X

On Competitive Nonlinear Pricing

Andrea Attar' Thomas Mariottit Francois Salanié®

April 9, 2014

Abstract

Many financial markets rely on a discriminatory limit-order book to balance supply
and demand. We study these markets in a static model in which uninformed market
makers compete in nonlinear tariffs to trade with an informed insider, as in Glosten
(1994), Biais, Martimort, and Rochet (2000), and Back and Baruch (2013). We analyze
the case where tariffs are unconstrained and the case where tariffs are restricted to be
convex. In both cases, we show that pure-strategy equilibrium tariffs must be linear
and, moreover, that such equilibria only exist under exceptional circumstances. These
results cast doubt on the stability of even well-organized financial markets.
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1 Introduction

Important financial markets, such as EURONEXT or NASDAQ), rely on a discriminatory
limit-order book to balance supply and demand. This book gathers the limit orders posted
by market makers.! Any upcoming order is then matched with the best offers in the book.
Pricing is discriminatory, in that each market maker gets paid at the price he has quoted
for a given volume of shares.? The aim of this paper is to analyze the formation of prices on
such a discriminatory market.

Models of the discriminatory limit-order book typically feature an insider with superior
information about the fundamental value of the traded asset.> This makes less informed
market makers reluctant to sell, as they suspect that the fundamental value is likely to
be high when the asset is in high demand. Market makers compete by posting sequences
of limit orders or, equivalently, convex tariffs.* The insider then hits the resulting limit-
order book with a market order that reflects her private information.> The problem of price
formation thus amounts to characterizing the tariffs posted by market makers in equilibrium,
in anticipation of the insider’s trading strategy.

In a well-known article, Glosten (1994) proposed a candidate nonlinear tariff, meant to
describe the limit-order book as a whole, and that can be interpreted as a marginal version
of Akerlof (1970) pricing. Namely, this tariff specifies that an additional share beyond any
quantity ) can be bought at a price equal to the expected value of the asset, conditional on
the event that the insider buys at least () shares. By construction, this tariff is convex and
yields zero expected profit to the market makers. Glosten (1994) additionally shows that
this tariff is the only one to resist entry by an uninformed market maker. As acknowledged
in Glosten (1998), however, a natural question is whether this tariff can be sustained in an
equilibrium of a competitive game with strategic market makers.

This issue was first addressed in Biais, Martimort, and Rochet (2000) in a model where a
risk-averse insider with private but imperfect information about the fundamental value of an

asset may trade for informational or hedging purposes. When the insider’s marginal valuation

LA limit order allows to trade at the specified price any quantity up to a specified limit.

2By contrast, uniform limit-order books compute a single price that balances supply and demand and
that applies to all trades that are matched. The appropriate modeling tool is supply-function equilibria (see,
for instance, Wilson (1979), Grossman (1981), Klemperer and Meyer (1989), Kyle (1989), and Vives (2011)).

3See, for instance, Glosten (1994), Biais, Martimort, and Rochet (2000, 2013), and Back and Baruch
(2013)).

4This is unlike the discriminatory models of Treasury-bill auctions (Wilson (1979), Back and Zender
(1993)), in which the bidders are the holders of private information.

>This timing differs from Kyle’s (1989) uniform-price auction, in which both informed and uninformed
traders simultaneously post supply functions.



for the asset—an aggregate of the insider’s informational and hedging motivations to trade—
is continuously distributed, Biais, Martimort, and Rochet (2000) exhibit a unique pure-
strategy equilibrium with strictly convex tariffs. The equilibrium outcome is reminiscent of
Cournot competition: with a finite number of market makers, the equilibrium is symmetric
and each market maker earns a strictly positive expected profit. In the limit when the
number of market makers grows large, the equilibrium aggregate tariff converges to the
Glosten (1994) tariff. Back and Baruch (2013) complement this study by focusing on a
slightly different game in which market makers are restricted to post convex tariffs from
the outset. Focusing on symmetric equilibria with strictly convex tariffs, they identify the
same equilibrium tariff as in Biais, Martimort, and Rochet (2000). These results have been
interpreted as a strategic foundation to Glosten’s (1994) original approach, in the spirit of
Cournotian foundations of competitive equilibrium (Parlour and Seppi (2008), Vayanos and
Wang (2011)).

However, such equilibria exist only under quite restrictive assumptions. In a clarifying
note, Biais, Martimort, and Rochet (2013) acknowledge that their existence result requires
several conditions on the distribution of the insider’s marginal valuation for the asset and
on the expected value of the asset conditional on this marginal valuation. Back and Baruch
(2013) provide an alternative set of sufficient conditions and emphasize that existence obtains
only if the adverse selection problem is severe enough. This contrasts with the generality of
Glosten’s (1994) construction and thus raises the question of how robust the findings of this
literature are to specifications of the model.

In this paper, we address this question by setting up a general model of trade under
asymmetric information, in which a privately informed insider trades with several market
makers. Unlike previous contributions, our model does not rely on particular specifications
of the traders’ preferences. We also depart from the existing literature by assuming that
the insider’s private information, or type, can take an arbitrary but finite number of values.
This apparently minor change leads to strikingly different results. First, any pure-strategy
equilibrium with weakly convex tariffs actually requires linear tariffs, at odds with the above-
mentioned strictly convex tariffs. Second, such linear equilibria essentially exist only in the
special Bertrand case, that is, when there is no adverse selection and market makers have
a constant unit cost of serving demand. In all other cases, pure-strategy linear equilibria
do not exist, apart from exceptional cases where a single insider type trades in equilibrium.
These results hold true independently of the distribution of types and under very general

assumptions on payoff functions, both in the game in which market makers are allowed to



deviate by posting arbitrary tariffs (as in Biais, Martimort, and Rochet (2000, 2013)) and,
in the absence of wealth effects, in the game in which market makers are required to post
convex tariffs from the outset (as in Back and Baruch (2013)). In the former case, our
analysis suggests that organized exchanges such as limit-order books can be destabilized by
decentralized exchanges, such as over-the-counter markets, that allow for arbitrary offers.
In the latter case, we point at an inherent instability of organized exchanges relying on
discriminatory limit-order books.

The paper is organized as follows. Section 2 describes the model. Section 3 states our
main results. Section 4 establishes that equilibria with convex tariffs and nondecreasing
individual quantities feature linear pricing. Section 5 shows that such equilibria only exist in
exceptional cases when there is adverse selection or when market makers have strictly convex
costs. Section 6 extends these results to all equilibria with convex tariffs. Section 7 concludes

by discussing the interpretation of our results and their relationship to the literature.

2 The Model

Our model features a privately informed insider who can purchase nonnegative amounts of
an asset from several market makers. Shares are homogeneous, so the insider cares only
about her aggregate trade. Unless otherwise stated, we allow for general nonparametric

payoff functions and arbitrary discrete distributions for the insider’s type.

2.1 The Insider

The insider is privately informed of her preferences. Her type i can take a finite number
I > 1 of values with positive probabilities m; such that >, m; = 1. Each insider type cares
only about the aggregate quantity ¢ > 0 she purchases from the market makers and the
aggregate transfer 7' she makes in return.® Type i’s preferences over aggregate quantity-
transfer bundles (Q,7T) € R, x R are represented by a utility function U;(Q,T"), which is
assumed to be continuous and strictly quasiconcave in (@, T') and strictly decreasing in T'.
The following strict single-crossing property is the main determinant of the insider’s behavior

in our model.
Assumption SC-U Foralli<i, Q< Q', T, and T’,

UZ(Q,T) S Ui<Q,,T,) zmpl@es UZ/(Q,T) < Ui/(Q/,T/).

6Thus, in the limit-order-book interpretation of our model, we focus on the ask side of the book, in line
with Back and Baruch (2013) and Biais, Martimort, and Rochet (2013).



In words, a higher type is more eager to increase her purchases than lower types are. As
an illustration, for any price p and type i, consider the demand function D;(p), that is, the

unique solution to

max {U;(Q,pQ) : Q € Ry U{oo}}.

The continuity and strict quasiconcavity of U; ensure that D;(p) is uniquely defined and
continuous in p. Moreover, Assumption SC-U implies that, for each p, D;(p) is nondecreasing
in 2. We strengthen this property by requiring that demand be strictly increasing in the

insider’s type, in the following sense.
Assumption ID-U For alli < i and p € R,
0 < Di(p) < oo implies D;(p) < Dy(p).

A sufficient condition for both Assumptions SC-U and ID-U to hold is that the marginal
rate of substitution M RS;(Q,T') of shares for transfers be well defined and strictly increasing
in 7 for all (@, 7). Assumptions SC-U and ID-U are maintained throughout the paper.

Some of our results are valid for such general utility functions for the insider, allowing
for risk aversion and wealth effects (Theorem 1). Others require quasilinearity (Theorem
2), though none relies on a particular parametrization of the insider’s utility function. The

corresponding assumption is as follows.

Assumption QL-U The insider has quasilinear utility U;(Q,T) = u;(Q) — T, where u;(Q)

1s differentiable and strictly concave in Q).

Under this additional assumption, Assumption SC-U requires that the derivatives u}(Q)
be nondecreasing in i for all Q). For instance, in Biais, Martimort, and Rochet (2000, 2013),
U(Q,T) = 0,Q — (ac?/2)Q? — T, reflecting that the insider has CARA utility with absolute
risk-aversion parameter o and faces Gaussian noise with variance o?. Assumption SC-U
holds if 6; is nondecreasing in ¢. Similarly, Back and Baruch (2013) assume that the insider’s

demand function is independent of her wealth.

2.2 The Market Makers

There are K > 2 market makers. Each market maker cares only about the quantity ¢ > 0
he provides the insider with and the transfer ¢ he receives in return. Such pair (g,t) we call

a trade. Market maker k’s preferences over trades with type ¢ are represented by a profit



function v¥(q,t), which is assumed to be continuous and weakly quasiconcave in (g,t) and
strictly increasing in t. Note that this profit can depend on the insider’s type, a common-
value case that has received a lot of attention in the market-microstructure literature (Glosten
and Milgrom (1985), Kyle (1985), Glosten (1994)). This contrasts with the private-value
case, in which the market maker’s profit does not depend on i. We allow for both cases by

imposing that each market maker weakly prefers to sell lower quantities to higher types.
Assumption SC-v For allk, i <i', g<d¢, t, andt,
v (g, t) > oF(¢ 1) implies vh(q,t) > vk, t).

Assumptions SC-U and SC-v together introduce an element of adverse selection in the
model: an insider with a higher type is willing to buy more shares, but faces market makers
who are more reluctant to sell.

The assumptions we impose at this stage on the profit functions for the market makers are
very general, allowing for risk aversion and inventory costs (Stoll (1978), Ho and Stoll (1981,
1983)). Again, whereas some of our results are valid for such general profit functions, others
require more structure, typically in the form of symmetry and quasilinearity (Theorems 1-2).
One may first require the market makers’ profit function to be linear, as in Glosten (1994),

Biais, Martimort, and Rochet (2000, 2013), and Back and Baruch (2013).

Assumption L-v For each i, each market maker k earns a profit v¥(q,t) =t — c;q when he

trades (q,t) with type i, where ¢; is the unit cost of serving type i.

Here, the market makers are assumed to be risk neutral and ¢; may be thought of as
the liquidation value of the asset when the insider is of type i. Under this assumption,
Assumption SC-v amounts to imposing that ¢; > ¢; when ¢/ > i. Alternatively, one may, in
line with Roll (1984), assume that each market maker incurs a strictly increasing and strictly

convex order-handling cost when selling shares.

