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Abstract

This paper extends the conditional logit approach used in panel data models of
binary variables with correlated fixed effects and strictly exogenous regressors. In a
two-period two-state model, necessary and sufficient conditions on the joint distribu-
tion function of the individual-and-period specific shocks are given such that the sum
of individual binary variables across time is a sufficient statistic for the individual ef-
fect. Under these conditions, \/n—consistent conditional likelihood estimators exist.
Moreover, it is shown by extending Chamberlain (1992) that \/n—consistent regular
estimators can be constructed in panel binary models if and only if the property of
sufficiency holds. Imposing sufficiency is shown to reduce the dimensionality of the bi-
variate distribution function of the individual-and-period specific shocks. This setting
is much less restrictive than the conditional logit approach (Rasch, Andersen, Cham-
berlain). In applied work, it amounts to quasi-difference the binary variables as if they
were continuous variables and to transform a panel data model into a cross-section
model. Semiparametric approaches can then be readily applied.

*Address: 48, Bld Jourdan, 75014 Paris, France, Email Thierry.MagnacQens.fr



1 Introduction!

The elementary brick of panel binary models with correlated fixed effects is a two-
period two-state model. The pair of individual binary variables is described by a pair of
latent variables which are assumed to be the sum of a linear index of explanatory variables,
of the individual effect and of the individual-and-period “specific shocks”. The parameter
(B of the index is the parameter of interest. Estimating it by conditional logit is a well
known semi-parametric technique since it avoids specifying the distribution of individual
effects conditional on covariates (Rasch, 1960, Andersen, 1973, Chamberlain, 1984). Tts
properties stem from the existence of a sufficient statistic for the individual effect which is
the individual sum of the binary variables. By definition of S-sufficiency, the conditional
likelihood function depends on the parameter of interest only while the marginal likelihood
function depends on the parameter of interest and the nuisance parameter, the individual
effect (Barndorff-Nielsen, 1978, Lancaster, 2000). Conditional logit is nevertheless seen to
be restrictive because of the distributional assumptions. Yet, an intriguing and important
result related to conditional logit was shown by Chamberlain (1992). If individual-and-
period specific shocks are independent over time and if covariates are unbounded, consistent
estimation at a \/n—rate of the parameter of interest is possible if and only if the distribution
of individual-and-period specific shocks is logistic. The semi-parametric efficiency bound is
equal to zero in all other cases.

In this paper, I show that the sum of the binary variables is a sufficient statistic for the
individual effect, under necessary and sufficient conditions that are much less restrictive than
in the conditional logit approach. Moreover, the result of Chamberlain (1992) is generalized.
If covariates are unbounded, then consistent estimation at a \/n rate is possible if and
only if the sum of the binary variables is a sufficient statistic. The property of sufficiency
thus characterizes all models (when variables are strictly exogenous) for which it is possible
to construct \/n—consistent estimators. The strict exogeneity assumption can be partially
relaxed. Conditional Logit is a special case. The only joint distribution function such that 1)
the individual-and-period specific shocks are independent 2) the sum of the binary variables
is a sufficient statistic, is the logistic distribution.

Panel binary models have been the focus of interest in the literature for more than 25 years

(see Arellano and Honoré, 2001, for a recent survey). Most papers use “random effect” models
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introduced by Heckman (1978), where the distribution function of disturbances, including
individual effects, is assumed to be independent of covariates. Moreover, most authors
parametrically specify this distribution function. When individual effects are correlated with
covariates and when the time dimension is small, we can group estimation approaches into
three groups: The first group comprises maximum score (Manski, 1987) and maximum rank
correlation (Lee, 1999), the second, pseudo-regression (Honoré and Lewbel, 2002) and the
third, conditional logit. The first two groups include methods first developed for cross-section
data. The maximum score approach is based on the weakest assumptions since individual-
and-period specific shocks are assumed to be exchangeable only, conditional on covariates and
the individual effect. This stationarity assumption is far weaker than strict exogeneity. Panel
data applications of smoothed maximum score (Horowitz, 1992) were performed by Charlier,
Melenberg and Van Soest (1995) and Kyriazidou (1998). For maximum rank correlation
methods, a strict exogeneity assumption and stronger assumptions are maintained (Lee,
1999). In contrast, the adaptation of Lewbel (2000) estimation method to binary variables
panel data does not require strict exogeneity but requires that a “continuous” regressor be
independent of the individual effect and requires a large support assumption. Conditional
Logit requires strict exogeneity. These approaches also differ in terms of their asymptotic
properties. Maximum score estimation is not root-n consistent and asymptotic distributions
of estimates are not normal but smoothed maximum score is “almost” root-n consistent
and asymptotically normal (Horowitz, 1992). Honoré and Lewbel (2002) estimators are
v/n—consistent and asymptotically normal.

In this paper, it is shown that imposing the property of sufficiency reduces the dimen-
sionality of the model from the unknown bivariate density function of individual-and-period
specific shocks into two univariate density functions satisfying additional tail conditions. The
property of sufficiency implies that shocks are exchangeable and this setting is nested into
the setting of Manski (1987). The reduction of dimensionality explains why \/n—consistency
holds. Furthermore, maximizing conditional likelihood is shown to be equivalent to using
an estimating equation which relates the expectation of the difference between the pair of
binary variables and the difference in the linear index of covariates, in the sample where
binary variables differ across time. It thus amounts to quasi-difference binary variables and
turn panel into cross-section data. Semi-parametric techniques can then be readily applied.

