregate

trade, that is, QL = QH , and that it is separating if they make different aggregate trades,

that is, QL > QH . We now investigate the basic price structure of these two kinds of

candidate equilibria.

Proposition 3 The following holds:

• In any pooling equilibrium, TL = vQL = TH = vQH .
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• In any separating equilibrium,

(i) If QL > 0 > QH , then TL = vLQL and TH = vHQH .

(ii) If QL > QH ≥ 0, then TH = vQH and TL − TH = vL(QL −QH).

(iii) If 0 ≥ QL > QH , then TL = vQL and TH − TL = vH(QH −QL).

Proof. In the case of a pooling equilibrium, the conclusion follows immediately from the

zero-profit result. Consider next a separating equilibrium, and let us start with case (ii):

QL > QH ≥ 0. We know from Proposition 1 that SL ≤ 0. Suppose that SL < 0. From (5)

and the zero-profit result, we get BH ≤ bk
H for each k, which implies that BH ≤ 0. Now,

notice from (4) that

B = vQH − TH + mLSL = BH + mL[SL − (vH − vL)QH ].

Because BH ≤ 0, SL < 0 and QH ≥ 0, we obtain that B < 0, a contradiction. Therefore,

it must be that SL = 0, so that TL − TH = vL(QL − QH). It follows that B = vQH − TH ,

so that TH = vQH as B = 0. Hence the result. Case (iii) follows in a similar manner,

exchanging the roles of L and H. Consider finally case (i): QL > 0 > QH . As above,

B = BH + mL[SL − (vH − vL)QH ] = 0. Suppose that BH > 0 and thus BH > bk
H for some

k. Again, from (5), this implies that SL = 0 and thus that BH −mL(vH − vL)QH = B = 0.

Because vH > vL and BH > 0, one must have QH > 0, a contradiction. Hence BH = 0, and

therefore BL = 0 as B = 0. It follows that TL = vQL and TH = vHQH . Hence the result. ¥

The first statement of Proposition 3 is a direct consequence of the zero-profit result.

Otherwise, the equilibrium is separating, and three cases may arise. In case (i), type L sells

a positive quantity QL, while type H buys a positive quantity |QH |. There are no cross-

subsidies in equilibrium, as each type i trades at the fair price vi. In case (ii), everything

happens as if, in the aggregate, both types were selling a quantity QH at the fair price v, with

type L selling an additional quantity QL−QH at the fair price vL. When QH > 0, there are

cross-subsidies in equilibrium, with BL < 0 < BH . In that case, the structure of aggregate

equilibrium allocations is similar to that obtained by Jaynes (1978) and Hellwig (1988) in a

non-exclusive version of Rothschild and Stiglitz’s (1976) model where insurance companies

can share information about their clients. It is also reminiscent of the equilibrium of the

limit-order book analyzed by Glosten (1994). When QH = 0, the structure of aggregate

equilibrium allocations is similar to that which prevails in Akerlof (1970), or, in a model of

non-exclusive competition, in Attar, Mariotti, and Salanié (2011). Finally, case (iii) is the

mirror image of case (ii).
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3.4 The No-Cross-Subsidization Result

In this section, we prove that our non-exclusive competition game has no equilibrium with

cross-subsidies. We first establish that the aggregate profit earned on each type must be zero

in equilibrium. As discussed below, this drastically reduces the set of candidate equilibria.

We then refine this result by showing that any traded contract must actually yield zero profit

in equilibrium.

The first step of the analysis consists in showing that, if buyers make profits in the

aggregate when trading with type j, then type j must trade inefficiently in equilibrium.

Specifically, her marginal rate of substitution at her aggregate equilibrium trade is not equal

to the quality of the good she sells, but rather to the average quality of the good.

Lemma 2 If Bj > 0 in equilibrium, then τj(Qj, Tj) = v.

The intuition for Lemma 2 is as follows. If τj(Qj, Tj) were different from v, then any

buyer could propose a contract in the neighborhood of (Qj, Tj) that would attract type j,

thereby generating a positive profit close to Bj, and that would generate a small positive

profit even if it were traded by both types. This, however, is impossible according to the

zero-profit result.

The second step of the analysis consists in showing that, if buyers make profits in the

aggregate when trading with type j, then the aggregate trade made by type j in equilibrium

must remain available if any buyer withdraws his menu offer. In our oligopsony model, this

rules out Cournot-like outcomes in which the buyers would share the market in such a way

that each of them would be needed to provide type j with her aggregate equilibrium trade,

as is the case in the equilibrium described in Biais, Martimort, and Rochet (2000). This is

more in the spirit of Bertrand competition, where cross-subsidies are harder to sustain.

Lemma 3 If Bj > 0 in equilibrium, then, for each k, the quantity Qj can be traded with the

buyers other than k in exchange for a transfer Tj.

The proof of Lemma 3 proceeds as follows. First, we show that if Bj is positive, then

the equilibrium utility of type j must remain available following any buyer’s deviation; the

reason for this is that, otherwise, a buyer could deviate and reap the aggregate profit on

type j. As a result, for any buyer k, there exists an aggregate trade (Q−k, T−k) with the

buyers other than k that allows buyer j to achieve the same level of utility as in equilibrium,

uj(Q
−k, T−k) = Uj. From the strict quasiconcavity of ui and Lemma 2, we obtain that if
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Q−k 6= Qj, then T−k > vQ−k. We finally show that this would allow buyer k to profitably

deviate by pivoting on (Q−k, T−k).

We are now ready to state and prove the main result of this section.

Proposition 4 In any equilibrium, Bj = 0 for each j.