Assumption C-v For each i, each market maker k earns a profit v¥(q,t) =t — ¢;(q) when

he trades (q,t) with type i, where the cost ¢;(q) is strictly convex in q, with ¢;(0) = 0.

Under this assumption, Assumption SC-v amounts to imposing that 0~ c;(¢") > 0% ¢i(q)
whenever i’ > i and ¢’ > ¢.” Note that Assumption C-v generalizes Roll (1984) by allowing

for both order-handling and adverse-selection costs.

"For any convex function f defined over a convex subset of R, we use the notation df(z), 9~ f(x), and
07 f(z) to denote respectively the subdifferential of f at 2, the minimum element of 9 f(x), and the maximum
element of df(z). Hence df(z) = [0~ f(z), 07 f(x)].



We shall state our main results for the symmetric case where the market makers’ profit
functions satisfy Assumption L-v or Assumption C-v. We will, however, indicate in the
course of the formal analysis to which extent our results can be extended to more general,

possibly asymmetric profit functions.

2.3 Timing and Strategies

The game unfolds as follows:

1. The market makers k = 1, ..., K simultaneously post tariffs t*. Each tariff t* is defined
over a domain A* C R, that contains 0 and is such that t*(0) = 0.

2. After privately learning her type, the insider purchases a quantity ¢* € A* from each
market maker k, for which she pays in total >, t*(¢").

A pure strategy s for the insider maps any tariff profile (¢!,...,tX) and any type i into a
quantity profile (¢!, ..., ¢"). To ensure that type i’s problem

max{Ui (qu,Ztk(qk)> (g q") e A x o x AK} (1)

always has a solution, we require the domains A* to be compact and each tariff t* to be
lower semicontinuous over A*. These requirements are light enough to allow market makers
to offer menus p = {(0,0),..., (g, t),...} containing a finite number of trades, including
the null trade (0,0).

We call the above game the game with arbitrary tariffs. In this game, market makers can
post basically arbitrary tariffs, as in Biais, Martimort, and Rochet (2000, 2013) and Attar,
Mariotti, and Salanié (2011, 2014). It is also interesting to study the game with convez
tariffs, in which market makers can post only convex tariffs, as in Back and Baruch (2013).
That is, it is required of any admissible strategy for market maker k that the domain A*
be a compact interval and that the tariff t* be convex over A¥. Any such tariff can then be

interpreted as a sequence of limit orders posted by market maker k.

2.4 Equilibria in Convex Tariffs

We shall hereafter focus on pure-strategy perfect-Bayesian equilibria (¢,...,tX, s) in which
market makers post convex tariffs. This restriction is hardwired in the market makers’
strategy spaces in the game with convex tariffs, whereas it is an additional constraint on

equilibrium strategies in the game with arbitrary tariffs. The focus on convex tariffs intends



to describe an idealized discriminatory limit-order book in which market makers post limit
orders, or sequences of limit orders. Such instruments are known to have nice efficiency
properties under complete information.® It is thus natural to ask whether they perform as
well under adverse selection. In line with this interpretation, characterizing the equilibria
in convex tariffs of the game with arbitrary tariffs amounts to studying the robustness of
the book to the side trades that may take place in the dark, outside the book (Theorem 1),
whereas characterizing the equilibria of the game with convex tariffs amounts to studying the
inherent stability of the book (Theorem 2). We perform the latter exercise under stronger
assumptions than the former, so that the two sets of results are not nested.

The focus on equilibria with convex tariffs also ensures that on the equilibrium path,
the insider’s preferences over collections of individual trades are well behaved, as we now
show. Recall first that convexity of tariffs is preserved under aggregation. In particular, the

minimum aggregate transfer the insider has to make in return for an aggregate quantity @,
T(Q) = min{z t*(¢") : ¢* € A* for all k and qu = Q}7 (2)
k k

is convex in @Q in equilibrium.? As a consequence, and because the utility functions U; are
strictly quasiconcave, any type ¢ has a uniquely determined aggregate equilibrium demand
(i, which is nondecreasing in ¢ under Assumption SC-U. Similarly, if the insider wishes to
trade an aggregate quantity Q% € Y, 2k A* with the market makers other than k, the

minimum transfer she has to make in return is
THQ™ = min{z t*(¢") - ¢ € A¥ for all k' # k and Z ¢ = Q—’f}
k' £k k' £k
and once more the aggregate tariff 7" is convex in equilibrium. In turn, each type i evaluates

any bundle (g,t) she may trade with market maker & through the indirect utility function
k(g t) = max{Ui(q +QFt+T Q™) Q7 e Z A’“'}' (3)
k' #k

Observe that the maximum in (3) is always attained and that z; *(g, t) is strictly decreasing

in ¢t and continuous in (q,t).!° The convexity of the tariff 7-% and the quasiconcavity of

8Biais, Foucault, and Salanié (1998) show in the single-type case that equilibria of the game with convex
tariffs exist and are efficient (see also Dubey (1982)). A difference with our setting, though, is that they
assume that the insider’s demand for shares is perfectly inelastic.

9Formally, T is the infimal convolution of the individual tariffs t* posted by the market makers (see
Rockafellar (1970, Theorem 5.4)). In this case Y., A¥ = [0,", max A*] as each domain A" is a compact
interval that contains 0.

0The last statement follows from Berge’s maximum theorem (Aliprantis and Border (2006, Theorem
17.31)).



the utility function U; imply that z;%(q,t) is weakly quasiconcave in (g,t). Moreover, the
convexity of the tariffs 7-* and Assumption SC-U together imply that the family of functions

z; * satisfy the following weak single-crossing property.*!
Property SC-z Forallk,i<,q<¢,t, and t,

27%(q.t) <z Mg ) implies 2% (q,t) < 2;%(d 1), (4)

27 (g, t) < 275(d ) implies  z;%(q,t) < 2% (d,t). (5)

Overall, our focus on equilibria in convex tariffs implies that the indirect utility functions
z; * which are endogenous objects, satisfy regularity properties that they inherit from the
primitive utility functions U;.'? It should be noted, however, that the functions z; * satisfy
quasiconcavity and single-crossing only in a weak sense, unlike the functions U;. For instance,
if the market makers other than k offer to sell any quantity at the same unit price p, then
some insider type may be indifferent between two trades with market maker k taking place

at price p.

3 The Main Results

Our central results are the following theorems.

Theorem 1 Consider the game with arbitrary tariffs. The following statements are satisfied

m any equilibrium in convex tariffs:

(i) When market makers have linear costs (Assumption L-v), all trades take place at some
constant unit price p. Each type i trades D;(p) and all types who trade have the same

unit cost c;, equal to c; and p.

(1) When market makers have strictly convex costs (Assumption C-v), all trades take place
at some constant unit price p. FEach type i trades D;(p), but only type I may trade and
in that case p € dc;(Di(p)/K).

Theorem 2 Consider the game with convex tariffs. When the insider has quasilinear utility

(Assumption QL-U ), statement (i) in Theorem 1 is satisfied in any equilibrium.

' The proofs of these two results, and more generally all the proofs not given in the text, can be found in
the Appendix.

12This contrasts with the analysis in Attar, Mariotti, and Salanié (2011), where the presence of a capacity
constraint and the absence of restrictions on equilibrium menus could result in indirect utility functions that
were discontinuous and did not satisfy any single-crossing property.



The remainder of the paper consists in proving and discussing these two theorems. From
now on, we presuppose the existence of an equilibrium (in convex tariffs) (t!,...,t% s)
in either game and we investigate its properties. In the game with arbitrary tariffs, this
equilibrium should be robust to deviations by market makers to arbitrary tariffs, whereas in
the game with convex tariffs, this equilibrium should only be robust to deviations by market

makers to convex tarifIs.

4 The Linear-Pricing Result

In this section, we prove the linear-pricing result for equilibria in which the quantity ¢¥ traded
by the insider with any market maker & is nondecreasing in her type ¢. Such equilibria we call
equilibria with nondecreasing individual quantities. This first step is motivated by the fact
that, under Assumption SC-U, aggregate quantities traded in equilibrium cannot decrease

with the insider’s type. Section 6 extends the result to all equilibria.

4.1 The Game with Arbitrary Tariffs

We first consider the game with arbitrary tariffs, in line with Biais, Martimort, and Rochet
(2000, 2013). We first establish a tie-breaking lemma, which gives a lower bound for each
market maker’s equilibrium expected profit given the tariffs posted by his opponents. We

then use this lemma to establish our linear-pricing result.

4.1.1 How the Market Makers Can Break Ties

Consider an equilibrium (#!,...,t%,s) in convex tariffs of the game with arbitrary tariffs.
Suppose that market maker k deviates to a menu {(0,0),...,(g;,t),...}, designed so that
type i selects the alternative (g;,t;). For this to be the case, it must be that the following

incentive-compatibility and individual-rationality constraints hold for any types ¢ and 7'

27 g t) > 27 (g, ), (6)
2 (g ti) > 277(0,0). (7)

)

These constraints are formulated in terms of the insider’s indirect utility functions, which are
endogenous objects. Fortunately, under Property SC-z, we need to consider only a subset of

these constraints. Specifically, we will focus on the downward local constraints

27 (g ts) > 27" (qio1, tior) ()



for all 4, where by convention (g, o) = (0,0) to handle the individual-rationality constraint
of type 1. Clearly these constraints are not sufficient to ensure that each type ¢ will choose
to trade (g;, t;) after the deviation. Indeed, local upward incentive constraints need not hold.
More importantly, a given type may be indifferent between two trades, thus creating some
ties. Nevertheless, as we shall now see, as long as he sticks to menus with nondecreasing
quantities, market maker k can secure the expected profit he would obtain if he could break

such ties in his favor. Define

VE(EF) = sup {Z mvf (g, tz)} 9)

)

over all menus {(0,0),..., (g t;),...} that satisfy (8) and that have nondecreasing quantities,
that is, ¢;11 > ¢; for all i < I.

Lemma 1 In any equilibrium (t',... t%. s) in convex tariffs of the game with arbitrary

tariffs, market maker k’s expected profit is at least VF(t7F).

The idea here is that, from any menu verifying the constraints in (9), one can play both
with transfers (which can be increased if (8) does not bind) and with quantities (so as to
avoid cycles of binding incentive-compatibility constraints) to build another menu with no
lower payoffs verifying (6)—(7). In the absence of cycles, transfers can then be perturbed
slightly to make these constraints strict inequalities, which ensures that the insider has a
unique best response. It should be noted that this result relies only on Assumptions SC-U
and SC-v. In particular, each market maker need not have a quasilinear or even quasiconcave

profit function and profit functions may differ across market makers.

4.1.2 Equilibria with Nondecreasing Individual Quantities

The above tie-breaking lemma suggests that we first focus on equilibria with nondecreasing
individual quantities, that is, ¢f,; > ¢F for all k and i < I. Suppose, therefore, that such an
equilibrium exists. The equilibrium trades of market maker k then verify all the constraints
in (9). An immediate consequence of Lemma 1 is thus that these trades must be solution to
(9). Because the functions z;* are strictly decreasing in transfers and weakly quasiconcave,
it follows in turn that all downward local constraints (8) must bind. With convex tariffs,
this seems very demanding. Indeed, consider an insider type who exhausts aggregate supply
at some price p. When facing a given market maker, this type never wants to mimic another
type who does not exhaust this market maker’s supply at price p, because she would end

up paying too much to get her aggregate quantity. In these circumstances, one may wonder

10



how to build a chain of binding downward local constraints (8) that goes all the way down
to the null trade (0,0).