Section 2 presents the set-up (Assumptions R), defines the property of sufficiency (Con-
dition S) and proves the extension of Chamberlain (1992) about \/n-consistent estimation.
Section 3 is the main theoretical section where joint distribution functions that satisfy suf-

ficiency are characterized as functions of two univariate distribution functions. Necessary



and sufficient conditions on these functions (Properties P) are given. We study estimation
and give a parametric illustration in Section 4. Section 5 proposes extensions and concludes.

Proofs are in appendices.

2 Regularity Conditions, S-Sufficiency and /n— Con-
sistency

Consider 1, 3, two binary variables, z1, z, two K —dimensional covariates®. The latent model
is:
Fort=1,2:y,=1if and only if 2,0+ €+ u; > 0

We adopt some regularity assumptions:

Assumption R1: (i). The difference across time of the first covariate (say), zg)— zél),

continuously varies over the whole real line R (for almost all values of other covariates) and
the coefficient of the first covariate, BY . is equal to one.

(i1). The support of z1— z3 is not contained in any proper linear subspace of R¥.

(111). Random shocks (uy,us) have a strictly positive, continuous and bounded density
function with respect to the Lebesgue measure and are independent of z1, zo and €.

(iv). The individual effect € continuously varies over the whole real line R (for almost

all values of covariates)

Assumptions R1(7) and R1(4) are sufficient identification restrictions borrowed from
Manski (1987, Assumption 2, p.358). In contrast to Manski (1987), random shocks are
supposed to be strictly exogenous and independent of all variables by R1(74) though we
discuss how to weaken this assumption in the last section. R1(:) also limits the discussion
to the class of sufficiently smooth distribution functions in order to use the usual tools of
differential calculus. R1(iv) assumes complete variation of all probabilities in the “between-
individual” dimension. It is similar to R1(7) that assumes complete variation in the “within-
individual” dimension.

For Conditional Logit, specific shocks u; and uy are furthermore assumed to be indepen-
dent and logistically distributed. It implies that the sum of binary variables is S-sufficient

for the incidental parameter, £, (Barndorff-Nielsen, 1978) that is, for K = 0,1 and 2:

Pr(yi,ya | 21,22, €)
PY(Z?:1 Yy =K | 21, %2, 6)

2We only consider random samples and we do not subscript individual observations by i.

is independent of e. (2.1)




While it trivially holds when K = 0 or 2, this expression yields the conditional likelihood
of an observation such that (y;,y2) € {(0,1),(1,0)} when K = 1. The conditional likeli-
hood function does not depend on the incidental parameter and the maximum conditional
likelihood estimator is \/n—consistent.

This approach has been criticized on the ground that the independence and logistic
assumptions are overly strong. Observe that these assumptions seem indeed to be overly
strong to derive /n—consistency since S-sufficiency alone implies that the conditional like-
lihood function is independent of the incidental parameter. Our first motivation is thus to
prove that using S-sufficiency substantially generalizes Conditional Logit. Rewrite property

(2.1) as Condition S(ufficiency), prominent in the rest of the paper:

Lemma 2.1 Under Assumption R1, the sum of binary variables is S-sufficient for the indi-

vidual effect, e, if and only if there exists a real function c(.) such that:

(21, m9) € R Pr(u; > x1,us < o)
1,42 )

AT — = c(z1 — x2) (Condition S)

Another justification for using and characterizing S-sufficiency is that it is the weaker
condition that one can find in the present set-up to construct y/n—consistent estimators. In
an unpublished paper, Chamberlain (1992) proved that if u; and wus are independent, the
semi-parametric efficiency bound of parameter is equal to zero unless the distribution func-
tion of random shocks is logistic. It therefore tells us that y/n—consistent estimators can only
be constructed under the logistic assumption. By dropping the independence assumption,

Chamberlain’s result? is extended into:

Theorem 2.2 Under Assumption R1, the semi-parametric efficiency bound for (3 is equal

to zero unless the sum of binary variables is S-sufficient for the individual effect.

3 Characterization of S-Sufficiency

Condition S is easily used in estimation (see Section 4). It is however by no means obvious
that function ¢(.) is unconstrained and can be set as wanted. It is the purpose of this section

to derive these conditions. We first derive what are the general implications of the property

3This theorem also leads to prove the conjecture that the sum of binary variables is the only candidate
for a sufficient statistic. Suppose there exists a statistic such that the principle of sufficiency, with respect to
individual effects, could be applied to. Then, using conditional likelihood methods, it would be possible to
construct a /n consistent estimator by conditioning on this statistic. By the previous theorem, this sufficient
statistic is the sum of binary variables across time.

In Chamberlain (1992) there is another result about identification when regressors are bounded. It uses a
very similar technique of proof. It is a conjecture that a generalization of that result also holds.



of sufficiency on the joint distribution function of (u1, us). We then prove that function ¢(.) is
in a one-to-one relationship with the distribution function of the difference u; —us. Necessary
and sufficient conditions for sufficiency are then provided. We conclude by investigating what
is the consequence of the additional assumption of independence between u; and us.
Before, by including two time-dummies among the explanatory variables, we can always

adopt the following normalizations:

Assumption R2 : (i). The marginal distribution function of wuy is denoted F(.) and its
density function, f(.). It is such that F(0) = 1.
(7). c(0) =1

First, we derive some necessary conditions for Condition S to hold and characterize the

expression of the joint distribution function of (uq,us).