Proof. Suppose by way of contradiction that Bj > 0 for some j. Then any buyer k such

that bk
j > 0 can deviate by proposing a menu consisting of the no-trade contract and of the

contracts ck
i = (Qi−Qj + δi, vi(Qi−Qj)+ εi) and ck

j = (qk
j , t

k
j + εj), for some numbers δi, εi,

and εj. Choose δi and εi such that τi(Qi, Ti)δi < εi. This ensures that, when δi and εi are

small enough, type i can strictly increase her utility by trading ck
i with buyer k and (Qj, Tj)

with the buyers other than k; according to Lemma 3, this is feasible as Bj > 0. Because

Ui ≥ z−k
i (qk

j , t
k
j ) and the function z−k

i is continuous, it is possible, given the values of δi

and εi, to choose εj positive and small enough so that type i trades ck
i following buyer k’s

deviation. Turning now to type j, observe that she must trade either ck
i or ck

j following buyer

k’s deviation: indeed, because εj is positive, type j strictly prefers ck
j to any contract she

could have traded with buyer k before the deviation. If type j selects ck
j , then buyer k’s profit

from this deviation is mi(viδi − εi) + mj(vjq
k
j − tkj − εj), which, because vjq

k
j − tkj = bk

j > 0

by assumption, is positive when δi, εi, and εj are small enough, in contradiction with the

zero-profit result. Therefore, type j must select ck
i following buyer k’s deviation, and for this

deviation not to be profitable one must have

v(Qi −Qj + δi)− vi(Qi −Qj)− εi ≤ 0. (6)

Now, recall that, as a consequence of Assumption SC, (v − vi)(Qi − Qj) ≥ 0. Therefore,

letting δi and εi go to zero in (6), we get Qi = Qj, and hence the equilibrium must be

pooling. Replacing in (6), what we have shown is that for any small enough δi and εi such

that τi(Qi, Ti)δi < εi, one has vδi ≤ εi. As δi can be positive or negative, it follows that

τi(Qi, Ti) = v. However, according to Lemma 2, one also has τj(Qj, Tj) = v as Bj > 0.

Because (Qi, Ti) = (Qj, Tj), this contradicts Assumption SC. Hence the result. ¥

Along with Proposition 3, this no-cross-subsidization result leads to the conclusion that

one must have QH ≤ 0 ≤ QL in any equilibrium. This excludes two types of equilibrium

outcomes that have been emphasized in the literature: first, pooling outcomes such as the

one described in Attar, Mariotti, and Salanié (2011), in which both types would trade the

same nonzero quantity at a price equal to the average quality of the good; second, separating

outcomes such as the one described by Jaynes (1978), Hellwig (1988), and Glosten (1994),
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and illustrated on Figure 1 below. If one leaves aside the case in which both types trade

nonzero quantities on opposite sides of the market, the remaining possibilities for equilibrium

outcomes have a structure reminiscent of Akerlof (1970): either there is no trade in the

aggregate, or only one type actively trades at a fair price in the aggregate.

To illustrate the logic of the no-cross-subsidization result, consider a candidate separating

equilibrium with positive quantities QL > QH > 0, as illustrated on Figure 1. The basic

price structure of such an equilibrium is delineated in Proposition 3(ii).

—Insert Figure 1 Here—

Let k be a buyer whose profit bk
H from trading with type H is positive. According to

Lemma 3, the bundle (QH , TH) remains available if buyer k removes his menu offer. He

can thus attempt to pivot on (QH , TH) to attract type L, which amounts to offer a contract

ck
L = (QL − QH , TL − TH + εL), for some positive number εL. When εL is small enough,

the loss for buyer k from trading ck
L with type L is negligible, as the slope of the line

segment connecting (QH , TH) and (QL, TL) is the fair price vL. For buyer k’s deviation to

be profitable, he must make a profit when trading with type H. To do so, he can offer an

additional contract ck
H = (qk

H , tkH + εH), for some positive number εH . Because (qk
H , tkH) was

available for trade in equilibrium, ck
L is more attractive than ck

H for type L as long as εL is

large enough relative to εH . Now, if type H trades ck
H , the deviation is profitable, because,

when εH is small enough, ck
H yields a profit close to bk

H > 0 when traded by type H, whereas

the loss from trading ck
L with type L is negligible. If type H trades ck

L instead, the deviation

is still profitable, because ck
L yields a positive profit when traded by both types. This shows

that there exists no separating equilibrium with positive quantities. The reasoning for a

pooling equilibrium is slightly more involved, but reaches the same conclusion.

Remark. The proof of Proposition 4 shows that the reason why cross-subsidies are not

sustainable in equilibrium is that it is possible for some buyer to neutralize the type on

which he makes a loss by proposing her to mimic the behavior of the other type when facing

the other buyers. A key feature of this deviation is that it can only be performed by a buyer

who is actively and profitably trading with one type in equilibrium; indeed, an entrant would

not be able to upset the above candidate equilibrium. Moreover, it is crucial for the argument

that this buyer deviates to a menu including two non-trivial contracts targeted at the two

types of the seller. Observe that this class of deviations was not considered in the early

contributions of Jaynes (1978) and Glosten (1994). Jaynes (1978), who studies strategic

competition between insurance providers under non-exclusivity, indeed restricts firms to use
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simple insurance policies. That is, each firm can propose at most one contract different from

the no-trade contract.15 As a consequence, an incumbent firm cannot profitably deviate

by simultaneously making a loss when trading with the high-risk agent and compensating

this loss when trading with the low-risk agent. Glosten (1994) characterizes an aggregate

price-quantity schedule that is robust to entry. In our setting, this schedule would be as

depicted on Figure 1. By contrast, we do not take the aggregate price-quantity schedule as

given, but we derive it from the individual menus offered by the buyers.

So far, we have focused on the aggregate equilibrium implications of our model. We now

briefly sketch a few implications for individual equilibrium trades. The following result shows

that each traded contract yields zero profit, and that aggregate and individual equilibrium

trades have the same sign.

Proposition 5 In any equilibrium, bk
j = 0 and qk

L ≥ 0 ≥ qk
H for all j and k.