Let us make this point more formally. Because equilibrium tariffs are convex, one can
define 3% (p) as the quantity supplied at price p by market maker k& and S(p) as the aggregate
quantity offered by the market makers at this price.'®* Now, suppose that there exists i and p
such that the quantity @; traded by type 7 is no less than S(p) and that the latter aggregate

supply is positive:
Q: > S(p) > 0.

For this value of p, consider the smallest such i. Because type ¢ has convex preferences and
exhausts aggregate supply at price p, any of her best responses must be such that she trades
at least 3%(p) with each market maker k. Because the downward local constraints for type i

must bind for all k, two cases may then arise:

(i) Either i > 1 and ¢F ; > 3%(p) for all k, so that Q;_; > S(p), in contradiction with the
assumption that i is the smallest type such that Q; > S(p).

(ii) Or i = 1 and, because at least one market maker k has 5*(p) > 0, the participation

constraint of type 1 cannot bind for this market maker, once again a contradiction.

This shows that, for any price p at which aggregate supply is positive, all types must trade
an aggregate quantity below this level: @Q; < S(p) for all 4 if S(p) > 0. Because S is right-
continuous, we can safely consider the infimum of the set of such prices; call it again p. At
price p, either aggregate supply is zero and there is no trade; or aggregate supply is positive
and the insider faces a linear tariff with slope p. Because Q; is then strictly less than S(p)
for all i, each type ¢ must trade D;(p) in the aggregate. We, therefore, have established the

following result.

Proposition 1 In the game with arbitrary tariffs, for any equilibrium in convex tariffs and
with nondecreasing individual quantities, there exists a price p such that all trades take place

at unit price p and each type i purchases D;(p) in the aggregate.

I3Note that p is a marginal, or limit price. When market maker k selects a convex tariff t*, his supply
correspondence is the inverse of the subdifferential of t* (Biais, Martimort, and Rochet (2000, Definition 2)):
for each p € R, the supply of market maker k at the marginal price p is the set {q : p € 9t*(¢q)}. This set is a
nonempty compact interval with lower and upper bounds s*(p) and 3*(p) that are nondecreasing in p. When
this interval is nontrivial, t* is affine over it, with slope p. We let S(p) = >, s*(p) and S(p) = Y, 5% (p).
Observe finally that 5* is right-continuous for all k£ and that S inherits this property.

11



The upshot of Proposition 1 is that the possibility of side trades leads to linear pricing,
at least when attention is restricted to equilibria in convex tariffs and with nondecreasing
individual quantities. This shows the disciplining role of competition in our model: although
market makers can propose arbitrary tariffs, they end up trading at the same price. The role
of binding downward local constraints is graphically clear, as illustrated in Figure 1: when
such a constraint binds for type ¢ and market maker k, market maker k’s equilibrium tariff
must be linear over [¢F |, ¢F], because z; * represents convex preferences. But considering a
market maker in isolation is not enough: as seen in the above argument, it is because any
type i’s downward local constraints must bind for all market makers that the linear-pricing
result holds.

This result is quite general: as pointed out in our discussion of Lemma 1, we need not
postulate that the market makers have symmetric, quasilinear, or even quasiconcave profit
functions. This result also markedly differs from those obtained in the continuous-type case
by Biais, Martimort, and Rochet (2000, 2013), who show that an equilibrium with strictly
convex tariffs and nondecreasing individual quantities exists under certain conditions on

players’ valuations and distribution functions.

4.2 The Game with Convex Tariffs

The above analysis relied on the market makers’ ability to post arbitrary tariffs, including
finite menus of trades. One may thus wonder whether this does not give market makers too
much freedom to deviate and ultimately drives the linear-pricing result. To examine this
question, we now consider the game with convex tariffs; in line with Back and Baruch (2013).
We conduct the analysis under two additional assumptions. First, we assume that each
insider type has a quasilinear utility function, that is, Assumption QL-U is satisfied. Second,
we assume that the market makers have identical linear profit functions, that is, Assumption
L-v is satisfied. These assumptions are not without loss of generality as they exclude wealth
effects and insurance considerations. Yet they are general enough to encompass prominent
examples studied in the literature such as the CARA-Gaussian example studied in Back and
Baruch (2013, Example 1).

Focusing on convex tariffs has two main advantages. First, it allows us to rely on simple
tools such as supply functions and first-order conditions, the properties of which are well-
known under convexity assumptions. This contrasts with using arbitrary menus, with their
cohort of incentive-compatibility constraints, and makes for more intuitive proofs. (Some of

our arguments are in fact quite direct when considering figures.) Second, compared to the
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game with arbitrary tariffs, we reduce the set of deviations available to the market makers.
This change can a priori only enlarge the set of equilibria. Yet we shall derive a linear-
pricing result similar to Proposition 1 for the game with convex tariffs. The structure of the
argument is similar to that in Section 4.1: we first establish a tie-breaking lemma, which we

then use to establish our linear-pricing result.

4.2.1 How the Market Makers Can Break Ties

We first reformulate Lemma 1. Consider an equilibrium (¢!, ...t s). Suppose that market
maker k deviates to a convex tariff ¢ with domain A. For type ¢ to select the quantity ¢; in

this tariff, it must be that

q; € arg max{zi_k(q,t(q)) 1q € A} (10)

This constraint is not sufficient to ensure that type ¢ will choose to purchase ¢; from market
maker k after the deviation. Indeed, type ¢ may be indifferent between two quantities in the
tariff ¢, thus creating some ties. Nevertheless, as we shall now see, as long as he sticks to
nondecreasing quantities, market maker k can secure the expected profit he would obtain if

he could break such ties in his favor. Define

VE@) _sup{ZmZ (gi, t(qi )} (11)

over all convex tariffs ¢ and all families of quantities ¢; that satisfy (10) for all # and that are

nondecreasing, that is, ¢;+1 > ¢; for all ¢ < I.

tK

Lemma 2 In any equilibrium (t,. .. ,s) of the game with convex tariffs, market maker

k’s expected profit is at least VF(17F).

When the insider’s preferences are quasilinear, only the slope of the tariff ¢ matters for g;
to be a best response of type i. As illustrated in Figure 2, one can therefore replace the tariff
t by a piecewise linear tariff inducing the same best response for the insider and yielding
market maker k an expected profit at least equal to that he obtained by posting . Moreover,
consider a segment of this piecewise linear tariff with slope p and the set of types who trade
on this segment. If there exists a quantity g on this segment such that market maker k& would
prefer all types who trade above § to trade g, then market maker k could raise his profits
by truncating this segment at g, as illustrated in Figure 3. Indeed, this would reduce the
quantities traded by those types, with transfers that are as least as high. Finally, market
maker k£ can reduce the slope p slightly. This ensures that all the relevant insider types buy
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the maximum quantity g at price p. Proceeding in this way for each segment of his tariff,

market maker k can secure the announced expected profit.

4.2.2 Equilibria with Nondecreasing Individual Quantities

Lemma 2 implies that, in any equilibrium with nondecreasing individual quantities, market
makers post piecewise linear tariffs that can be interpreted as finite sequences of limit orders.
Another feature of such an equilibrium, which follows from Lemma 2, is that, if there is a
kink in the aggregate tariff, there exists at least one insider type who trades exactly at this
kink. In other words, this type exhausts the aggregate supply S(p) at some price p for which
S(p) > 0, which means that she exhausts the supply 5*(p) of each market maker k at price
p. This implies that each market maker offering some trades at price p is indispensable for
this type to reach her equilibrium payoff. However, it can be shown using Bertrand-type
arguments that the tariff resulting from the aggregation of all market makers’ tariffs shares
with Glosten’s (1994) tariff the property that any increase in quantity must be priced at the
corresponding increase in costs, which implies zero expected profit by construction. As one
can hardly be indispensable and yet earn zero expected profit, we get that, if some insider
type were to exhaust the aggregate supply S(p) at some price p for which S(p) > 0, at least
one of the market makers could slightly increase his tariff in a profitable way. That is, the

following result holds.

Proposition 2 In the game with convex tariffs, when the insider has quasilinear utility
(Assumption QL-U) and the market makers have linear costs (Assumption L-v), for any
equilibrium with nondecreasing individual quantities, there exists a price p such that all trades

take place at unit price p and each type i purchases D;(p) in the aggregate.

5 Market Breakdown

We now determine equilibrium prices and quantities in the candidate equilibria with linear
tariffs and nondecreasing individual quantities characterized in Propositions 1-2. We show
that, both in the game with arbitrary tariffs and in the game with convex tariffs, such
equilibria when they exist typically exhibit an extreme form of market breakdown and that,

moreover, equilibria exist only under exceptional circumstances.

5.1 Linear Costs

The case where market makers have linear costs (Assumption L-v) is easily handled, thanks
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to two arguments. First, the standard Bertrand undercutting argument implies that market
makers must make zero expected profit: otherwise, because the functions D; are continuous,
any market maker k£ could claim almost all profits for himself by charging a uniform unit price
slightly below the equilibrium price p. This implies that, if trade takes place in equilibrium,
the price p cannot lie above the highest possible cost ¢;. Second, in equilibrium p cannot
lie below c¢; either. Indeed, if it did, then market makers would want to limit the quantities
they sell to type I, which they can do by posting a limit order at the equilibrium price with
a well-chosen maximum quantity. Formally, in the game with arbitrary tariffs, any market
maker k could deviate to a menu that would allow types ¢ < I to purchase the equilibrium
quantity ¢ at unit price p, whereas type I would be asked to purchase only ¢5 | at unit
price p. Such an offer is incentive compatible and individually rational, with nondecreasing
quantities. Similarly, in the game with convex tariffs, any market maker k could deviate to a
limit order #(q) = p min{q,q¥_,}. A best response for any type i < I is then to purchase g7
as before, whereas a best response for type I is to purchase ¢¥_,, preserving nondecreasing
quantities. In either case, it follows from Lemmas 1-2 that the variation in market maker

k’s expected profit is at most zero,

mi(p — cr)(qi_y — qf) < 0.

Summing on k yields m;(p — ¢;)[Dr-1(p) — Dr(p)] < 0 and under Assumption ID-U this
implies that p > ¢; if D;(p) > 0. Because aggregate expected profits are zero, we get that

p = ¢; = ¢y for any type ¢ who trades. Hence the following result.

Proposition 3 Suppose that the market makers have linear costs (Assumption L-v), and
consider an equilibrium in linear tariffs and with nondecreasing individual quantities of either
the game with arbitrary tariffs or the game with convex tariffs. If trade takes place, then the
equilibrium price is equal to the highest cost ¢; and all types who trade have the same unit

cost ¢; = cj.

This result highlights a tension between zero expected profits in the aggregate and the
high equilibrium price ¢;. In the pure private-value case where the cost ¢; is independent of
the insider’s type ¢, this tension is easily relaxed and we obtain the usual Bertrand result,
leading to an efficient outcome. By contrast, in the pure common-value case where the cost ¢;
is strictly increasing in the insider’s type 7, only the highest type I may trade in equilibrium,
whereas all types ¢ < I must be excluded from trade. This market breakdown is much

more dramatic than in Akerlof (1970) or Rothschild and Stiglitz (1976), as at most one type
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trades in equilibrium. Moreover, conditions for the existence of an equilibrium become very

restrictive: one must have D;(cy) = 0 for all 7 < I if an equilibrium is to exist at all.