Theorem 3.1 Assume that conditions R1, R2 and condition S hold. Then :
1. ¢(h) is a strictly decreasing function from 400 to 0 and is twice continuously differentiable.

2. The marginal d.f. of us is equal to the marginal d.f. of uy:

Pr(uy < x9) = F(x3).

3. The joint d.f. of (uy,us) is given by:

F(zg) — c(xy — x9) F(x1)
1 —c(xy — x9)

when 1 # . (3.1)

Pr(uy < zy,up < x9) =

4. F(.) is three-times continuously differentiable and f” is bounded.

Claim 1 is directly derived from the limit conditions in Condition S. In claim 2, the
identity of marginal distributions of u; and us is reminiscent of the property of exchange-
ability at the heart of the score method developed by Manski (1987). This property is here
shown to be the consequence of the sufficiency property which is therefore stronger than
exchangeability. Claim 3 of Theorem 3.1 gives a characterization of the joint probability
function in terms of two functions F(.) and ¢(.) only. The sufficiency property thus reduces
the dimensionality of the problem, at least, from a function of two real arguments to two
functions of one real argument. We show in the appendix how to define the joint probability
distribution when x5 = x; by continuity.

It is easier to continue to work with the distribution function of the difference, u; — us,

which is in a one-to-one mapping with function c(.).
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Proposition 3.2 Let ¢(h) (resp. ¢(h)) the distribution (resp. density) function of uy — us.

Under conditions R1-R2 and condition S, we necessarily have:

+o0 —00
0< / To(T)dr = / Tp(T)dT < 400 (Condition P1)
0 0

ho(h
36, > 0; lim —+<|>o #(h) > B, (Condition P2)
h—t/—co [T T(T)dT

Function ¢(.) and distribution ¢(.) are in the following one-to-one relationship:

h

elh) = 1_h¢(h)+ [ re(r)dr (3.2)
o(h) = <" __ (3.3)
= dh1—c(h) '

The first condition tells us that the expectation of (u; — us) when u; — us > 0 is finite
and uses that u; and uy are identically distributed. Thus, E(u; — us) = 0 even when Fu,
does not exist. These two regularity conditions P1 and P2 are verified if the distribution of
u1 — ug is thin tailed and not too hectic at infinity, for instance, if ¢(.) is the normal d.f.
They are not if the distribution is Cauchy for instance.

In contrast, the marginal distribution F'(.) should have thick tails:

Proposition 3.3 Under conditions R1-R2, and condition S, we necessarily have:

WECPER 0
ve; f(z) < f0+°°7-<,0(7')d7'

For any distribution ¢(.) such that p(0) > 0 and P.1 holds, the set of such distributions is

(Condition P3)

not empty.

The marginal density function f should not be “too” convex and the normal distribution,
say, would not qualify for this condition. In contrast, mixtures of normal distributions
through a gamma-distributed precision parameter verify this condition as presented next
section.

We can now prove that the sufficiency property can be used for a much broader set of

joint distributions than the logistic.

Theorem 3.4 Assume conditions R1(i),R1(ii) and R1(iv). Let D be the set of pairs (¢, f)
of strictly positive, continuous and bounded density functions on R, such that f is twice
continuously differentiable and f” is bounded, and such that R2, P1, P2 and P3 hold. Then,
for any (¢, f) € D, equations (3.1) and (3.2) define a joint distribution function that verifies
condition (S) and condition R1(iii).



As said, the sufficiency property can also be interpreted as reducing the dimensionality
from a set of bivariate density functions to a set of pairs of univariate density functions
(¢, f). This reduction explains why the y/n—consistency result can hold. The theorem gives
additional restrictions P1, P2 and P3 though these conditions do not affect dimensionality.
An open question is how restrictive they are for empirical work on top of the dimensionality
reduction.

Observe also that the reduction of dimensionality achieved by assuming independence
between u; and usy is of the same magnitude since the joint density function is then given
by two univariate marginal density functions. Using both dimensionality reductions at the
same time is very restrictive however since it yields only one parametric family, the logistic

distribution.

Corollary 3.5 Assume R1-R2, condition S and that u, and us are independent. Then, uy
and uy are logistically distributed. Formally, there exists p > 0 such that:

1

Fo) =13 exp(—pz)

¢ (h) = exp(—ph)
4 Semi-Parametric Estimation and a Parametric Ex-
ample

Under Condition S, the conditional probability that can be used as the estimating equation,

can be written as (see equation A.1 in Appendix A):

g ST (G )
Pr(yy =1,4o =0 | 21,22>t§:;yt =1)= 14 c((z1 — 22)0)

G((z1 — 22)B) (44

Observe first that the model is a cross-section binary model. The “transformed” de-
pendent variable can only take two values “Entry” (y; = 0, yo = 1, Ay = +1) or “Exit”
() =1, o = 0, Ay = —1) in the sample of movers (37, 5 = 1). As the index (z; — 2,)3
is linear in (3, it is in this sense that the sufficiency property permits to “quasi-difference”
the data. Semiparametric identification is achieved as in Manski (1988) or Horowitz (1998)
using Assumption R1(%,4). Provided that conditions R2(ii), P1 and P2 are verified?, all
semi-parametric estimation methods applicable to binary models can be used: maximum
score, maximum rank correlation, Lewbel’s method, average derivatives, semi-parametric

NLS or ML (Horowitz, 1998). Besides, we can extend this estimation principle to 7" periods

4Normalization R2 translates into G(0) = 1/2, condition P1 into G’(0) is positive and bounded and P2
into conditions on the tails of G(.). They are derived using equation (3.2).



with 7" > 2, by borrowing the idea of Manski (1987). Difference across any two periods in
sequence and treat the result as a pseudo-likelihood function.