Proposition 5 reinforces the basic insight of our model, according to which, in equilibrium,

the seller can signal her type only through the sign of the quantities she trades. It follows

that if a type does not trade in the aggregate, then she does not trade at all. Hence a pooling

equilibrium, when it exists, is actually a no-trade equilibrium. Observe also that, when a

type trades a nonzero quantity in the aggregate, there need not be more than one active

buyer, as will be clear from considering the equilibria we will construct in Section 4.

3.5 Aggregate Equilibrium Trades

In this section, we fully characterize the candidate aggregate equilibrium trades, and we

provide necessary conditions for the existence of an equilibrium. Given the price structure

of equilibria delineated in Section 3.4, all that remains to be done is to give restrictions on

each type’s equilibrium marginal rate of substitution. Two cases need to be distinguished,

according to whether or not a type’s aggregate trade is zero in equilibrium.

Our first result is that, if type j does not trade in the aggregate, then her equilibrium

marginal rate of substitution must lie between v and vj. This is why an equilibrium may fail

to exist for some parameters.

Lemma 4 If Qj = 0, then vj − τj(0, 0) and τj(0, 0)− v have the same sign.

The intuition for Lemma 4 is as follows. Suppose for instance that QH = 0. If vH >

τH(0, 0), then any buyer could attract type H by proposing a contract offering to buy a small

15This assumption is maintained in the reformulation of Jaynes (1978) provided by Hellwig (1988).
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positive quantity at a unit price lower than vH . For this deviation not to be profitable, type

L must also trade this contract, and one must have τH(0, 0) ≥ v, so that the deviator makes

a loss when both types trade this contract. The same reasoning applies if vH < τH(0, 0), by

considering a contract offering to sell a small positive quantity at a unit price higher than

vH . The case QL = 0 can be handled in a symmetric way.

Our second result is that, if type i trades a nonzero quantity in the aggregate, then she

must trade efficiently in equilibrium.

Lemma 5 If Qi 6= 0, then τi(Qi, Ti) = vi.

The intuition for Lemma 5 is as follows. Suppose for instance that QL > 0. As cross-

subsidization cannot occur in equilibrium, TL = vLQL. If type L were trading inefficiently in

equilibrium, that is, if τL(QL, TL) 6= vL, then there would exist a contract offering to buy a

positive quantity at a unit price lower than vL, and that would give type L a strictly higher

utility than (QL, TL). Any of the buyers could profitably attract type L by proposing this

contract, which would be even more profitable for the deviating buyer if traded by type H.

Hence type L must trade efficiently in equilibrium. The case QH < 0 can be handled in a

symmetric way.16

To state our characterization result, it is necessary to define first-best quantities. The

following assumption ensures that these quantities are well defined.

Assumption FB For each i, there exists Q∗
i such that τi(Q

∗
i , viQ

∗
i ) = vi.

Assumption FB states that Q∗
i is the efficient quantity for type i to trade at a unit price vi

that gives an aggregate zero profit for the buyers. In the pure trade model, Q∗
i is defined by

c′i(Q
∗
i ) = vi. In the insurance model, because or the seller’s risk aversion, efficiency requires

full insurance for each type, so that Q∗
i = WG − WB.17 An important consequence of the

strict quasiconcavity of ui is that Q∗
i ≥ 0 if and only if τi(0, 0) ≤ vi, and that Q∗

i = 0 if and

only if τi(0, 0) = vi. We can now state our main characterization result.

Theorem 1 If an equilibrium exists, then τL(0, 0) ≤ v ≤ τH(0, 0). Moreover,

• If vL ≤ τL(0, 0) ≤ v ≤ τH(0, 0) ≤ vH , all equilibria are pooling, with QL = QH = 0.

16It should be noted that the proofs of Lemmas 4 and 5 involve no pivoting arguments—or, what amounts
to the same thing, only pivoting on the no-trade contract—and would therefore also go through in an
exclusive competition context.

17A special feature of these two examples is that efficient quantities depend on the type of the seller, but
not on the buyers’ aggregate profit.
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• Otherwise, all equilibria are separating, and

(i) If τL(0, 0) < vL < v < vH < τH(0, 0), then QL = Q∗
L > 0 and QH = Q∗

H < 0.

(ii) If τL(0, 0) < vL < v ≤ τH(0, 0) ≤ vH , then QL = Q∗
L > 0 and QH = 0.

(iii) If vL ≤ τL(0, 0) ≤ v < vH < τH(0, 0), then QL = 0 and QH = Q∗
H < 0.

The first message of Theorem 1 is a negative one: the non-exclusive competition game

need not have an equilibrium. A necessary condition for an equilibrium to exist is that,

at a price equal to the average quality v, type L would like to sell some of the good,

whereas type H would like to buy some of it. In the pure trade model, no equilibrium

exists if the cost function of type L is such that c′L(0) > v, or if the cost function of

type H is such that c′H(0) < v; that is, if the low-cost type L is not eager enough to sell,

or if the high-cost type H is too eager to sell. In the insurance model, no equilibrium

exists if [πH/(1 − πH)]u′(WG)/u′(WB) < π/(1 − π), where π ≡ mLπL + mHπH , that is,

if the low-risk agent H is too eager to buy insurance.18 Overall, Theorem 1 reinforces

the insight of the no-cross-subsidization result: an equilibrium exists only if the adverse

selection problem is severe enough, so that both types’ incentives to trade are not too closely

aligned. On a more positive note, we show below in Theorem 2 that the necessary condition

τL(0, 0) ≤ v ≤ τH(0, 0) also turns out to be sufficient for the existence of an equilibrium.

Thus Theorem 1 provides a complete description of the structure of aggregate equilibrium

outcomes, which is summarized on Figure 2.