5.2 General Profit Functions

Thanks to the simplicity of our setting under linear tariffs, we can extend the above analysis
to the case where market makers are endowed with general, convex preferences. This allows
us to encompass the case where market makers are risk neutral with respect to transfers
but have strictly convex order-handling costs, as in Roll (1984), or even more general cases
allowing for risk aversion, as in Stoll (1978) and Ho and Stoll (1981, 1983). As above, two

arguments are used.

5.2.1 Limit Orders as Best Responses

The first argument is a characterization result that does not depend on the game under
study and may, therefore, be of some independent interest. Consider a situation in which
all trades take place at some price p and suppose that the demands D;(p) are bounded. A
natural deviation for any market maker k consists in offering a limit order at a price p’ < p,
with a maximum quantity g. As he posts the best price, he trades a quantity min{D;(p), g}
with each type i. Because demand functions and profit functions are continuous, by making

p’ go to p, market maker k can claim the profits associated to the quantities
min {D;(p),q}

for all 7, where g remains to be chosen. For further reference, we call such quantities limit-
order quantities at price p. On the other hand, and as suggested by Lemmas 1-2, one may
also want to characterize market maker k’s most preferred trades at price p, assuming that

he sticks to nondecreasing quantities. These trades solve

sup {Zmivf(%,mi)} (12)

)

under the feasibility constraints
0 < g < Di(p) (13)

for all ¢, and the constraint that quantities be nondecreasing, that is, ¢;;1 > ¢; for all
i < I. Under our assumptions, the mappings ¢ — v¥(q,pq) are continuous and weakly
quasiconcave for all ¢ and, from SC-v, they satisfy a single-crossing property. The following

result characterizes the solutions to problem (12)—(13).
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Lemma 3 Let p be such that the demands D;(p) are bounded. Then problem (12)-(13) has
a solution with limit-order quantities at price p. Moreover, if the mappings q — v¥(q, pq) are

strictly quasiconcave, then all solutions to (12)-(13) are limit-order quantities at price p.

The proof relies on a very simple reasoning: if the price is high enough to convince
a market maker to supply a positive quantity to high types, then from Assumption SC-v
market maker k will want to provide the highest possible quantities to lower types.'* The
result itself is a neat characterization of limit orders: they are the optimal tool to use under

linear pricing when a market maker faces adverse selection.

5.2.2 Equilibria

Our second argument relies on equilibrium considerations. Note first that, in an equilibrium
with linear tariffs at price p and nondecreasing individual quantities, each market maker k’s
expected profit cannot lie above the expected profit from his most preferred trades at price
p. Because, by Lemma 3, this expected profit can be approximated by a well-chosen limit
order at a price arbitrarily close to p, it follows that, in such an equilibrium, the expected
profit of market maker k is equal to the value of (12)—(13). Therefore, the quantities sold
by market maker & in equilibrium must be solution to (12)-(13). Moreover, when his profit
functions are strictly quasiconcave, such solutions must be limit-order quantities.

For simplicity, assume, moreover, that market makers have identical profit functions and
strictly convex costs (Assumption C-v). Then all problems (12)—(13) are identical. By strict
convexity, they admit a single, common solution, which must be a family of limit-order
quantities. Each market maker k thus trades in equilibrium the quantities min{D;(p),q},
for some well-chosen . But as any type ¢ cannot trade more than D;(p), it must be that each
market maker k sells the same quantity g to all types of the insider who trades and, therefore,
that the aggregate demand of all types who trade is the same. Because, by Assumption ID-U,
Di(p) > D;_1(p) if trade takes place, the following result holds.

Proposition 4 Suppose that market makers have identical, strictly convex cost functions
(Assumption C-v). In any equilibrium in linear tariffs and with nondecreasing individual
quantities of either the game with arbitrary tariffs or the game with convex tariffs, only type
I can trade. If Di(p) > 0, then p € Oc;(D;(p)/K) and all market makers trade the same
quantity Di(p)/K with type I only.

4The proof given in the Appendix also allows for a continuous set of types. Concerning the generality of
the result, notice that the ordering of the demands D;(p) does not play any role. One could as well allow for
arbitrary bounded values, provided that the nondecreasing quantities constraint is replaced by the constraint
that individual quantities be comonotonic with total demand, that is, D;(p) < D;/(p) implies ¢; < gy .
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Proposition 4 is stated for the case where Assumption C-v holds (Roll (1984)). The
result, however, readily extends to the case to the case where the market makers have
identical profit functions v; such that the mappings q — v¥(q, pq) are strictly concave. This
is for instance the case if market makers are risk averse, as when v;(q,t) = v(t — ¢;q) for
some strictly concave von Neumann-Morgenstern utility function v (Stoll (1978), Ho and
Stoll (1981, 1983)).

When there is a single insider type, that is, when I = 1, Proposition 4 states that any
equilibrium is competitive in the usual sense: (i) the insider purchases her optimal demand
D;(p) at price p; (ii) the market makers maximize their profit vi(q,pq) at price p; (iii)
the equilibrium price p equalizes the insider’s demand and the sum of the market makers’
supplies. Equilibrium outcomes are hence first-best efficient, as in the case of linear costs
with pure private values.

With multiple insider types, the unique candidate equilibrium outcome remains that
which would prevail in an economy populated by type I only. A necessary condition for
equilibrium is thus that all types ¢ < I demand a zero quantity at the equilibrium price p.
The market breakdown effect is thus similar to the one characterized by Proposition 3 in
the linear-cost case. A novel insight of Proposition 4 is that the result that no trade may
take place except perhaps at the top of the insider’s type distribution now holds whether or
not the environment features common values. To illustrate this point, consider for instance
the case of convex costs (Assumption C-v) and suppose that the cost function is the same
for each type, ¢; = c for all i, whereas demands D;(p) are strictly increasing in i. As a
market maker’s profit ¢ — ¢(g) on a given trade (g,t) does not depend on the identity of the
insider, we are in a private-value setting, so that only risk sharing matters. Still, oligopolistic
competition threatens the existence of equilibria: each market maker would like to reduce
his maximum supply if the equilibrium price were too low; but a high equilibrium price
strengthens competition to attract lower types. Thus competition is strong enough to imply

that, in equilibrium, at most one type can trade.

6 Other Equilibrium Outcomes

In this section, we show that the focus on equilibria with nondecreasing individual quantities
is without loss of generality: one can turn any equilibrium in convex tariffs into an equilibrium
with the same tariffs and the same payoffs, but now with nondecreasing individual quantities.
This result holds both in the game with arbitrary tariffs and in the game with convex tariffs.

The proof is in fact very general and only relies on a property specifying that, in some sense,
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allocations with nondecreasing quantities are efficient.

To understand why, notice that market makers have to choose tariffs before demand
realizes. How risk is collectively shared then becomes a central question. Given a profile
(', ..., t5) of convex tariffs, recall that each type has a uniquely determined aggregate trade

(Qs, T;). Define a feasible allocation (gi,...,q¢¥, ... q},...,¢¥) as an allocation that satisfies

qu:Qi
k

and

D M) =T,

for all 7; in other words, this allocation describes a best response of the insider to the tariffs
(t',...,t5%). Define an efficient risk-sharing allocation as a feasible allocation that is not
Pareto-dominated by any other feasible allocation from the market makers’ viewpoint: there
is no other feasible allocation that yields as much expected profit to each market maker, and

strictly more expected profit to at least one market maker. Our result relies on the following

property.

Property P For any profile of convex tariffs (t*,...,t%), there exists an efficient risk-

sharing allocation with nondecreasing individual quantities.

This property is reminiscent of the usual risk-sharing result (Borch (1962)): efficiency
requires that any increase in the aggregate quantity to be shared should translate into an
increase in the individual shares of market makers. Nevertheless, notice that, in our setting,
the market makers’ payoff functions are state dependent because they directly depend on the
insider’s type. Moreover, the convexity of the tariffs (¢!,... #¥) may make the risk-sharing
problem nonconvex. To bypass these difficulties, we have to impose more restrictions on
the market maker’s profit functions than in the previous sections. Notable special cases are

Assumptions L-v and C-v used in Theorems 1-2.1%
Lemma 4 Assume that all market makers have the same profit function, given by
k _
vi(q,t) =1t —ci(q),

where for each v the cost function c; is convex. Then Property P holds.

150ne can more generally show that Lemma 4 holds for market makers with heterogenous cost functions
c¥, the derivatives of which satisfy ¢’ = f; o a®, where f; is strictly increasing and a” is nondecreasing. This
would in particular allow handling the case of market makers with heterogeneous inventories, in which one
has cf(q) = ¢;(¢ — I*) for some given inventories I*.
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We can now turn to the study of an arbitrary equilibrium (¢!, ..., ¢ s) of either the game
with arbitrary tariff or the game with convex tariffs. Let v* be the equilibrium expected
profit of market maker k. Depending on the game studied, Lemma 1 (respectively Lemma
2) offers a lower bound V*(t=F) (respectively VX (¢=*)) for this expected profit. We can build
another lower bound by imposing in problem (9) (respectively problem (11)) the additional
constraint that the transfers to market maker k be computed using the equilibrium tariff *;

this defines V*(!,...,t%). We therefore have
B>kl ) (14)

for all £. On the other hand, under Property P, we know that there exists an efficient
risk-sharing allocation (qi,...,¢,... q}, ..., ¢¥) with nondecreasing individual quantities.
In particular, for each k, (¢F,...,q%) satisfies the constraints in the problem that defines

VE(t', ..., t5). This implies that, for each k, we have

VR ) 2 S mao (gl £ (6)): (15)

Chaining inequalities (14)—(15), we get that each market maker k’s equilibrium expected
profit lies above his expected profit from the allocation (g1, ..., ¢, ... ¢}, ..., ¢¥). As the
latter is a Pareto optimum, this is impossible unless all inequalities are equalities. Hence,

for each k, we have
v _Zml qz7tk qz)) (16)

We now build an equilibrium that implements the allocation (¢i,...,¢%, ..., ¢}, ..., ¢¥). Let
us define s* as the insider’s strategy that selects this allocation if the tariff profile (¢!, ... tX)
)

is posted; otherwise, s* selects the same quantities as s. We claim that (t!,... t% s*) forms

an equilibrium. Indeed, the insider plays a best response to any tariff profile. Moreover, in
tK

the initial equilibrium (¢!,... ¢ s), no market maker has a profitable deviation, so that,

for each k and for any tariff t* # t*, we have'6
ok > va t7R), 15 (sE (15, 17F))).
But from (16) and the definition of s*, this can be rewritten as

S a7, B ) 2 3 ok )

16Tn the game with convex tariffs, ¥ must additionally be convex.
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which expresses that market maker k£ has no profitable deviation when the other market
maker post the tariffs =% and the insider plays her best response s*. Hence the following
result, which holds both in the game with arbitrary tariffs and in the game with convex

tariffs.

Proposition 5 Let (t*,...,t5,s) be an equilibrium (in convex tariffs) such that there exists
an efficient risk-sharing allocation with nondecreasing individual quantities (Property P).
Then there exists a strateqy s* for the insider such that (t',...,t% s*) is an equilibrium
with nondecreasing individual quantities that yields the same expected profit to each market

maker.