Parametric methods are less attractive than semi-parametric methods since assuming
a parametric distribution different from the logistic implicitly assumes away independence.
It is nevertheless interesting to investigate special cases to understand the consequences
of imposing sufficiency on distribution functions. The simplest parametric example is the
known case of logistic distributions when function c¢(h) = exp(—h) and the distribution
function given by (4.4) is the logistic distribution. There are two routes to depart from this
assumption. The first route is to use popular distributions in (4.4), for instance the normal
d.f. It however seems to generate quite implausible distribution functions for the difference
between u; and us.° The second route is to specify the distribution function of the difference
between u; and us. We now briefly look at that case, when u; — us is normally distributed
with zero-mean and variance equal to g, say. The density function, p,(.), is symmetric
around 0 and |, h+  1po(T)dT = 09ipy(h) is finite when h = 0 (Condition P1). Condition P2

is satisfied since:
heo(h) _ ﬁ

f;roo Tpo(T)dT o

Looking for compatible marginals, the convexity condition P3 shall be satisfied for any

marginals such that f”/f < 6/0g. Consider a mixture of zero-mean normal variates where
the precision is gamma-distributed with parameter § and A. Then, the density function is:’
T(6+1/2)X°

l(z) = V2T (8) (A + 22/2)5+1/2

and:
maxl (x) _ 5+1/2 (6+1)2

Choose A and ¢ such that this maximum is less than 6/0( and consider the following model

(where ¢ now indices individual heterogeneity):

uyi = 03€; + 0085 /2
! ¢ 4.5

{ u2z‘:0¢§i—‘70§?/2 (45)
where (£;,£)) are two independent zero-mean unit-variance normal variates and 1/0? is
gamma-distributed with parameter 6 and A. Then, condition P3 is verified because the

convolution of a distribution which verifies P3 (i.e. ;&) with any distribution verifies P3.”

®Such and other examples are studied in the working paper, Magnac (2002) where bounds on correlation
coeflicients are also derived. In these examples, bounds are not limiting.

6These results are shown in an appendix available upon request or on my Web page.

TObserve that the original model is not unique since any random variable can be added to (u; + ug)/2
and substracted from the individual effect €. Results are invariant to these renormalizations.



Besides, uy; and ug; are identically distributed because &; is symmetrically distributed. In
empirical applications, model (4.5) can be used when there is “a lot of heterogeneity” in the

levels of the shocks and less in the difference.

5 Discussion and Extensions

In this paper, we used the principle of sufficiency and conditional inference to derive a
generalization of conditional logit. We presented the conditions under which we can quasi-
difference binary data as if they were continuous. Cross-section semi-parametric procedures
can be used to estimate these models with unrestricted individual effects and their results can
be compared with those that are obtained using random effect specifications. By extending
a result by Chamberlain, we also showed that it is under the property of sufficiency only
that we can construct \/n—consistent estimators in the panel binary choice model.

There are some straightforward extensions. The first extension is that the linear index
property, writing latent variables as z;(3, is far from necessary. Deterministic parts of latent
variables in each period could be written as f;(z, 3,) and the conditional model would become
a function of the difference between these non-linear indices provided that the latent models
remains additive in the individual effect. Functions f; could even be partially unknown if
the conditions of Matzkin (1992) are fulfilled.

A more involved extension is to permit the distribution function of specific shocks (ug, us)
to depend on (z1,22). As the present model is nested into the flexible setting of Manski
(1987), we could get closer to it. It does not seem to be possible however to let the joint
distribution function depend on covariates in a completely unspecified way. The reason is
that in our proofs, we have to use the continuous variation with respect to the individual
effect, £, and with respect to the difference, x; — x5 (see Assumption R1). The closer we
can easily get is to make the joint distribution of (u;,us) depend on all covariates except the

difference between the first continuous covariate (z%l) — zél)). We can then repeat the present

571),2’571)) where z%fl),z(fl) include all

analysis, conditional on values of w = (zil) + zél), z
covariates except the first. All assumptions are written conditional on w and all results
apply, conditional on w. It might be reminiscent of the assumption used by Lewbel (2000).

When data is observed over a longer time period (7" > 2), periods can be chained two-
by-two, as already said. On the other hand, using Condition S in the T = 3 case is less
interesting. Some tedious investigation revealed that the only possible distribution function
that verifies condition S in that case, is the logistic d.f. The idea of the proof is based on

the fact that in a three-period setting, the relative probabilities depicted by Condition S of
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exchangeable choices between any two periods should not depend on the level of the latent
variables in the third period because this variable contains the individual effect. It is where
the Independence of Irrelevant Alternatives property comes in and drives us back to the
logistic distribution.

Other lines of research seem more challenging. It remains to be seen how such an approach
would be applied to other non-linear models. It might be easier to extend this approach in
models where we know that the principle of sufficiency can be applied (Weibull, Poisson,...).
It seems to be a lot more difficult in dynamic models (Honoré and Kyriazidou, 2000) and

even more difficult in other models such as Tobit-like models.
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Appendices

Equations or lemmas starting with A to D refer to the section of the appendix where
they are stated. Conditions starting with R, S and P and numerals refer to the text.