—Insert Figure 2 Here—

Second, Theorem 1 shows that pooling requires vL ≤ τL(0, 0) and vH ≥ τH(0, 0); by

the no-cross-subsidization result, we already know that a pooling equilibrium involves no

trade for both types. The conditions vL ≤ τL(0, 0) and vH ≥ τH(0, 0) together imply that

Q∗
L ≤ 0 ≤ Q∗

H . When one of these inequalities is strict, the first-best quantities are not

implementable. Thus pooling requires a strong form of nonresponsiveness: namely, in the

first-best scenario, type L would like to buy, and type H to sell. This cannot arise in the

insurance model, for in that case Q∗
L = Q∗

H = WG −WB. Therefore, the insurance model

admits no pooling equilibrium. In the pure trade model, a pooling equilibrium exists only if

c′L(0) ≥ vL and c′H(0) ≤ vH .19

18This result is also obtained in Ales and Maziero (2011) assuming free entry. The second condition
τL(0, 0) ≤ v, or, equivalently, [πL/(1 − πL)]u′(WG)/u′(WB) ≤ π/(1 − π), is automatically satisfied in the
insurance model as π > πL and u′(WB) > u′(WG).

19This is for instance the case in the Biais, Martimort, and Rochet (2000) setting if θL ≥ vL and θH ≤ vH .
It should however be noted that they explicitly rule out this parameter configuration.
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Third, Theorem 1 states that in a separating equilibrium, at least one of the types trades

efficiently. In case (i), types L and H’s preferences are sufficiently far apart from each other,

in the sense that Q∗
L > 0 > Q∗

H : in the first-best scenario, type L would like to sell, and type

H to buy. In that case, both types end up trading their first-best quantities in equilibrium.

Clearly, the insurance model admits no equilibrium of this kind. In the pure trade model,

a first-best equilibrium may exist if c′L(0) < vL and c′H(0) > vH . In case (ii), both Q∗
L and

Q∗
H are nonnegative: in the first-best scenario, both types would like to sell. The unique

candidate equilibrium outcome is then similar to the one which prevails in Akerlof (1970):

type L trades efficiently, while type H does not trade at all. This is the situation that

prevails in the insurance model when an equilibrium exists: in that case, the high-risk agent

L obtains full insurance at an actuarially fair price, while the low-risk agent H purchases

no insurance. In the pure trade model, this type of equilibrium may exist if c′L(0) < vL and

c′H(0) ≤ vH . Finally, case (iii) is symmetric to case (ii), exchanging the roles of types L

and H. Note that, in any separating equilibrium, each type strictly prefers her aggregate

equilibrium trade to that of the other type. This contrasts with the predictions of models

of exclusive competition under adverse selection, such as Rothschild and Stiglitz’s (1976), in

which the high-risk agent L is indifferent between her equilibrium contract and that of the

low-risk agent H.

Remark It is interesting to compare the conclusions of Theorem 1 with those reached by

Attar, Mariotti, and Salanié (2011). Compared to the present setup, the two distinguishing

features of their model is that the seller has linear preferences, ui(Q, T ) = T − θiQ, and

makes choices under an aggregate capacity constraint, Q ≤ 1. Observe that, in this context,

type i’s marginal rate of substitution is constant and equal to θi up to capacity. In a two-

type version of their model in which there are potential gains from trade for each type, that

is, vL > θL and vH > θH , Attar, Mariotti, and Salanié (2011) show that the non-exclusive

competition game always admits an equilibrium, that the buyers earn zero profits, and

that the aggregate equilibrium allocation is generically unique. If θH > v, the equilibrium is

similar to the separating equilibrium found in case (ii) of Theorem 1: type L trades efficiently,

QL = 1 and TL = vL, while type H does not trade at all, QH = TH = 0. By contrast, if

θH < v, the situation is markedly different from that described in Theorem 1. First, an

equilibrium exists, whereas, in the analogous situation where τH(0, 0) < v, no equilibrium

exists in our model. Second, any equilibrium is pooling and efficient, that is, QL = QH = 1

and TL = TH = v, whereas cross-subsidies and, therefore, non-trivial pooling equilibria

are ruled out in our model. The key difference between the two setups that explains these

24



discrepancies is that, in the present paper, we do not require the seller’s choices to satisfy

an aggregate capacity constraint. This implies that some deviations that are crucial for our

characterization result are not available in Attar, Mariotti, and Salanié (2011). A case in

point is the no cross-subsidization result: key to the proof of Proposition 4 is the possibility,

for a deviator that makes profit when trading with type j, to pivot on (Qj, Tj) to attract

type i, while preserving the profit he makes with type j. However, for the argument to

go through, there must be no restrictions on the quantities traded in such deviations; in

particular, it is crucial that the deviator be able to induce type i to consume more than Qi

in the aggregate.20 This, however, is precisely what is impossible to do in the presence of

a capacity constraint when both types trade up to capacity, as in the pooling equilibrium

described in Attar, Mariotti, and Salanié (2011).

4 Equilibrium Existence

To establish the existence of an equilibrium, we impose the following technical assumption

on preferences.

Assumption T There exist QH and QL such that

τH(Q, T ) < vH if Q < QH , and τL(Q, T ) > vL if Q > QL,

uniformly in T .

Assumption T ensures that equilibrium menus can be constructed as compact sets of

contracts. It should be emphasized that the restrictions it imposes on preferences are rather

mild. In the pure trade model, because of the quasilinearity of preferences, Assumption T

follows from Assumption FB, and one can take QH = Q∗
H and QL = Q∗

L. In the insurance

model, Assumption T follows from the seller’s risk aversion, and one can take QH = QL =

WG −WB = Q∗
H = Q∗

L.

Theorem 2 An equilibrium exists if and only if τL(0, 0) ≤ v ≤ τH(0, 0). Moreover there

exists Q > 0 > Q such that any equilibrium can be supported by at least two buyers posting

the same tariff

t(q) ≡ min{vLq, vHq}, Q ≤ q ≤ Q,

20Formally, it follows from the proof of Proposition 4 that, if BH > 0 in a pooling equilibrium where each
type trades a positive aggregate quantity Q, then, for any small enough additional trade (δL, εL) such that
τL(Q, T )δL < εL, and that would thus attract type L, one must have vδL ≤ εL. If there are no restrictions
on δL, this implies that τL(Q,T ) = v, from which a contradiction can be derived using Lemma 2. Yet if, for
some reason, only nonpositive δL were admissible, say, because the seller could not trade more than Q in
the aggregate, then one could only conclude that τL(Q,T ) ≤ v, from which no contradiction would follow.
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while the other buyers stay inactive.