Given Propositions 1-2, a direct implication of Proposition 5 is that all equilibria must
involve linear pricing. Theorems 1-2 are then immediate consequences of Propositions 3—4.
Note also from (16) that equilibria when they exist support efficient risk-sharing allocations

among market makers.

7 Discussion

In this section, we put our main results in perspective, relate them to the literature, and

discuss alternative avenues of research.

1. The model we use is standard, one may even say canonical. It can be seen as the
adverse-selection extension of the Bertrand competition model. We consider very general
environments, allowing for arbitrary finite distributions of types for the insider and a rich set
of convex preferences for the insider and the market makers. The restriction to equilibria in
convex tariffs is motivated by our focus on discriminatory pricing in a limit-order book. The
strict convexity of the insider’s preferences implies that the aggregate quantity of the asset
she is ready to purchase responds continuously to variations in prices. This may reflect that
she trades the asset partly for hedging purposes, as in Glosten (1989), Biais, Martimort, and
Rochet (2000, 2013), and Back and Baruch (2013), and partly for informational purposes.
News traders, that is, insiders who are perfectly informed of the liquidation value of the asset
and trade only on this information, as in Dennert (1993) or Baruch and Glosten (2013), are
a limiting case of our analysis. Finally, the model is fully strategic, in that it does not rely
on noise traders who are insensitive to prices, unlike much of the market-microstructure

literature.
2. The first insight of our analysis is that equilibria exhibit a strong Bertrand property: in
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both the game with arbitrary tariffs and in the game with convex tariffs, no market maker
is indispensable for providing any type with her equilibrium trades. The reason is that,
otherwise, a market maker would have an incentive to raise his price on the marginal trade
he makes with some type. We use standard mechanism-design techniques (Lemma 1) or
standard price-theory arguments (Lemma 2) to show that he can do so without reducing the
expected profit he makes when dealing with the other types. Discreteness of the type set is
crucial for this logic. Indeed, in models with a continuum of types, Biais, Martimort, and
Rochet (2000, 2013) and Back and Baruch (2013) show how to construct an equilibrium in
which all market makers offers the same, strictly convex tariff and thus are indispensable
as each type has a unique best response. Although strictly convex tariffs are not consistent
with equilibrium in the discrete-type case—as the consideration of the one-type case readily
shows—, they can be sustained in the continuous-type case because a local change in the
tariff affects the behavior of all neighboring types, unlike in the discrete-type case. Suppose
for instance that, over some interval of quantities, a market maker deviates by proposing,
instead of the strictly convex equilibrium tariff, the corresponding chord. This would increase
the deviator’s profit if the insider’s behavior remained the same. But such a change increases
(decreases) the marginal price for relatively low-cost (high-cost) types who used to trade in
this interval and thus, under common values or strictly convex costs, trades change in an
unfavorable way. This last effect is reinforced whenever the buyer simultaneously trades with
several sellers: any increase in the quantity purchased from a single seller is compensated
by a reduction in the quantity she purchases from the others. The equilibrium in Biais,
Martimort, and Rochet (2000, 2013) and Back and Baruch (2013) strikes a delicate balance
between these two effects and, as in any Cournot-like equilibrium, the elasticity of demand
for each type comes to play a crucial role. This is why their construction requires complex
and quite restrictive joint conditions on the distribution of the insider’s type and on the
expected value of the asset conditional on her type.!” By contrast, our results hold for

general discrete-type environments and do not rely on such conditions.

3. The main determinant of equilibrium in our model is that market makers want to hedge
against the adverse-selection risk or, when they have strictly convex costs, against the high-

demand risk. A strictly convex tariff performs this role by making high-cost and, therefore,

171t is interesting to contrast these insights with those arising from models of exclusive competition under
adverse selection. Indeed, independently of the assumptions made on the buyer’s type space, sellers are
typically not indispensable in pure-strategy equilibria of such models. A case in point is the insurance
model of Rothschild and Stiglitz (1976), in which the insured agent has multiple best responses, so that each
insurance company can be dispensed with.
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high-demand types trade at a higher marginal price than low-cost and, therefore, low-demand
types. However, whereas such tariffs arise naturally in the continuous-type environments of
Glosten (1994), Biais, Martimort, and Rochet (2000, 2013), or Back and Baruch (2013),
they are ruled out in our discrete-type environment as any equilibrium must feature linear
pricing. Simpler tariffs such as limit orders then play a key role. In a situation in which
all market makers but one offer linear tariffs, we have shown that using a well-chosen limit
order is the best way for the remaining market maker to limit his exposure to the adverse-
selection and the high-demand risks. (This logic is general and also applies in a candidate
linear-price equilibrium of a model with a continuum of types. Alternatively, it implies
that marginal profits in an equilibrium with strictly convex tariffs must be nonnegative
at the upper end of the distribution of types.) However, limit orders are consistent with
equilibrium only under exceptional circumstances. This is because the equilibrium price
must be high enough to convince market makers to serve high-cost types. But such a high
price means that each market maker would like to serve all the demand emanating from
low-cost types, which is inconsistent with equilibrium unless these types do not wish to
trade at that price. This confirms and extends in a radical way earlier results obtained
by Attar, Mariotti, and Salanié (2014), who show in the two-type case that at most one
type trades in any equilibrium. Overall, our results suggest that equilibrium existence for
the discriminatory limit-order book is problematic in common-value environments. A novel
insight of our analysis is that the market may break down or an equilibrium may fail to exist
altogether even in private-value environments, as long as a market maker’s marginal cost is

not constant in the quantity of the asset that he trades with the insider.

4. In Theorem 1, we showed that, under a wide range of circumstances, the limit-order book
can be destabilized by side trades that take place outside the book. To do so, we considered a
game with arbitrary tariffs, but we restricted attention to equilibria in which market makers
post convex tariffs. One may wonder whether this game admits other equilibria involving
nonconvex tariffs. This question might be relevant to analyze competition on less regulated
markets, such as over-the-counter-markets, in which trading is bilateral and nonexclusive.
However, the above-mentioned work by Attar, Mariotti, and Salanié (2014) shows that,
even in the two-type case, there is no hope in that direction. A more promising avenue of
research might be to consider mixed-strategy equilibria. A first issue is existence. One can
adapt the arguments of Carmona and Fajardo (2009) to show that the convex game admits
a mixed-strategy equilibrium. In the game with arbitrary tariffs, however, it is unclear

that there exists a mixed-strategy equilibrium in which market makers only randomize over
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convex tariffs, as required by the rules of the limit-order book. In any case, characterizing
such equilibria appears to be a difficult task. Dennert (1993) and Baruch and Glosten (2013)
construct mixed-strategy equilibria for related games, but they make the extreme assumption
that the insider is a perfectly informed news trader. As a result, in equilibrium, the insider
totally empties the book when the price is different from the liquidation value of the asset.
This is different from our analysis, which, as mentioned above, incorporates other motives to
trade, such as hedging, that make the insider’s demand for the asset continuous in prices. A
related point is that, because their models do not feature any gains from trade, both Dennert
(1993) and Baruch and Glosten (2013) must resort to noise traders for trade to take place

in the mixed-strategy equilibria they characterize.

5. Our negative existence results tell us that looking for an exact strategic foundation for
the limit-order book may be too demanding. A natural alternative candidate nevertheless
stands out, namely, Glosten’s (1994) aggregate tariff, foreshadowed by the early contributions
of Jaynes (1978) and Hellwig (1988). This tariff, a marginal version of Akerlof (1970), is
by construction robust to entry. Yet, according to our analysis, it is not inherently stable,
because some market maker providing part of it would have an incentive to deviate and
take advantage of his competitors’ tariffs. The reason for this is that, in this aggregate
tariff, market makers trading with low-cost insiders are indispensable for providing these
types with their equilibrium trades. Yet these market makers make zero expected profits,
which does not square with their being indispensable. (We exploited this logic in the proof
of Proposition 2.) A natural question is how much profits they forego by not playing a
best response. The answer turns out to depend on the market structure, that is, on the
number of market makers. Specifically, we show in the appendix that, in the two-type
version of our model, the maximum deviation expected profit is of the order of 1/K? as the
number K of market makers goes to infinity. This result suggests that one can rationalize the
Glosten (1994) aggregate tariff as an approximate equilibrium outcome when there are many
market makers. This reconciles in the limit our findings with those of Biais, Martimort, and
Rochet (2000), who show in the continuous-type case that their equilibrium aggregate tariff
converges to the Glosten tariff as the number of market makers grows large. Yet the puzzle
remains that discrete- and continuous-type models yield strikingly different predictions in

the oligopolistic case with a fixed number of market makers.
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Appendix

Proof that the Functions z; ¥ Are Weakly Quasiconcave. Fix a type i and a market
maker k. For the sake of clarity, we hereafter omit the indexes ¢ and k in this proof. Let
(q,t) and (¢, t') be two trades, and let )~ and @~ be the associated solutions to (3). For
each A € [0,1], 2= (Ag+ (1 = N ¢/, At + (1 — \)t') is at least

UM+ 1= +AQ +(1=NQ " M+(1-N'+T"(ANQ +(1-NQ™")

because AQ~ + (1 — \)Q~ is an admissible candidate in (3). Because T~ is convex and U is

decreasing in transfers, this lower bound is itself at least
UMg+Q)+ A=+ Q) At+T (¢+ Q)+ Q=N +T (¢ +Q7)),
and because U is quasiconcave this expression is at least
min{U(g+ Q7 t+T7(Q7)),U(¢ + Q7. ¢+ T7(Q@7))},
which is min{z~(q,t), 27 (¢, t')} by construction. The result follows. |

Proof of Property SC-z. Fixsome k, ¢ < ¢, t,and t'. Let 7(Q) = t+T*(Q—q), defined
for Q > ¢. Similarly, let 7/(Q) = t' + T%(Q — ¢'), defined for Q > ¢’. According to (3),
for each 4, computing z; *(q,*) amounts to maximizing U;(Q, 7 (Q)) with respect to Q > q.
Let Q; > q be the solution to this problem; it is unique as U; is strictly quasiconcave and
strictly decreasing in aggregate transfers, and 7 (Q) is convex in (). Similarly, computing
27 "(¢/,t') amounts to maximizing U;(Q,7"(Q)) with respect to Q@ > ¢'. Let Q) > ¢ be the

unique solution to this problem. The proof consists of two steps.
Step 1 We first prove (5). Suppose that
2 M(a,t) < 27(d 1)

for some 7 < I and let i > i. Because Qy > ¢ is an admissible candidate in the problem

that defines z; *(q,t), we must have
Ui(Qr, T(Qi)) < 27%(q,1) < 27"(q', ) = Ui @}, T'(Q))). (17)
Two cases may now arise:
(i) Suppose first that Q; < Q}. Then
5t (a:t) = Un(Qu, T(Qr)) < Un(Q5, T'(Q) < 2;7(d, 1),

25



where the first inequality follows from (17), Assumption SC-U, and the assumptions
that ¢ <4 and Q; < Q}, and the second inequality follows from the fact that Q. > ¢
is an admissible candidate in the problem that defines z;*(¢’,#). This shows (5).