A Proofs in Section 2

Proof of Lemma 2.1 Denote x; = —z,5 — € and use condition R1(iii) to write:
Pr(ys = 1,yo = 0| 21, 22,€) = Pr(u; > x1,us < ).

By definition, S-Sufficiency is satisfied if and only if, for (y1,y2) € {(0,1),(1,0)}, equation
(2.1) is verified. If it is verified for one of these pairs, say (1,0), it is satisfied for the other
pair since probabilities sum to one. Thus, S-sufficiency is equivalent to the property that

Pr(u; > x1,us < x9)

r(z1,22) = Pr(u; < x1,ug > x9)

is independent of ¢, because condition (2.1) says that:

Pr(u; > x1,us < o) _ r(z1, x2)
Pr(u; > x1,us < o) + Pr(uy < xy,u9 > x9) 1+ 7(21,29)

is independent of e.

By R1(44), 7(x1, z9) is a smooth function from R? to R and z; and x5 vary over the whole
real line by R1(¢) and R1(4v). Thus, r(x,z2) is independent of ¢ if and only if it depends
on the only combination of (z1,x2) that does not depend on €, that is the difference z; — 5.
Thus, there exists a real function ¢(.) such that r(xq1,x2) = ¢(x1 — z2). Reciprocally, if such
an expression holds, S-sufficiency holds and:

_ C(.CL'l - .CL'Q)
14 c(xy — o)

Pr(iyp =1Ly =0 | y1 +y2 = 1,21, 22, €) (A1)

Proof of Theorem 2.2 We adapt the proof of Chamberlain (1992), Theorem 2, page 7.
Define first the vector of probabilities:

Pr(uy < —(z18 +¢),us < (220 + €))

| Pr(uw > —(z18+¢),us < (228 +¢))
a(z,¢,8) = Pr(u; < —(z:184¢),us > — (220 + ¢))
Pr(uy > —(z18+¢),uz > —(20 +¢))

to be able to write:

Lemma A.1 The semi-parametric efficiency bound Iy = 0 for all B in © unless the distri-
bution function of random shocks is such that:

Vo, 2030 = (Y1, 99,%3,%4) € R* such that: (A.2)
Ve € R, ¢'a(z,6,8) =0
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Proof. See Chamberlain (1992) marginally adapting the proof to the case where u; and
uy are not independent. m

Second, fix z; and z9. By Assumption R1(iv), € continuously varies over R. Observe that
if ¢ — 400 we must have 1, = 0 and that if ¢ — —oco we must have 1); = 0 (Chamberlain,
1992). Therefore equation (A.2) in the Lemma above is equivalent to:

Yo Pr(u; > —(z218+¢€),u0 < —(298 +¢)) + Y3 Pr(u; < —(z18+¢),us > —(226+¢)) =0

which is equivalent to:

Pr(uy > —(z18+¢),us < —(2f +¢)) _ ¥
Pr(uy < —(z18 +¢),us > — (220 +¢)) ¥y

where this ratio is independent of e. Tt is equation (2.1) and by equivalence, Condition S
stated in Lemma 2.1. Reciprocally, if condition S holds then the semi-parametric efficiency
bound I, # 0 since the conditional likelihood estimator is \/n-consistent.

B Proofs of Theorem 3.1

Proof of Theorem 3.1 Claim 1 is proven by using monotonicity properties of probability
functions, limit conditions and assumption R1 (%ii).

We now prove claims 2 and 3. The proof proceeds by reparametrizing the problem as:
_A+h  A-h

> T Ty

x1

and by observing that by R1(i) and R1(iv), pairs (A, h) span all R?. Let:

A+h <A—h

M(h,A):P(U1§ 2 ,Ug > 2 )
and A+h A—h A—h
K(h,A) = P(uy > 2* up € S = Pl < S52) = M(h,A)
G(h,A) = Pu; < %,ug > #) — Plu; < #) ~“M(h,A) (B

Using these expressions and condition (S):
K(h, A) = c(h)G(h,A),

we can write

A+h A—h
G0 A) = K (1 A) = (1= c(R)G(h, A) = Pluy < =) = Plu < =)
By normalization, ¢(0) = 1, and thus :
VA € B Pluy < 2) = Pl < £) = F(5)



and :

Using equation (B.1) :
F(554) — c(h) F(557)

MA) = =G

which is equation (3.1) in the text.

Observe that equation (3.1) tends to 0/0 when h = 27 — 9 — 0. As the numerator
and denominator are continuously differentiable, we can do Taylor expansions around points
T = T9.

F(zy) = F(x1) + (z2 — 21) f(21) + oz — 1)
c(xy —x) = 1+(0)(z1 — x2) + o(xg — x1)

where f(z1) >0 (R1(ii)), ¢/(0) < 0 (Claim 1 of this Theorem) and:

lim o(xg —x1)/(xe —21) =0
x1—29—0

By taking limits of the numerator and denominator of equation (3.1) divided by (x1 — x2),
we have:

f(x1)
c'(0)

As the joint density function is continuous and bounded, we can continuously differentiate

Pr(u; < z1,us < 1) = F(x) + (B.2)

this last equation two times and the result is continuous and bounded. Therefore, F(.)
necessarily is three-times continuously differentiable and f” is bounded (Claim 4).

C Proof of Proposition 3.2

The proof of this proposition proceeds in various steps. We first exhibit a condition of
symmetry which substantially simplifies proofs below. We then derive the joint density
function of (uy,us) and the distribution of u; — uy. We finally derive the expression of
function ¢(.) and conditions P1 and P2 stated in the Proposition.