Theorem 2 shows that the necessary condition for the existence of an equilibrium given in

Theorem 1 is also sufficient. These two results together provide a complete description of the

aggregate equilibrium outcomes of our game. As for individual strategies, the tariffs chosen

here to support equilibria entail linear pricing for both positive and negative quantities, with

a kink at zero that one may interpret as a bid-ask spread. Another noteworthy feature of

these strategies is that in no case can a buyer make a loss. Hence, even if these strategies

involve contracts that are not traded in equilibrium, these latent contracts cannot turn out

to be costly for the buyers.

The lower and upper bounds Q and Q were introduced only to make sure that the

corresponding menus of contracts are compact, but the intuition of the result is easier to

grasp when one eliminates these bounds. Suppose that one of the buyers were to deviate, for

instance in the hope of making profits from trading with type H. Because no buyer can make

a loss, this implies that, following the deviation, the aggregate trade (Q̃H , T̃H) chosen by type

H should verify vHQ̃H > T̃H . Let T− be the tariff posted in the aggregate by the deviator’s

competitors. As the trade (Q̃H , T−(Q̃H)) is available anyway, we get T̃H ≥ T−(Q̃H), which

implies Q̃H > 0. Because we have τH(0, 0) ≥ v by assumption, we also get that the final

transfer T̃H cannot be less than vQ̃H .

Similarly define (Q̃L, T̃L) as the aggregate trade of type L following the deviation. Type

L could trade as type H does, and sell in addition a quantity Q̃L − Q̃H in exchange for a

transfer T−(Q̃L − Q̃H). By the single-crossing condition, Q̃L ≥ Q̃H . Hence type L can end

up selling an aggregate quantity Q̃L in exchange for a transfer T̃H + vL(Q̃L − Q̃H). As she

chooses to trade (Q̃L, T̃L) instead, this shows that T̃L ≥ T̃H + vL(Q̃L− Q̃H). But we already

know that T̃H ≥ vQ̃H . In line with (4), we obtain that aggregate profits cannot be positive.

Hence, because the other buyers cannot make losses, the deviation cannot be profitable.

The fact that buyers cannot make losses should not be interpreted as an extreme aversion

to the hazard of trading under adverse selection. Recall indeed from Proposition 5 that, in

equilibrium, the seller credibly signals her information by the sign of the trade she proposes

to make with each buyer. The buyers then become perfectly informed of the seller’s type, and

Bertrand competition reduces prices down to their willingness-to-pay. Hence buyers cannot

make losses, but they do not make any profits neither. The fact that only two active buyers

are needed to sustain an equilibrium confirms the Bertrand-like nature of non-exclusive

competition in our setting.
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Finally, we made no attempt at minimizing the size of equilibrium menus. The proof

of Theorem 2 provides such an implementation in the efficient case (i) of Theorem 1, for

which it is sufficient that at least two buyers propose the efficient trades (Q∗
L, vLQ∗

L) and

(Q∗
H , vHQ∗

H); but for the other more complex cases, we only got partial results. The question

of minimum implementation thus remains open.

5 Conclusion

In this paper, we analyzed the impact of adverse selection on markets where competition is

non-exclusive. We fully characterized aggregate equilibrium allocations, which are uniquely

determined, and we provided a necessary and sufficient condition for the existence of a pure-

strategy equilibrium. Our results show that, under non-exclusivity, market breakdown may

arise in a competitive environment where buyers compete through arbitrary menu offers:

specifically, whenever first-best allocations cannot be achieved, equilibria when they exist

involve no trade for at least one type of the seller.

These predictions contrast with those that obtain under exclusive competition, namely,

that one type of the seller trades efficiently, while the other type signals the quality of

the good she offers by trading a suboptimal, but nonzero quantity of this good. When

competition is non-exclusive, each buyer’s inability to control the seller’s trades with his

opponents creates additional deviation opportunities. This makes screening more costly,

and implies that the seller either trades efficiently, or does not trade at all.

Our results may explain why some markets are underdeveloped. For instance, theory

predicts that individual should find it in their best interest to annuitize a large part of

their lifetime savings (Yaari (1965)), yet in practice the demand for annuities remains low.

Although several demand-side explanations, such as bequest motives, have been proposed

to solve this puzzle, our analysis points at an alternative supply-side explanation based on

non-exclusivity and adverse selection. As mentioned in the introduction, non-exclusivity is

a common feature of annuity markets. Adverse selection may arise because individuals have

private information about their survival prospects. In this context, our analysis predicts that

market participation should be limited to individuals with the best survival prospects, who

have more to gain from purchasing annuities. This severely limits the size of the market,

unless participation is made mandatory.

There has been so far few investigations of the welfare implications of adverse selection in

markets where competition is non-exclusive. A natural development of our analysis would be

to study the decision problem faced by a planner seeking to implement an efficient allocation,
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subject to informational constraints and to the constraint that exclusivity be non-enforceable.

It is unclear that such a planner may improve on the market allocations characterized in

this paper. If he could, this would provide new theoretical insights in favor of welfare-based

regulatory interventions, in particular in the context of financial or insurance markets.