(ii) Suppose next that Q; > Q.. Because Q; > ¢’ > ¢ is an admissible candidate in the
problem that defines z;*(q,t), we have

Ui(Q, T(Q) < 2" (a:t) < 27°(d¥) = U(Q;, T'(Q))
which shows 77(Q}) < T(Q%). Moreover, because q < ¢ and T~* is convex, 7'(Q) —
7 (Q) is nonincreasing in @ for Q) > ¢'. Because Q; > Q.. this shows 77(Q;) < T (Qy).
Now, as Qy > Q) > ¢/, Qy is an admissible candidate in the problem that defines
2%(¢',t') and thus
Up(Qi, T'(Qw)) < 2" (d, ).
Hence, as 7'(Qy) < T(Qy), we directly obtain
2 (q,t) = Un(Qr, T(Qr)) < Un(Qur, T'(Qw)) < 2°(d,1).
This shows (5).

Step 2 The proof of (4) follows from (5) by continuity. Indeed, suppose that z; *(q,t) =

27 "(¢/, ') for some i < I and let i’ > 4. Then, for each ¢ > 0, 2, %(q,t +¢) < 27 *(¢,t') and

k

thus z;%(g,t + ) < 2, %(¢,t') from (5) as i < i’ and q < ¢’. Because z;,* is continuous, one

can take limits as ¢ goes to zero to obtain (4). The result follows. |

Proof of Lemma 1. Fix a market maker k. For the sake of clarity, we hereafter omit the
index k in this proof. Fix a menu p* = {(0,0),..., (¢, tf),...} with nondecreasing quantities

that satisfies (8) for all i. The proof consists of two steps.

Step 1 First, we establish that there exists a menu p = {(0,0),...,(g;t;),...} with

nondecreasing quantities that satisfies the following properties:
(a) D2, mavilqi, i) = 32, mavi(q;, t7).-
(b) For each i > 1, z; (qi, t;) > z; (gi—1.ti—1)-
(c) For each i > 2, if ¢; > ¢q;_1, then z;_{(q;i—1,ti—1) > 2z;_1(qi, ;).
Notice that (b) is identical to (8), whereas (c) is a strict version of the upward local incentive-
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compatibility constraints. We proceed by contradiction and assume that there is no menu
that satisfies (a), (b), and (c). Nevertheless, the set of menus with nondecreasing quantities
that satisfy (a) and (b) is nonempty, as it contains p*. Therefore one can select in this set
a menu p that maximizes the index ¢/ > 2 of the first violation of (¢). For this index ¢/, we
have ¢ > qir_1.

One can even impose that the menu p satisfy (b) as an equality at ¢ = . Indeed, if
(b) is a strict inequality at ', one can increase t; until reaching an equality: this is feasible
because z;, is weakly quasiconcave and strictly decreasing in ¢. This change in t; defines
a new menu that still satisfies (a), (b) for all ¢ (with an equality at i = ¢’), and (c) for all
i < i; but, according to our definition of u, (c) is violated at i = ¢/. With a slight abuse of
notation, we call this menu p = {(0,0),...,(¢,t),...} again.

Now, because (b) holds as an equality at ¢’ and because ¢y > g1, from the contraposition
of (5) in property SC-z we get z; ,(¢i—1,ti—1) > z; (g, tir). Recall, however, that (c) is
violated at 7. The only remaining possibility is thus that this inequality is in fact an equality.
So (b) and (c) are equalities at i’ and we face a cycle of binding incentive constraints that

we now eliminate by pooling both types on the same quantity. Two cases may arise:

(i) Suppose first that vy (g, ts) < vir(gi—1,ty—1). Then one can build a new menu p’ from
w by allocating (gir—1,ty_1) to types i’ —1 and i’. (a) is relaxed by construction. (b) and
(c) are unaffected for i < i’ and trivially hold at i = ¢’ as types ¢ — 1 and ¢’ are pooled
on the same trade. Finally, (b) also holds for i > ¢’, because, by Property SC-z, the
downward incentive-compatibility constraints are satisfied as soon as the downward
local incentive-compatibility are satisfied. But then any violation of (c¢) for the new
menu ' would have to take place for types strictly above 7', in contradiction with our

definition of pu.

(ii) So it must be that vy (g, ts) > vir(gi—1,ty—1). Then one can build a new menu g’ from
w by allocating (gy,t;) to types i’ — 1 and ¢’. (a) is relaxed because, as ¢ > gir_1,
we can apply the contraposition of SC-v to obtain vy _q(qy, ti) > vy_1(qr—1,ti—1). (b)
and (c) are unaffected for i < ¢/ — 1 and trivially hold at ¢ = 4" as types ' — 1 and i’ are
pooled on the same trade. (b) is unaffected for i > i’. At i =4’ —1, because (c) was an
equality at ¢ = ¢’ for the menu u, the change from u to p/ does not affect type i’ — 1’s
payoff and so (b) holds at ¢/ — 1. There remains to check that (c¢) holds at i = ¢ — 1
(in the case i’ > 3). As (c) at i’ is an equality in the menu p, the contraposition of (5)

in SC-z implies that
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Zy_o(Qi—1,ti 1) > zy_y(qir, te).

We also know that (c) holds for the menu p at @ =4’ — 1 and hence

Zy_o(Qir—2,ti—2) > z;_o(qv—1,ti—1).

These inequalities together imply that (c) holds at i = " — 1. But once more we get a

contradiction, as y' verifies (a), (b), and (c) for ¢ < 7.

Step 2 In Step 1, we established that, for any menu p* with nondecreasing quantities
that satisfies (8), there exists a menu p with nondecreasing quantities that yields market
maker k at least as much expected profit as p* and that satisfies properties (b) and (c).

1)

By continuity of the functions z;, one can then slightly reduce each transfer in the menu
i to get a menu g’ so that both (b) and (¢) now hold as strict inequalities. Hence the
local incentive-compatibility and type 1’s individual-rationality constraint in y’ are slack.
Property SC-z together with the fact that quantities in the menu y’ are nondecreasing then
ensure that, when faced with y’, the insider has a unique best response. As the reduction in
transfers in y relative to u is arbitrarily small, we get that market maker & can approximate

his expected profit in x4 and, a fortiori, his expected profit in p*. The result follows. |

Proof of Lemma 2. We begin with some preliminary remarks on the insider’s best response

when facing an arbitrary profile of convex tariffs (t!,. .., t%).

Step 0 Recall that, given an arbitrary profile (¢!, ..., tX) of convex tariffs, the aggregate
demand @); of type i is uniquely defined and nondecreasing in 7. Given @);, type ¢’s utility-
maximization problem (1) reduces to minimizing her total payment for Q;, T(Q;), as defined
by problem (2). This is a convex problem, so that, by the Kuhn—Tucker theorem one can
associate to any of its solutions (¢}, ...,¢X) a Lagrange multiplier p; such that p; € 9t*(g)
for all k. If there were two different solutions (q,...,q¢%) and (¢?,...,¢X) to (1) with
different multipliers p; < p, then, because each tariff is convex, one would obtain ¢f < ¢*
for all k£ and because both solutions must sum to the same @); they would be identical, a
contradiction. This shows that two different solutions must share the same p;. Thus one can
associate to each type i a price p; such that, whatever the solution (¢}, ..., q¢*) to (2), one
has p; € 0t*(¢F) for all k. Finally, we can without loss of generality adopt the convention
that p; is nondecreasing in 7. Indeed, if p; > p;;1 for some i < I, then, because p; € Ot*(¢F)
and p;41 € Ot*(qF ) for all k, one has ¢F > ¢F,, for all k. Because these quantities sum

respectively to Q; and Q;;; and because Q; < Q;,1, it actually follows that ¢F = qfﬂ for
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all k. Hence p; € 9t*(gF.,) for all k and one may replace p;41 by p;. Given this convention,

s*(p;) and 3*(p;) are nondecreasing in i for all k.

Now, suppose that (¢',...,t) are equilibrium tariffs and that market maker k deviates
to some convex tariff t. Let (¢i, ..., qr) be a nondecreasing family of quantities such that (10)
holds for all i. We know from Property SC-z that such a family exists. Letting p; € 0t(g;)
be a Lagrange multiplier for type ¢’s problem of minimizing her total payment, one may
according to Step 0 impose that p; be nondecreasing in ¢. In the present quasilinear setting
with differentiable strictly concave utility functions wu;, we actually have that each type ¢
purchases D;(p;) = (u;)~*(p;) in the aggregate, which uniquely pins down the value of p;.

The proof consists of four steps.

Step 1 Letting p = (p1,...,pr) and ¢ = (q1, - .., qr), construct the piecewise linear tariff
tpq such that ¢, 4(0) = 0 and

tp,q<q) = tp,q(%’—l) +pi(q - Qi—l)

for all ¢ and ¢ € (g;—1, ¢i], with go = 0 by convention. Because the price and quantity families
(p1,...,pr) and (qu, ..., qr) are nondecreasing, the tariff ¢, 4 is convex. It is straightforward
to check that t,4(q;) > t(g;) for all i.'™® Moreover, because p; = 0 tp4(qi), it remains a
best response for any type i to purchase ¢; from market maker k if the tariffs (t,4,t %) are
posted. In fact, under quasilinearity, ¢, 4 is the highest convex tariff with the property that
the family (q1,...,qr) is a best response of the insider to this tariff, given the equilibrium

tariffs t 7% of the market makers other than k (see Figure 2).

Step 2 According to Step 1, we can henceforth consider that market maker £ deviates to
the tariff ¢, 4. As in Footnote 13, define the interval [s*(p;), 5% (p;)] = {q : pi € Otpq(q)} for

any type i. Define also a family (q,,...,q;) as follows:
(i) If s*(p;) < 3%(p;) and if It = {i’ : py = pi > e} # 0, set g; = max {qy : ¢’ € I;"}.
(ii) Otherwise, set g, = s(p;).

Observe that the family (g,...,q;) is nondecreasing. Intuitively, there is a single value of g
for each value of p in {py,...,pr}: below g, one finds all the types with p > ¢; who trade at

price p and for which market maker k£ would like to increase trade. Above g, the opposite

'8 An important observation is that one will have tp, 4(¢;) > t(¢;) for some i if and only if ¢ is not itself of
the form t, ¢ given a nondecreasing family of quantities (q1,...,¢r) such that the constraints (10) hold for
all i. Thus ¢ must be of the form t, 4 at a solution of the problem defining V% (¢~*) and at least one type
must trade at any kink of .
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holds: because p < ¢;, market maker £ would like to reduce the quantity he trades with

these types.

Step 3 One way for market maker k to achieve these objectives is to reduce the slope of
the tariff ¢, 4 on quantities between s*(p;) and g; and to increase it between g; and 5*(p;).
Consider accordingly a small positive € and let ¢t = tp—c1,q, where 17 = (1,...,1) € R and
q = (qy,...,q;). Note that, for any type i, we have 97t(q,) < pi — e < p; < 07(q;), s0
that slopes were changed in the right directions (see Figure 3). Let (gi,...,qr) be any best
response of the insider to the tariff ¢, given the equilibrium tariffs t = of the market makers

other than k. Given the definition of g;, two cases must be distinguished:
(i) If p; > c;, then s*(p;) < ¢; < ;. Then, because for each ¢ < ¢; the tariff ¢ satisfies
07 t(q) <O7HT) <pi—e<ps
and type ¢ has quasilinear preferences, one must have ¢; > g;.
(ii) If p; < ¢, then g, < ¢ < 5%(p;). Then, because for each ¢ > ¢; the tariff ¢ satisfies
0*i(q) = 0"U(T;) > pi
and type ¢ has quasilinear preferences, one must have ¢; < g;.