A Technical Simplification: Exploiting the Symmetry of the Problem There
is a fundamental symmetry in the problem with respect to the disturbances u; and wus.
Symmetry is a direct consequence of condition (S). If we change u; into us and usy into uy,
we change c(h) into 1/¢(h). By Theorem 3.1, we also know that the marginal distributions
of u; and uy are identical and equal to F'(.). We can therefore limit the proofs below to the
case, h > 0, provided that we verify the conditions bearing on the straight representation
¢(h) and on the reverse representation 1/c(h). This property is summarized quite informally
by:

Lemma C.1 If Condition S holds and if conditions for c(h) and 1/c(h) hold for any h > 0,
they globally hold for c(h).
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The Joint Density Function The joint density function is derived by noting that
R1 (i) allows for differentiating two times equation (3.1). The second cross-derivative, or
density function, denoted g(x1, z5) is strictly positive by R1(%ii) and equal to:

Yoy # 295 g(w1,22) = s(21 — 22)(f(21) + f(22)) + 8" (w1 — 22) (F(21) — F(22)) >0 (C.1)

where:
dh) —d 1
(1—c(h))?2 dhl—c

is a negative function since ¢(.) is decreasing. It has a singularity point at h = 0. By

s(h) = <0 (C.2)

continuity, we nevertheless can obtain g(z1,z1) (see below Proof of Proposition 3.3).

The Distribution of u; — us Observe that symmetry (Lemma C.1) can be used.
Interverting u; and wy transforms the distribution of u; — uy into the distribution of the
opposite uy — u;.

Consider then A > 0 and use equation (C.1) to write Pr(u; —ug > h) as:

/ °°/ - [s(z1 — 22)(f (z2) + f(21)) + &' (21 — 22)(F(z1) — F(2))] daydas

Setting 7 = x1 — x5, we get :

Pr(uy — up > h) — /+OO />h () (F () + Fas + 7)) + 5(7) (F 4+ 7) — F(22))] daradlr

Observe that:

1
s(r)dr=1—

T>h 1 —c(h)’ /T>h #(r)dr = =s(h),

because equation (C.2), because limy,_, |~ T = 1 (Theorem 3.1) and because limy,_, 4o $(h) =

0 by definition (C.2). Namely, ¢(.) is decreasing and tending to 0 when h tends to zero so
that ¢’ tends to 0.

Using also:
/T (s (a7 +5(7) Pl + 7)) = =s(h) P + 1)
we get:
Pr(us —us > h)— /:o {(1 - %M)f(xz) — s(B)(F(za+ h) — F(z2))| das
-1+ _1c(h) — s(h) /:O (F(z + h) — F(z)]da

Given that all functions in this expression are well defined,

vh: ' / :o [Pz + h) — F(z)]dz| < +00

16



so that differentiation w.r.t h and integration can be permuted:
d 400
T | [F(z+h)— F(x)]de =1
As the integral takes value 0 when h = 0, we obtain :

/ Pt h) - F)]de = h

[e.9]

Replacing the integral in the expression of Pr(u; — us > h) yields:

Pr(u; —us >h)=1-— T—etn) ~ s(h)h
Denoting ¢(h) = Pr(u; — ug < h):
o) = = + )b = s (C3)

using equation (C.2). Symmetry (Lemma C.1) can be checked and this formula applies to
h < 0 and by continuity to h = 0.

Conditions on the Distribution Function ¢(.): (Conditions P1 and P2) We
now seek ¢(.) as a function of ¢(.) and derive necessary conditions on ¢(.). First, integrate
equation (C.3) to get:

h —/0 o(r)dr+ A (C4)

l—c
where A is a constant of integration to be found. As l%c is equal to —ﬁ > (0 when h = 0,
1

70) > 0. The following lemma determines A.

A is equal to —

Lemma C.2 .
A= /0 To(T)dr
where p(h) = ¢'(h) is the density function of u; — us.
Proof. Let h > 0 and consider the joint density function given by equation (C.1):
s(h)(f(x+h) + f(z)) + 8 (h)(F(x +h) — F(z)) >0
where s(h) is a negative function. Use equation (C.3) to write:

1 1

and integrate by parts the integral in equation (C.4):

h
1—c

— ho(h) — /0 ro(r)dr + A

17



to get: ,
s(h) = 51 /0 r(r)dr — A). (C.5)

As s(h) <0, foh’ T(7)dr is bounded by A. Thus:
lim he(h) =0 (C.6)

h—-+o0
Rewriting equation (C.1) using s(h) < 0 and F'(z + h) — F(x) > 0 for any h > 0:

o flet+th)+flz) SR
Y0 e = Fla) ~  s(h)

Replacing s(h) by its expression (C.5) implies that:
h 2 ho(h
Wh>0ve JEEMHf@ 2 o(h)
Flx+h)—F(z) h A- Jo To(T)dT

Taking limits when h — oo yields:

f@) o helh)

Vo, 0< ol <
L= Fz) = n=voe 4 — [l 7e(r)dr

Therefore:

ho(h
38, > 0; lim f( )
h—+oo A — fo To(T)dT

Because of equation (C.6), the numerator tends to zero and the limit of the denominator is