Appendix

Proof of Lemma 1. Let i, k, q, and t be as in the assumption of the lemma, and suppose

that viq − t > bk
i . Buyer k can deviate by proposing a menu consisting of the no-trade

contract and of the contracts ck
i = (q, t+εi) and ck

j = (qk
j , t

k
j +εj), for some positive numbers

εi and εj. Given the assumption of the lemma, by trading ck
i with buyer k and (Qi−q, Ti−t)

with the buyers other than k, type i gets a utility ui(Qi, Ti +εi) > Ui. In equilibrium one has

Ui ≥ z−k
i (qk

j , t
k
j ), and the function z−k

i is continuous. Thus ui(Qi, Ti + εi) > z−k
i (qk

j , t
k
j + εj)

for all small enough εj, so that, for any such εj, type i must select ck
i following buyer

k’s deviation. Consider now type j’s behavior. By trading ck
j , type j can get a utility

uj(Qj, Tj + εj) > Uj, so that she must select either ck
i or ck

j following buyer k’s deviation. If

type j selects ck
j , then, by deviating, buyer k earns a profit

mi(viq − t− εi) + mj(vjq
k
j − tkj − εj) = mi(viq − t) + mjb

k
j − (miεi + mjεj).

However, from the assumption that viq− t > bk
i , this is strictly higher than bk when εi and εj

are small enough, a contradiction. Hence type j must select ck
i following buyer k’s deviation.

In equilibrium this deviation cannot be profitable, so that vq − t− εi ≤ bk. Letting εi go to

zero yields the desired implication. The result follows. ¥

Proof of Lemma 2. If Bj > 0, then one must have Tj = vQj by Proposition 3. Any buyer

k can deviate by proposing a menu consisting of the no-trade contract and of the contract

ck
j = (Qj + δj, Tj + εj), for some numbers δj and εj. Suppose by way of contradiction that

τj(Qj, Tj) 6= v. Then one can choose δj and εj such that τj(Qj, Tj)δj < εj < vδj. When

δj and εj are small enough, the first inequality guarantees that type j can strictly increase

her utility by trading ck
j with buyer k. If type i trades ck

j , then buyer k’s profit from this

deviation is v(Qj + δj)− (Tj +εj) = vδj− εj > 0, in contradiction with the zero-profit result.

Therefore, type i must not trade with buyer k, and for this deviation not to be profitable

one must have mj[vj(Qj + δj)− (Tj + εj)] = mj(Bj + vjδj − εj) ≤ 0. Letting δj and εj go to

zero yields Bj ≤ 0, a contradiction. The result follows. ¥

Proof of Lemma 3. Suppose first that Uj > z−k
j (0, 0) for some k. Then buyer k can deviate
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by proposing a menu consisting of the no-trade contract and of the contract ck
j = (Qj, Tj−ε),

for some positive number ε. When ε is small enough, one has uj(Qj, Tj − ε) > z−k
j (0, 0),

so that type j trades the contract ck
j following buyer k’s deviation. If type i does not trade

the contract ck
j , buyer k’s profit from this deviation is mj(vjQj − Tj + ε) = mj(Bj + ε) > 0,

in contradiction with the zero-profit result. If type i trades the contract ck
j , then, because

Tj = vQj by Proposition 3, buyer k’s profit from this deviation is vQj − Tj + ε = ε > 0,

again in contradiction with the zero-profit result. As in any case Uj ≥ z−k
j (0, 0), it must be

that Uj = z−k
j (0, 0) for each k. It follows that, for any buyer k, there exists an aggregate

trade (Q−k, T−k) with the buyers other than k such that uj(Q
−k, T−k) = Uj.

Suppose now that Q−k 6= Qj. Then, from the strict quasiconcavity of ui and Lemma

2, one must have T−k > vQ−k. We now examine two deviations for buyer k that pivot

on (Q−k, T−k). First, define (q1, t1) such that (q1, t1) + (Q−k, T−k) = (Qj, Tj). Then the

quantity Qj − q1 can be traded with the buyers other than k in exchange for a transfer

Tj − t1. Moreover, using the fact that Tj = vQj by Proposition 3, and that T−k > vQ−k,

one gets

vq1 − t1 = v(Qj −Q−k)− (Tj − T−k) = T−k − vQ−k > 0.

Therefore, by Lemma 1, one must have vjq1 − t1 ≤ bk
j , that is, using again Tj = vQj,

T−k − vjQ
−k + (vj − v)Qj ≤ bk

j . Because T−k > vQ−k, this implies that

(vj − v)(Qj −Q−k) < bk
j . (7)

Second, define (q2, t2) such that (q2, t2) + (Q−k, T−k) = (Qi, Ti). Then the quantity Qi − q1

can be traded with the buyers other than k in exchange for a transfer Ti − t1. Moreover,

using the fact that Si = 0 and Tj = vQj by Proposition 3, that T−k > vQ−k, and that

(v − vi)(Qi −Qj) ≥ 0 by Assumption SC, one gets

vq2 − t2 = v(Qi −Q−k)− (Ti − T−k)

= T−k − vQ−k + vQi − [Tj + vi(Qi −Qj)− Si]

= T−k − vQ−k + (v − vi)(Qi −Qj)

> 0.

Therefore, by Lemma 1, one must have viq2 − t2 ≤ bk
i , that is, using again Si = 0 and

Tj = vQj, T−k − viQ
−k + (vi − v)Qj ≤ bk

i . As T−k > vQ−k, this implies that

(vi − v)(Qj −Q−k) < bk
i . (8)

Because v = mivi + mjvj, and mib
k
i + mjb

k
j = 0 by the zero-profit result, averaging (7) and
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(8) yields 0 < 0, a contradiction. Therefore, one must have Q−k = Qj, and thus T−k = Tj

as uj(Q
−k, T−k) = Uj = uj(Qj, Tj). The result follows. ¥

Proof of Proposition 5. We first prove that bk
j = 0 for all j and k. Suppose by way of

contradiction that bk
j > 0 for some j and k. We first show that Si = Sj = 0. To prove that

Si = 0, observe that, by the no-cross-subsidization result, one has bl
j < 0 = Bj for some

l 6= k. From (5), this implies that miSi ≥ B−bl. Because B−bl = 0 by the zero-profit result,

and because Si ≤ 0 by Proposition 1, it follows that Si = 0. To prove that Sj = 0, observe

that if bk
j > 0, then bk

i < 0 = Bi by the zero-profit result and the no cross-subsidization

result. Arguing as for Si, it follows that Sj = 0. Hence Si = Sj = 0, as claimed. As

Si + Sj = (vi − vj)(Qi − Qj), one must have Qi = Qj, and the equilibrium is pooling, with

(Qi, Ti) = (Qj, Tj) = (0, 0). Now, because bk
j > 0, and because (Qj, Tj) = (0, 0) can obviously

be traded with the buyers other than k, one can show as in the proof of Proposition 4 that

τi(0, 0) = v. Finally, consider buyer l as above. As bl
j < 0, one has bl

i > 0 by the zero-profit

result. Because (Qi, Ti) = (0, 0) can obviously be traded with the buyers other than l, it

follows along the same lines that τj(0, 0) = v as well, which contradicts Assumption SC.