Step 4 Finally, for all ¢ and e, we have #(q) = tp_c1,5(q) > tpq(q) — O(g) (see Figure 3).
Thus, for any best response (4y, ..., G;) of the insider to the tariff £, given the equilibrium

tariffs t* of the market makers other than k, we have
Z milt(G:) — ciqi] > Z Miltp,q(d:) — ciqi] — O(e)
> Z Miltp.q(d:) — cigs] — O(e)
> Zmi[t(%') — cigi) — O(e),

where the second inequality follows from the fact that ¢; < ¢; if p; < ¢; and ¢; > ¢; if p; > ¢;
by Step 3, and the third inequality follows from Step 1. Hence, by posting the tariff ,
market maker k£ can secure an expected profit within O(e) of Y. m;[t(¢;) — ciq;], where ¢ is

arbitrarily small. The result follows. |

Proof of Proposition 2. As a preliminary remark, observe that, if (t!,... ¢ s) is an

equilibrium with nondecreasing individual quantities, then, from Lemma 2, each market
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maker k& must earn an expected profit V¥(¢7*). Thus the tariff t* is a solution to the
problem that defines V*(¢7%). According to Footnote 18, this implies that the tariff t* is
piecewise linear and that at least one type trades at any kink of t*. Recall from Footnote 13
that s*(p) = inf{q : p € t*(q)}, 5*(p) = sup{q : p € 0tk (¢)}, and S(p) = >, 5%(p) for all k
and p. Similarly let S(p) = >, s*(p) for all p. The proof consists of four steps.

Step 1 For each @ > 0, define T(Q) as in (2) to be the minimal aggregate transfer
the insider has to make in return for the aggregate quantity @ and let p = 0-T(Qr) be
the highest price at which trade takes place. Because any market maker k who supplies
quantities beyond s¥(p) at price p to types i such that u}(Q;) > p must have an incentive to

do so, one must have

Yo milp—e)lgf — 5" p) =0 (18)

{i:u}(Qi)=p}
for all k. We now show that, for each &, (18) holds as an equality. To this end, note that
any market maker k could deviate by posting a tariff equal to t* up to s*(p), and then
offering to sell any additional quantity between s*(p) and S(p) at price p. A best response
for the insider is to continue purchasing the equilibrium quantity ¢¥ from market maker k
if u;(Q;) < p and to purchase @; from market maker k if u/(Q;) > p. One can thus apply

Lemma 2 to conclude that

Y omilp—a)Qi-SPI < D milp— )l — 55 ()]

{i:ui(Qi)=p} {i:ui(Qi)=p}

< Y. milp—a)Qi—Sp) (19)

{i:u}(Q:)>p}
for all k, where the second inequality follows from the inequalities (18). Summing the
inequalities (19) over k yields
Y. milp—e)(K-1)S(p) <0
{i:u}(Q:)>p}
and this inequality is strict as soon as (18) is strict for some k. If this were the case, then,
as K > 1, we would have z{i:u;(Qi)Zp} mi(p — ¢;) < 0, which, because Q; > S(p) for all
such that w}(Q;) > p and because @; and ¢; are nondecreasing in i, would contradict the
fact that > ¢ ./ (0,)5p (P — ¢i)[@: — S(p)] > 0 when (18) holds for all £ with at least one

strict inequality. It follows that all the inequalities (18) are in fact equalities, as claimed.

Step 2 From now on, suppose by way of contradiction that some trades take place at

a price strictly lower than p and let p’ be the highest such price, that is, p’ = 9~ T(S(p))
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and 3%(p') = s¥(p) for all k. We follow the same procedure as in Step 1. First, because
any market maker k that supplies quantities beyond s*(p’) at price p’ to types i such that
p > u;(Q;) > p/ must have an incentive to do so and because, according to Step 1, he does

not make any additional profit trading at price p in equilibrium, one must have

> mip —c)min{g}, 55 (p)} - s* ()] > 0 (20)
{i:uj(Qi)2p'}

for all k. Second, in analogy with (18), we show that, for each k, (20) holds as an equality.
To this end, note that any market maker k could deviate by posting a tariff equal to t* up to
s*(p'), and then offering to sell any additional quantity between s*(p’) and S(p') = S(p) at
price p’. A best response for the insider is to continue purchasing the equilibrium quantity ¢¥
from market maker k if p’ > u(Q);), to purchase @Q; from market maker k if p > w}(Q;) > p/,
and to purchase S(p') from market maker k if u/(Q;) > p. Because, according to Step 1,
market maker k does not make any additional profit trading at price p in equilibrium, one

can thus apply Lemma 2 to conclude that, in analogy with (19),

> mip —c)min{Q;, S@)} — ()]
{i:u(Qi)>p'}
< Y m(p - a)min{gf, 5 ()} - s* ()]
{i:u(Qi)>p'}
< S mil — c)min{Qs, S} - S)).
{i:uj(Qi)>p'}
One can then proceed as in Step 1 to show that the inequalities (20) are in fact equalities,

as claimed.

Step 3 The upshot of Steps 1-2 is that, if trades take place at prices p and p’, no market
maker can make additional profits on these trades. We now show that this leads to a
contradiction, thereby establishing that all trades must take place at price p. Note that
according to our preliminary remark, there exists at least one type who exhausts supply
at price p/, that is, who purchases 5*(p') from each market maker k and thus has a unique
best response to the equilibrium tariffs (¢!, ..., tX). Let iy be the lowest such type; all types
ig, ..., then exhaust supply at price p’. It follows from Step 2 that p’ < El¢;|i > ig] =
D izio MiCi/ D isq, Mi- This must hold as an equality, for, otherwise, some market maker k
would have an incentive to offer less than 5%(p’) at price p’. Now, either iy = 1 and, for each

k, qf;’) _1 = 0 by convention, or ¢y > 1 and, by definition of iy, there exists some k such that

max {s"(p), giy 1} < 5" (p').
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Take any such k and let ¢* = max {s*(p), ¢f _,}, so that t*(s"(p')) = t"(¢") +p/[s"(¥) — ¢"].

Because type i has a unique best response to (t!,...,t%), there exists ¢ > 0 such that
%ot (B (0), 5 (35 (1) + e[ () — ¢") > %, (. 1" () (21)
for all g < gk. Define

7" = max {arg max{zi_ok(q, tk(gk) + (' +¢)g— Qk]) ‘q € [kagk(p/)]}} (22)

Then, because

(3" (") + e[* () — ¢"1 = t*(¢") + ' + )5 (') - ¢,

it follows from (21) that ¢* < 7" < 5"(p'). Market maker k could deviate by posting a tariff
equal to t* up to gk , and then offering to sell any additional quantity between gk and "
at price p’ + e. A best response for the insider is to continue purchasing the equilibrium
quantity ¢F from market maker k if i < iy — 1 and, according to (22) along with the single-
crossing property (4), to purchase the quantity g* from market maker k if i > ig. Because,
according to Step 1, market maker k does not make any additional profit trading at price p
in equilibrium, one can thus apply Lemma 2 to conclude that

> mi(p +e—a)@ ¢ <o,

i>ig
which, because € > 0 and g~ > g’“, contradicts the above-noted fact that p’ = E[¢; |i > ig].

Hence all trades must take place at price p, as claimed.

Step 4 At price p, either aggregate supply is zero and there is no trade; or aggregate
supply is positive and the insider faces a linear tariff with slope p. To complete the proof,
we must show that, in the latter case, each type ¢ can purchase her unconstrained demand
D;(p) at price p. Indeed, otherwise, some type would exhaust supply at price p and would
thus have a unique best response to the equilibrium tariffs (t!,...,¢t%). Let iy be the lowest
such type; all types ig,...,I would then exhaust supply at price p. Arguing as in Step 3,
we get that this leads to a contradiction. Hence each type can freely choose her preferred

quantity D;(p) at price p. Hence the result. |

Proof of Lemma 3. Define v¥(q) = v¥(q,pq) for all ¢. In this proof, we more generally
assume that the insider’s type ¢ is distributed over some subset Z of R. The corresponding
distribution m may be discrete, continuous, or mixed. We also assume that the appropriate

generalization of SC-v holds and that sup{D;(p) : i € I} < oo. Now, observe that, if
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the nondecreasing quantities (g;);ez satisfy the constraints in (12)—(13), so do the quantities
(min{g;, G})ier for all . Hence we can restrict our quest for a solution to (12)—(13) to the

set of nondecreasing quantities (¢;);ez such that (13) holds for each ¢ and such that

[ @1y m@i) < [ v @)1 m(a) 23

for all g € [0, ||G|loc), Where ||G|lcc = inf{q : m[{i € T : ¢; < q}] = 1} is the essential
supremum of the quantities (¢;);cz. Note that this set is nonempty as it contains (0);ez. We
now show that any (¢;);cz in this set yields seller k£ an expected profit at most equal to that
provided by (min{D;(p), ||G||cc)iez. This is obvious if ||G||cc = 0. If ||G||c > 0, then, for each
e € (0,]|q]lc], applying (23) for § = ||G||«c — € yields that there exists a type ¢’ such that
g7 2 [|qllc — € and

vl =€) < vi(an).

Applying the contraposition of SC-v yields!®
v (llls — ) < v (g0)

for any type i < i'. Because the quantities (¢;);er are nondecreasing, this actually holds for
any type 4 such that ¢; < ||G]|sc — €. As the functions ¥ are weakly quasiconcave, it follows

(2
that, for any type i such that ¢; < [|G||s — €, V¥ is nondecreasing over [0, ||G||oc — €]. Because
this is true for all € > 0, we have shown that, for any type 7 such that ¢; < ||||, the function

k
v

 is nondecreasing over [0, ||¢||]. Hence market maker k could choose quantities equal to
(min{D;(p), |G|loc } )iex Without reducing his expected profit relative to (¢;)iez, as claimed.

This implies that problem (12)—(13) reduces to

sup{/yf(min{Di(p),q}) m(di) : g € [0,sup{D;(p) :i € I}]},

which has a solution as the objective function is continuous in g, owing to the fact that
the functions (/f);ez are continuous along with Lebesgue’s dominated convergence theorem.

Hence (12)—(13) has a solution with limit-order quantities at price p. Finally, if the mappings

vF are strictly quasiconcave, any solution to (12)-(13) is of this form. |
Proof of Lemma 4. Consider a profile (¢!,...,t) of convex tariffs. Recall that the

resulting optimal aggregate trade (Q;,T;) is uniquely determined for each type i and that

Gtrictly speaking, the contraposition of SC-v gives only that v¥(¢',#') > vE(g,t) implies vF(¢,t') >
v¥(q,t). But because the profit functions are continuous and monotonic in transfers, one can easily show as
in Step 2 of the proof to Property SC-z that v%(q¢’,t') > vk(g,t) implies vF(q', ') > v¥(q,t), which is the
implication we use here.
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one can associate to each type ¢ a price p; as in Step 0 of the proof of Lemma 2. To find an

efficient risk-sharing allocation, one may first solve for each ¢

max{Zvﬂqf,tk(qf)) g gt ) € AN XX AK}
k
subject to

ZQf:Qz‘

k

and

> ') =T

Because the market makers’ profit functions are identical and quasilinear, this problem can

be rewritten as:

min{Zci(qf) g ) e A x - xAK}
k

subject to
Z Qf =Q;
k
and
s*(p) < qf <5°(p1)
for all k, where the latter constraints ensure that the vector of trades (q},...,¢") is indeed

a best response of type i. We want to show that this family of problems indexed by 7 admits
a family of solutions with nondecreasing individual quantities.