> [y (C.7)

thus necessarily equal to zero. m
Replacing A by its expression in equation (C.4) and inverting it, yields:

e(h)=1- h
ho(h) —i—fh To(T)dT

To finish the proof and obtain conditions P1 and P2, we use symmetry (Lemma C.1). The

reverse representation consists in changing w; into us and vice-versa. Observe that if ¢,
is the distribution of the opposite (u2 — u;), we have ¢,.(h) = 1 — ¢(—h) and therefore
¢, (h) = ¢(—=h). Apply Lemma C.2 to that distribution to show that A, = fi)oo To(T)dT i8
finite. As u; and us have the same distribution and E(u; — ug) is finite because A and A,
are, it is necessarily equal to zero. Thus, we get Property P1:

+oo —00
0< / To(T)dr = / Tp(T)dT < 400. (C.8)
0 0
Second, consider equation (C.7) and apply it to the reverse representation to get Property
P2: holh
36, > 0; lim | fup(h) | > . (C.9)

h—+/—00 f]joo To(T)dT

We can also summarize the properties of s(h) proven in this section and needed below:

s(h) = —% h " ro(r)dr (C.10)
s'(h) 2 he(h)
B s(h) — h * h+°° T(T)dT (C-11)

18



D Proofs of Proposition 3.3, Theorem 3.4 and Corol-

lary 3.5
Proof of Proposition 3.3 As s(h) is strictly negative, equation (C.1) for A > 0 is equiv-
alent to : \h
Vh > 0,Vz; f(z+ h) + f(z) < _Z((h)) (F(z+h) — F(x)) (D.1)

and therefore, using equation (C.11):

F(x+h) — F(x) h*p(h)  (F(z+h)— F(x))

h oo

flx+h)+ f(z) -2 . To(7)dT h

When h tends to zero, we can expand the LHS to the third order as F(.) is continuously
differentiable three times (Theorem 3.1):
h2

= J(@) + ')y + @)+ olh)

F(z +h) — F()
h

Fla+ )+ £(@) = 2 (@) + @+ @) + olh)

Therefore, when h — 0 the LHS is equivalent to :

h2

)%

Using first order expansions, the RHS is equivalent when h — 0 to :

As f(z) > 0, equation (D.1) therefore implies Property P3:

R0
va; f(z) < f0+°°7-<,0(7')d7'

In an appendix available upon request, it is proven that mixtures of zero mean normal
variates verify this condition. Precision is the mixing parameter and is Gamma distributed
of parameter 6 and A. Then:

7 (z) 6+1/2

max ey = aeer a0t

and for any 6 > 0, we can choose A > 0 to satisfy property P3.
In conclusion to this proof, and using equations (C.10) and (C.1), the density function
on the 45° line can be written by continuity as:

g(z,z) = (f(2)p(0) — f (w)/o ) Tp(r)dT/6) > 0
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Proof of Theorem 3.4 To prove that equations (3.1) and (3.2) define a joint distribution
function that verifies assumption R1 (i) and Condition S we shall prove that the joint density
function that these equations define, exists everywhere, is continuous, bounded and positive.
Using equation (C.1), it is easy to see that it is defined everywhere (including for z; = x5 as
proved in the previous sub-section) and is continuous and bounded since f” and ¢ are.

Let us prove that the joint density is positive. We consider the case h > 0 only and rely
on symmetry (Lemma C.1) for A < 0 and on continuity for h = 0.

First it is proven in a Lemma available upon request that if condition P3 is satisfied (i.e.

Va; ];7((;)) < a?) then :

h > 0,05 LSS (o ) = Flo) > (f(o 1) + £(0) D2)

where sh(.) and ch(.) are hyperbolic sine and cosine functions. Second, if the following
property holds:

h(ah) 2 he(h '(h
3a>o;wz>o;;‘sﬂ<—+ olh) __s(h) (D.3)

h(ah) —1 A fh+°° To(T)dT s(h)

then equation (D.2) yields:

/
h
Vh > 0, Vz; _Z((h)) (F(x+h)— F(x)) > (f(xr+h)+ f(z))
which proves by equation (C.1) that the joint density is positive. To finish the proof of
Theorem 3.4, equation (D.3) shall thus be proven.

Observe first that the limit when A — oo of 32253@1 — 2 is equal to o and that:

3( ash(ah) _2)__ a? +3>0
oh'ch(ah) =1 1)~ ch(ah) -1 B~
because ch(ah) — 1 > (ah)?/2 for h > 0. Then:

ash(ah) 2
— = _Z<a
ch(ah) =1 h —
Use condition P.2 to define 3, and M such that:
he(h)
/ ]joo T(T)dr
Set o < 3, and equation (D.3) is then verified for any A > M.
Consider now h < M. Equation (D.3) can be rewritten as :

Vh > M, >

2. sh(ah) 2 p(h)

ah(chlah) —1) @k = TP rp(rydr

In a Lemma available upon request, we prove that the expression between brackets on the

RHS is positive and less or equal to 1/6. Set 3, to:

8= min -2 __
0sh<M [T 1p(T)dT
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As ¢(h) is positive and continuous and as the minimum is taken over a compact set, 3; > 0.
Therefore, choose a < (63;)"? and equation (D.3) is satisfied for h < M. In conclusion,
provided that o < min(3,, (63,)'/?), equation (D.3) is satisfied for any h > 0. Using the
reverse representation (Lemma C.1), we can prove that it is satisfied for any h. It also proves

that if equation (D.3) is verified for o than it is verified for any o/ < a.