Hence the result.

We next prove that qk
L ≥ 0 ≥ qk

H for each k. Because vH > vL and

sk
i = vi(q

k
i − qk

j )− (tki − tkj ) = bk
i − bk

j − (vi − vj)q
k
j = (vj − vi)q

k
j

as bk
i = bk

j = 0, we only need to show that sk
i ≤ 0 for all i and k. Choose i, k, and l 6= k,

and set q ≡ qk
i + ql

i− qk
j and t ≡ tki + tli− tkj . Then the quantity Qi− q = qk

j +
∑

m6=k,l q
m
i can

be traded with the buyers other than l, in exchange for a transfer Ti − t = tkj +
∑

m6=k,l t
m
i .

We can thus apply Lemma 1. One has

viq − t− bl
i = vi(q

k
i + ql

i − qk
j )− (tki + tli − tkj )− bl

i = sk
i

and

vjq − t− bl
j = vj(q

k
i + ql

i − qk
j )− (tki + tli − tkj )− bl

j = −(sk
j + sl

j).

Therefore, according to (1),

sk
i > 0 implies mis

k
i ≤ mj(s

k
j + sl

j). (9)

Now, suppose by way of contradiction that sk
i > 0 for some i and k. Then, by (9),

mis
k
i ≤ mj(s

k
j + sl

j) (10)
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for each l 6= k. Summing on l 6= k yields

(n− 1)mis
k
i ≤ mj[Sj + (n− 2)sk

j ].

From Proposition 1, we know that Sj ≤ 0. Hence, if sk
i > 0, one must also have sk

j > 0.

Exchanging the roles of i and j in (9) yields

mjs
k
j ≤ mi(s

k
i + sl

i) (11)

for each l 6= k. Combining (10) and (11) leads to mis
k
i ≤ mjs

l
j +mi(s

k
i +sl

i), or, equivalently,

mis
l
i + mjs

l
j ≥ 0 for each l 6= k. Note that we also have mis

k
i + mjs

k
j > 0 as both sk

i and sk
j

are strictly positive. Summing all these inequalities yields miSi +mjSj > 0, in contradiction

with Proposition 1. Hence the result. ¥

Proof of Lemma 4. Suppose that Qj = 0. If τj(0, 0) = vj, the result is immediate.

Suppose then that τj(0, 0) 6= vj. Any buyer k can deviate by proposing a menu consisting of

the no-trade contract and of the contract ck
j = (δj, εj), for some numbers δj and εj. Choose

δj and εj such that τj(0, 0)δj < εj. This ensures that, when δj and εj are small enough,

type j can strictly increase her utility by trading ck
j with buyer k. If moreover vjδj > εj,

then type i must also trade ck
j following buyer k’s deviation, and one must have εj ≥ vδj,

for, otherwise, this deviation would be profitable. Thus we have shown that for any small

enough δj and εj, τj(0, 0)δj < εj < vjδj implies that εj ≥ vδj, which is equivalent to the

statement of the lemma. The result follows. ¥

Proof of Lemma 5. By the no-cross-subsidization result, if Qi 6= 0, the equilibrium must

be separating. Moreover, from Proposition 3, one must have Ti = viQi. Suppose by way

of contradiction that τi(Qi, Ti) 6= vi. Then any buyer k can deviate by proposing a menu

consisting of the no-trade contract and of the contract ck
i = (qi, ti), for some numbers qi and

ti. As τi(Qi, Ti) 6= vi, it follows from the strict quasiconcavity of ui that one can choose

(qi, ti) close to (Qi, Ti) such that Ui < ui(qi, ti) and ti < viqi, where qi is positive if i = L,

and negative if i = H. The first inequality guarantees that type i trades ck
i following buyer

k’s deviation. As viqi > ti, type j must also trade ck
i following buyer k’s deviation, and

one must have ti ≥ vqi, for, otherwise, this deviation would be profitable. Overall, we have

shown that viqi > vqi. Because qi is positive if i = L and negative if i = H, and because

vH > v > vL, we obtain a contradiction in both cases. The result follows. ¥

Proof of Theorem 1. Suppose first that a pooling equilibrium exists. Then, according to

the no-cross-subsidization result, QL = QH = 0. Lemma 4 then implies that

vL ≤ τL(0, 0) ≤ v ≤ τH(0, 0) ≤ vH . (12)
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Suppose next that a separating equilibrium exists. Then, according again to the no-cross-

subsidization result, only three scenarios are possible.

(i) In the first case, QH < 0 < QL. Then, by Proposition 3, TL = vLQL and TH = vHQH .