To do so, notice first that each of these problems is well behaved, with a nonempty
compact set of solutions. Hence there exists a family of solutions (¢i,...,¢F,... ¢}, ..., ¢¥)

that minimizes the following measure of violations

> max{qf —q¢f,,0}. (24)

ki<l
Let us proceed by contradiction and suppose that this minimum is strictly positive. Then,

at the minimum, one has

Qf > qfﬂ (25)
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for some k and i < I. Given that s*(p;) and 3%(p;) are nondecreasing in 4, this implies that
s5(pi) < 8" (pir) < afr < @ <5°(pi) <5 (i) (26)

Because the intervals [s*(p;),3%(p;)] and [s*(pi+1), 5% (piy1)] have a nontrivial intersection, it
must be that p; = p;41. Therefore, for any market maker &' we have s (p;) = s* (pi41) and
5% (p;) = 3" (piy1). Moreover, because ¢F > ¢f,; and Q; < Qi41, we know that there exists
k" # k such that

qzkl < qzk—;—l' (27)

Using the equalities we have just shown, this implies that
s (pi) = 8" (piv1) < @F < df <57 () =5 (D). (28)

Given (26) and (28), one can slightly reduce ¢* and increase ¢ by the same positive amount
g, so that all constraints are still verified. Such a transformation would reduce the criterion

(24), so that the resulting trade cannot be a solution to the problem for type . Hence
cilaf —e) +eilal +e) > eilaf) +alad).

By convexity, this implies ¢¥ < qf/. Alternatively, one could slightly increase ¢, , and reduce

qﬁﬁ’rl by the same positive amount €. We obtain similarly

Ci+1(¢]f+1 +e)+ Ci+1(q7ﬁ-1 —€) > Ci+1(f]f+1) + Ci+1(qgi1)>

which implies ¢F,; > qﬁl. But it is easily seen that these last two inequalities together with

(25) and (27) yield a contradiction. The result follows. H

The Glosten (1994) Tariff as an Approximate Equilibrium Outcome. Suppose for
simplicity that I = 2, that each type ¢ has quasilinear preferences (Assumption QL-U), and
that the market makers’ profit functions are linear (Assumption L-v) with marginal costs

co > c1. Let ¢ = mycy + moco be the average cost and suppose, furthermore, that

!/

0 < (u)(e) < (uh) He) < 0.

Let Q1 = (u}) '(c) and Q2 = (uh)*(c2). The Glosten (1994) aggregate tariff is the piecewise-
linear tariff defined by

T%Q) = 1{g<03¢Q + L{ig=01}[cQ1 + c2(Q — Q1))
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When facing 79, type 1 trades the aggregate quantity @; and type 2 trades the aggregate
quantity (2. The corresponding marginal prices are ¢ and ¢;. One can show along the lines
of Glosten (1994) that the tariff T¢ is robust to entry, in the sense that no additional market
maker could enter and make a profit if the tariff 7¢ were already available.

Consider the following implementation of T¢. Suppose that each market maker k offers
to sell any quantity in [0, Q1/K] at unit price ¢ and then to sell any additional quantity at
unit price ¢y, which amounts to the tariff t*(q) = T9(Kq)/K. Clearly these convex tariffs
lead to T¢ in the aggregate. Each market maker % is indispensable for providing 7¢ and,
therefore, has a profitable deviation. (This deviation is similar to that described in Step 3 of
the proof of Proposition 2.) The question is how much % can gain by deviating. Because the
market makers other than k offer convex tariffs, Property SC-z is satisfied. Observe that, as
a result, we can assume that, following a deviation by k, the insider selects a best response
in which she trades with him quantities that are nondecreasing in her type.

To get a bound on k’s gain from deviating, note first that the most k& can earn is obtained
by offering a menu consisting of the no-trade contract and of a well-chosen pair of contracts,

(q1,t1) and (gq, t2), respectively targeted at types 1 and 2, and resulting in an expected profit

ty — cqr + malts — t1 — ca(q2 — q1)]. (29)

From the above observation, we can suppose that ¢; < ¢s. Because type 2 always have the
option to buy the nonnegative marginal quantity ¢, — ¢; at a unit price at most equal to cs,
one must have to —t; < ¢2(ga — ¢1) and, therefore, k’s expected profit (29) is bounded above
by t1 — c¢q;. Hence we may as well assume that k offers a single contract (g,¢) distinct from
the no-trade contract and which both types accept to trade. A necessary condition for type
1 to accept to trade (g,t) is that z;*(g,t) > 27%(0,0), which implies z,%(q,t) > 2,%(0,0) by
Property SC-z. Thus an upper bound for (29) is

max {t — cq : z;"(q,t) > z*(0,0)}.

As the aggregate trade (Q 7%, cQ*), where

o}

Q‘kE(K—l)K,

remains available for trade following k’s deviation, an even more generous upper bound is
max {t —cq : 2,"(q,t) > u (Q7%) — Q7). (30)

Any optimal contract (g,t) solution to (30) is such that the constraint in (30) is binding
and type 1 ends up purchasing (); in the aggregate. A particular solution is such that
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g = Q1 — Q" and then

and
o -k

As u{(Q1) = ¢, and assuming that u, is twice differentiable at )1, a Taylor—Young expansion

yields the following approximation of (30):

" 2
59 ()

which is the desired result. [ |

38



References

1]

Akerlof, G.A. (1970): “The Market for “Lemons”: Quality Uncertainty and the Market
Mechanism,” Quarterly Journal of Economics, 84(3), 488-500.

Aliprantis, C.D., and K.C. Border (2006): Infinite Dimensional Analysis: A Hitchhiker’s
Guide, Berlin, Heidelberg, New York: Springer.

Attar, A., T. Mariotti, and F. Salanié (2011): “Nonexclusive Competition in the Market
for Lemons,” Econometrica, 79(6), 1869-1918.

Attar, A., T. Mariotti, and F. Salanié (2014): “Nonexclusive Competition under Adverse
Selection,” Theoretical Economics, 9(1), 1-40.

Back, K., and S. Baruch (2013): “Strategic Liquidity Provision in Limit Order Markets,”
Econometrica, 81(1), 363-392.

Back, K., and J.F. Zender (1993): “Auctions of Divisible Goods: On the Rationale for
the Treasury Experiment,” Review of Financial Studies, 6(4), 733-764.

Baruch, S., and L.R. Glosten (2013): “Fleeting Orders,” Unpublished Manuscript,

Columbia Business School.

Biais, B., T. Foucault, and F. Salanié (1998): “Floors, Dealer Markets and Limit Order
Markets,” Journal of Financial Markets, 1(3-4), 253-284.

Biais, B., D. Martimort, and J.-C. Rochet (2000): “Competing Mechanisms in a Common
Value Environment,” Econometrica, 68(4), 799-837.

[10] Biais, B., D. Martimort, and J.-C. Rochet (2013): “Corrigendum to “Competing Mech-

anisms in a Common Value Environment”,” Econometrica, 81(1), 393-406.

[11] Borch, K. (1962): “Equilibrium in a Reinsurance Market,” Econometrica, 30(3), 424—

444.

[12] Carmona, G., and J. Fajardo (2009): “Existence of Equilibrium in Common Agency

Games with Adverse Selection,” Games and Economic Behavior, 66(2), 749-760.

[13] Dennert, J. (1993): “Price Competition between Market Makers,” Review of Economic

Studies, 60(3), 735-751.

39



[14] Dubey, K. (1982): “Price-Quantity Strategic Market Games,” Econometrica, 50(1),
111-126.

[15] Glosten, L.R. (1989): “Insider Trading, Liquidity, and the Role of the Monopolist
Specialist,” Journal of Business, 62(2), 211-235.

[16] Glosten, L.R. (1994): “Is the Electronic Open Limit Order Book Inevitable?” Journal
of Finance, 49(4), 1127-1161.

[17] Glosten, L.R. (1998): “Competition, Design of Exchanges and Welfare,” Unpublished

Manuscript, Columbia Business School.

[18] Glosten, L.R., and P.R. Milgrom (1985): “Bid, Ask and Transaction Prices in a Spe-
cialist Market with Heterogeneously Informed Traders,” Journal of Financial Economics,

14(1) 71-100.

[19] Grossman, S.J. (1981): “Nash Equilibrium and the Industrial Organization of Markets
with Large Fixed Costs,” Econometrica, 49(5), 1149-1172.

[20] Hellwig, M.F. (1988): “A Note on the Specification of Interfirm Communication in
Insurance Markets with Adverse Selection,” Journal of Economic Theory, 46(1), 154

163.

[21] Ho, T.S.Y., and H.R. Stoll (1981): “Optimal Dealer Pricing under Transactions and
Return Uncertainty,” Journal of Financial Economics, 9(1), 47-73.

[22] Ho, T.S.Y., and H.R. Stoll (1983): “The Dynamics of Dealer Markets Under Competi-
tion,” Journal of Finance, 38(4), 1053-1074.

(23] Jaynes, G.D. (1978): “Equilibria in Monopolistically Competitive Insurance Markets,”
Journal of Economic Theory, 19(2), 394-422.

[24] Klemperer, P.D., and M.A. Meyer (1989): “Supply Function Equilibria in Oligopoly
under Uncertainty,” Econometrica, 57(6), 1243-1277.

[25] Kyle, A.S. (1985): “Continuous Auctions and Insider Trading,” Econometrica, 53(6),
1315-1335.

26] Kyle, A.S. (1989): “Informed Speculation with Imperfect Competition,” Review of Eco-
nomic Studies, 56(3), 317-355.

40



[27] Parlour, C.A., and D.J. Seppi (2008): “Limit Order Markets: A Survey,” in Hand-
book of Financial Intermediation and Banking, ed. by A.V. Thakor and A.W.A. Boot.
Amsterdam: Elsevier, 63-96.

28] Rockafellar, R.T. (1970): Convex Analysis, Princeton, NJ: Princeton University Press.

[29] Roll, R. (1984): “A Simple Implicit Measure of the Effective Bid-Ask Spread in an
Efficient Market,” Journal of Finance, 39(4), 1127-1139.

[30] Rothschild, M., and J.E. Stiglitz (1976): “Equilibrium in Competitive Insurance Mar-
kets: An Essay on the Economics of Imperfect Information,” Quarterly Journal of Eco-

nomics, 90(4), 629-649.

[31] Stoll, H.R. (1978): “The Supply of Dealer Services in Securities Markets,” Journal of
Finance, 33(4), 1133-1151.

[32] Vayanos, D., and J. Wang (2011): “Theories of Liquidity,” Foundations and Trends in
Finance, 6(4), 221-317.

[33] Vives, X. (2011): “Strategic Supply Function Competition with Private Information,”
Econometrica, 79(6), 1919-1966.

[34] Wilson, R. (1979) “Auctions of Shares,” Quarterly Journal of Economics, 93(4), 675
689.

41



k
q;_1 qzk

Figure 1 Binding downward local constraints and linearity.
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Figure 2 The ¢, 4 schedule in the case I = 2.
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Figure 3 The ¢ schedule in the case I = 2.
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