Proof of Corollary 3.5 wu; and us are assumed to be independent. Then, equation (B.2)

implies that :

(F@) = Fla) + 50
For any z, 0 < F(z) < 1 by condition R1(4ii). Denote:
Ae) = ~logl )
Equation (D.4) implies that :
V) — @)

F(z)(1 = F(z))

Integrating this equation and imposing F'(0) = 3, we get the expression for F(z).

equation (3.1) we get the expression for ¢(h).
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Appendix available upon request
containing
technical lemmas

Proof of the convexity inequality used in the proof of Theorem 3.4

Lemma D.1 When Vz; J;:(%) <a?, a>0 then :

ch(ah) —1

Vh > 0 F(x+h) = F(e) > = oo

(f(z +h) + f(2))
where sh(.) and ch(.) are the hyperbolic sine and cosine functions
Proof. For any A € [0,1] let :
m(A) = f(x + Ah) >0

and observe that m(0) = f(z) and m(1) = f(z + h). The condition J}(—(zm)) < o? implies that:

Define also function g(\) such that:

f(z + h)sh(ahX) + f(x)sh(ah(l — X))

9 = sh(ah)

Observe that:

As the degree convexity of ¢(.) is “larger” than the degree of convexity of m(.), we now show
that:
m(A) > g(\) for any A €]0, 1]

Let ¥(A) = m(A) — g(A). Observe that ¥(0) = 0, ¥(1) = 0 and that W()) is twice
differentiable. Thus:

Because m(A) > 0 and the inequalities above:
TN <0=T(N\)<0

Assume, by contradiction, JXg; ¥(Ag) < 0. As W(.) is continuous, (A1, A2) such that
A1 < Ao < A and such that ¥(A;) = W(Xy) = 0. Then VA €]\, Ao[, ¥(A) < 0 and
U”(A) < 0. It is a contradiction since it is not possible to construct a twice differentiable
concave function in a interval where it takes value 0 at the end points and is negative in
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between. Thus, W(A\) > 0. By contradiction assume that 3y €]0,1[; ¥(Ao) = 0. It is
impossible since ¥ would be concave at that point. Therefore ¥(A) > 0 for any interior

point.
Returning to the main argument we therefore have :
F(x +h) — / f(u du—/fx+h)\hd)\ h/m
> h/ NdA = h / f(x + h)sh(ahA) + f(z)sh(ah(l — )\))d)\)
sh(ah)

using the definition of g(.). Thus, by symmetry :

Plo-+h) = F) 2 i | a0 (fa+ 1)+ fia)

and the proof finishes by integrating the RHS. m

Mixtures of normals Assume that f(z) is a mixture of zero mean normal variates such
that the precision is heterogenous:

= OOL /2 exp(—0z?
0= [t el Do)

where p(#) is a Gamma density function of parameter ¢ and A:

B A0° L exp(—\6)

First, we get:
* 1
- ——0Y2(—0 + 0°27) exp(—022/2) u(0)d0O
/0 Nor ( ) exp(—0z~/2)u(0)
Second:

1

o= [T g pr e MO exp(=A0)

D) de

T(6 4 1/2))° /°° (X + 22/2)0T205F1/ 2L oxp(— (X 4 22/2)6) W
V2rT (8) (A + 22/2)8+1/2 I'(6+1/2)
L6+ 1/2)X°

V27D (6)(A + 22/2)6+1/2
because the expression under the integral sign is the density of a Gamma distribution of
parameter § + 1/2 and A + z2/2. Therefore:

f (@) = fla)(~ED + 2B
when 0 is distributed Gamma with parameter § + 1 /2 and X + z%/2. Thus:

[l 6+1/2 x2(5+1/2)(5+3/2)
fl@) — Afa?)2 (A +2%/2)
B 5+1/2 9 9
§41/2 )
_ —(}\+$2/2)2(—)\+x (6+1))
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It is a symmetric function. When x = 0 it is negative and when x tends to oo it is equal to
0. Its derivative is of the same sign that:

22(6 + 1)(A + 2%/2) — (

= (6+1)(22)\ + 2 — 2%

= 2(2\(6+2) — (6 + 1)z?)

A+ 22 (6+1))22
+ 2z

which is equal to zero only once for positive z at = 2A(§ +2)/(6 +1). At that point, ff(—(f))
is maximum and equal to:
frlx) 6412 2
= o+1
My @ty

Futhermore, consider the convolution of that distribution with any symmetric around 0

distribution:
A0) = [ 1= )by
Then if f7/f < o then f,”/f, < o. Property P3 is not affected by taking convolutions of f.

Proof of a Technical Lemma used in the Proof of Theorem 3.4.

Lemma D.2 For anyy >0
sh(y) 2
V(y) = —F—— — — €/0,1/6
) y(chly) —1) y? 10.1/6]
Proof. First, lim, .., ¥(y) = 0. We now prove that ¥(0) = 1/6 and that ¥'(y) < 0.
i). When y — 0, we can replace hyperbolic functions by their expansions:

sh(y) ~y+y°/6  ch(y) =~ 1+y°/2+y"/24

Then : . ) .
() ~ YUFY/6) — 2024y /24 ]
y?y?/2 6

and therefore :
. 1
U(0) =lim ¥(y) = 8

y—0
d  shy 1
ii). We h ing — = — :
ii). We have, using ay (chy — 1) hy —1
shy 1 4
V(y) = - - +—
y*(chy —1)  y(chy —1) ¢
_ —(shy+y) 4
y*(chy —1) = ¢
We use that for any y > 0:
shy > Y
chy —1> 4?/2
—(sh < =2
S < 2/y 2chy —1) = 4
y*(chy —1) ~ e !

and therefore ¥'(y) <0 m
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