Moreover, by Lemma 5, τL(QL, TL) = vL and τL(QH , TH) = vH . As a result, QL = Q∗
L and

QH = Q∗
H , so that Q∗

H < 0 < Q∗
L. The strict quasiconcavity of ui then implies that

τL(0, 0) < vL and τH(0, 0) > vH . (13)

(ii) In the second case, QH = 0 < QL. Then, by Lemma 4, v ≤ τH(0, 0) ≤ vH . Moreover,

by Proposition 3, TL = vLQL. Finally, by Lemma 5, τL(QL, TL) = vL. As a result QL = Q∗
L,

so that Q∗
L > 0. The strict quasiconcavity of ui then implies that

τL(0, 0) < vL and v ≤ τH(0, 0) ≤ vH . (14)

(iii) In the third case, QH < 0 = QL. Then, by Lemma 4, vL ≤ τL(0, 0) ≤ v. Moreover, by

Proposition 3, TH = vHQH . Finally, by Lemma 5, τH(QH , TH) = vH . As a result QH = Q∗
H ,

so that Q∗
H < 0. The strict quasiconcavity of ui then implies that

vL ≤ τL(0, 0) ≤ v and τH(0, 0) > vH . (15)

To conclude the proof, observe that, from (12) to (15), an equilibrium exists only if τL(0, 0) ≤
v ≤ τH(0, 0). As conditions (12) to (15) are mutually exclusive, the characterization of the

candidate aggregate equilibrium trades is complete. Hence the result. ¥

Proof of Theorem 2. Choose an integer m, 2 ≤ m ≤ n, and fix Q and Q such that

Q < min{0, QH}/(m− 1) and Q > max{0, QL}/(m− 1). Suppose that m buyers post the

tariff t defined as in the theorem, while the other buyers stay inactive and only propose to

trade (0, 0). Consider any buyer. In the aggregate his competitors post the tariff

T−(Q−) ≡ min{vLQ−, vHQ−}, Q1 ≤ Q− ≤ Q1,

where Q− refers to the aggregate quantity traded by these competitors. Here Q1 is either

mQ1 or (m− 1)Q1, and thus is no greater than QH ; and similarly for Q1, which cannot be

smaller than QL. Note also that if the efficient trade Q∗
H is negative, then Q1 ≤ Q∗

H ≤ Q1;

and symmetrically for Q∗
L.

Suppose that our buyer deviates, and ends up trading (qL, tL) with type L and (qH , tH)

with type H. For the deviation to be profitable, he must make a positive profit with at

least one type, say type H (the proof for type L is symmetrical). Hence vHqH > tH . Define
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Q−
i ∈ [Q1, Q1] as the quantity traded by type i with the deviator’s competitors, following

his deviation. Define also Q̃i as the total quantity traded by type i, so that Q̃i = qi + Q−
i ,

and T̃i as the total transfer obtained by type i, so that T̃i = ti + T−(Q−
i ). Notice that the

tariff T− is such that other buyers cannot make losses following the deviation. Therefore, as

vHqH > tH , one must have vHQ̃H > T̃H . Because the null trade is available, we get

uH(Q̃H , vHQ̃H) > uH(Q̃H , T̃H) ≥ uH(0, 0). (16)

If Q̃H < 0, then (16) implies that τH(0, 0) > vH , so that Q∗
H < 0. By construction of the tariff

T−, type H can then trade (Q∗
H , vHQ∗

H) with the deviator’s competitors, thereby getting a

utility uH(Q∗
H , vHQ∗

H) = maxQ {uH(Q, vHQ)} > uH(Q̃H , T̃H) by (16), a contradiction. The

case Q̃H = 0 is also easily excluded, as the deviator cannot attract type H by proposing

her to pay a positive transfer −T̃H for a zero quantity. Therefore, it must be that Q̃H > 0.

From (16), we now get τH(0, 0) < vH .21 Because τH(0, 0) ≥ v by assumption, from (16)

again we get T̃H ≥ vQ̃H . Finally, notice that T−(Q−) ≤ vQ− for all Q− ∈ [Q1, Q1]. Thus

vQ̃H = vqH + vQ−
H ≤ T̃H = tH + T−(Q−

H) < vHqH + vQ−
H , and hence qH > 0.

Type L may also choose to trade (qH , tH) with the deviator. He would then have to

choose some Q− to maximize uL(qH + Q−, tH + T−(Q−)), subject to Q1 ≤ Q− ≤ Q1. Notice

first from the definition of QL that the constraint Q− ≤ Q1 does not play any role: indeed

qH > 0, so that, when Q− reaches its upper bound Q1, the total quantity traded qH + Q−

is higher than QL, and therefore type L’s marginal rate of substitution is higher than vL by

Assumption T. We can thus eliminate the constraint Q− ≤ Q1, taking care of extending the

tariff T− beyond Q1 by setting T−(Q−) ≡ vLQ− for all Q− > Q1. Now, Q̃L − qH satisfies

the remaining constraint Q1 ≤ Q−; indeed, thanks to Assumption SC, we have Q̃L ≥ Q̃H ,

so that Q̃L − qH ≥ Q−
H ≥ Q1. We thus have shown that type L can get at least a utility

uL(Q̃L, tH + T−(Q̃L − qH)). Observe that the transfer in this expression can be rewritten as

T̃H + T−(Q̃L− qH)− T−(Q−
H), which is no less than T̃H + vL(Q̃L− Q̃H) by concavity of T−.

Because type L is supposed to end up with the utility uL(Q̃L, T̃L) following the deviation, it

follows that T̃L ≥ T̃H +vL(Q̃L− Q̃H). Moreover, as shown above, T̃H ≥ vQ̃H . Therefore, the

aggregate profit, which may as usual be written as vQ̃H−T̃H +mL[vL(Q̃L−Q̃H)−(T̃L−T̃H)],

is at most zero. Because the tariff T− is such that the deviator’s competitors cannot make

losses, the deviation cannot be profitable. Hence the result. ¥.

21Note that this condition excludes the efficient case (i) of Theorem 1. In that simple case, an inspection
of the above lines reveals that we have only used the fact that (Q∗

H , vHQ∗
H) is offered by the deviator’s

competitors. We have thus shown that in the efficient case (i) of Theorem 1, any equilibrium can be
sustained by having at least two players posting the two trades (Q∗H , vHQ∗H) and (Q∗L, vLQ∗L).
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Figure 1 This figure depicts a candidate separating equilibrium with QL > QH > 0.
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Figure 2 This figure depicts the structure of equilibrium aggregate trades as a function of
τL(0, 0) and τH(0, 0) > τL(0, 0), for fixed parameters vL, vH , and v.
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