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Abstract

We consider a finite society with of individuals distributed along the
real line. The individuals form jurisdictions to consume public projects,
equally share their costs and, in addition, bear a transportation cost
to the location of the project. We examine a core and Nash notions
of stable jurisdiction structures and show that in hedonic games both
solution sets could be empty. We demonstrate that in a quasi-hedonic
set-up there is a Nash stable partition, but, in general, there are no
core stable partitions. We then examine a subclass of societies that
admits the existence of both types of stable partitions.
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1 Introduction

We consider a model with a finite number of agents who form juris-
dictions that partition the society into pairwise disjoint groups. Each ju-
risdiction selects a public project (Mas-Colell (1980)) from the given uni-
dimensional set represented by an interval, and then shares the project cost
among its members. The projects in our set-up are “horizontally differ-
entiated,” where the agents display distinct preferences over the project
space. For simplicity, we choose a paradigm of geographical location of pub-
lic projects (schools, hospitals, libraries), which serves as a parameter of
horizontal differentiation.

A majority of environments where agents can form groups to conduct
some type of economic activity are characterized by the basic conflict be-
tween increasing returns to scale and heterogeneity of agents’ characteristics
and tastes. The increasing returns to scale tend to support the creation of
large groups, even the grand coalition, whereas the group heterogeneity may
tip the scale in favor of smaller groups. In general, the benefits of size are
neither negligible nor unlimited and we may observe the emergence of group
structures which consist of groups smaller than the grand coalition but larger
than singletons. The group formation problem of the type described here
contains three major components (see, e.g., Le Breton and Weber (2004)):

e composition of formed jurisdictions;

e project choices within each jurisdiction;

e the mechanism of sharing the project costs among agents within the
same jurisdiction.

The analysis of stability of group formation is centered on the joint
examination of these three components that guarantee the stability of the
jurisdiction structure under various forms of “secession” and “migration”
threats, and in this paper we focus on the examination of cooperative (core)
and noncooperative (Nash) notions of stability of jurisdiction structures.

In our model each agent incurs two types of costs. One is her contri-
bution towards the cost of public project described above. The second is
“transportation” cost, or disutility, stemming from the fact that the specific
choice of public project made by the jurisdiction to which she belongs, in
general, differs from her top choice. We further impose the efficiency princi-
ple that yields the project location that minimizes the total transportation
cost of the jurisdiction. Under the linearity of transportation costs, the effi-
ciency amounts to the median voter rule, where the project is placed at the
location of the median agent in the jurisdiction. Since a median agent may



not be uniquely determined, we have to specify the selection from the me-
dian set. In the first part of our analysis we avoid this problem by adopting
the MM rule that selects the mean of the two extreme medians of a given
jurisdiction. We later relax this assumption by allowing a jurisdiction to
place the project at any point of its median set.

The recent literature on cost sharing methods in this context contains
two trends. Le Breton and Weber (2003), (2004, Haimanko, Le Breton and
Weber (2004), Dreze, Le Breton, and Weber (2006)) adopt the transferable
utility framework and an unrestricted set of cost sharing allocations within
every jurisdiction. However, in many situations the degree of freedom in
selecting a redistribution scheme could be severely restricted by customs or
law, and the side payments are virtually impossible. In this paper we follow
the alternative approach (Alesina and Spolaore (1997), Casella (2001), Je-
hiel and Scotchmer (1997, 2001), Haimanko, Le Breton and Weber (2005))
who consider an Equal Share — ES scheme where all members of the same
jurisdiction make an equal contribution towards the project cost. The in-
terpretation is that agents are hold responsible for their preferences, and
are not compensated for being away from the public project. Thus, agents
located in the proximity of the public project incur a lower cost than those
who are distant from the location of the public project.

The resolution of cost sharing mechanism and location of public project
reduces the jurisdiction formation problem to a search for coalition struc-
tures that are stable under median and equal share rules. Note that un-
der MM and ES rules our framework falls into the class of hedonic games
(Banerjee, Konishi and Sénmez (2001), Bogomolnaia and Jackson (2002)),
where once a coalition is formed, one can uniquely determine the payoff of
all its members. Hence, every agent forms well-defined preferences over pos-
sible jurisdictions she could be a member of. This framework allows us to
consider both a cooperative stability notion (core), which is immune against
deviations by any group of agents, and the non-cooperative Nash notion of
stability, when only single agents can contemplate switching jurisdictions.
Our results show that, in general, both core and Nash stable partitions may
fail to exist. Both sets are, however, nonempty in the special case of equidis-
tant societies, i.e, those with equal distances between every two adjacent
agents.

One may argue that the lack of stable partitions is due to the rigidity
of the hedonic framework where no jurisdiction can alter its pre-determined
choice. Thus, we consider a quasi-hedonic modification of the game by allow-
ing the project location at any of the jurisdiction medians. We demonstrate
that the quasi-hedonic framework does not remove a possibility of empty



core. However, by applying the technique of potential games (Rosenthal
(1973) and Monderer and Shapley (1996)), we were able to demonstrate the
existence of Nash stable partitions in this case.

Given the importance of agents’ locations in our framework, we also
investigate the existence of a stable jurisdiction structure which is stratified
or consecutive, where, to recall, a jurisdiction is consecutive if for every two
its members at different locations, all agents with “intermediate” locations
belong to the same jurisdiction. It turns out that every Nash stable partition
is consecutive. The situation, however, is more intricate regarding the core
stability, and we show that a consecutive core stable partition may fail to
exist even if the set of core stable partitions is nonempty. Moreover, there
are non-consecutive core stable partitions even in equidistant societies.!

The paper is organized as follows. In the next section we present the
model and definitions. Section 3 is devoted to the results on hedonic setting,
whereas the quasi-hedonic framework is investigated in Section 4. We sketch
the proofs and discuss the intuition of the results in Sections 3 and 4 whereas
their formal proofs are relegated to the Appendix.

2 The Model

We consider a finite set N = {1,...,n} of agents. Each agent has
symmetric single-peaked preferences over the bounded interval I of the real
line IR. The single-peakedness and symmetry of preferences allow us to
fully characterize an agent i by her ideal point I’ and we will refer to [’
as the location of the agent ¢. Assume, without loss of generality, that
<< <

The society IV can be partitioned into one or more jurisdictions. When
formed, each jurisdiction has to choose a public project from I. The total
cost of a public project is g > 0, which is given exogenously and is indepen-
dent of the composition of a jurisdiction.? For simplicity, let us put g = 1.
We impose budget balancedness so that members of every jurisdiction fi-
nance the cost of their own project according to the chosen cost-sharing
rule. Throughout the paper we assume that the cost is financed according

!This result is in contrast to Alesina and Spolaore (1997) who consider the contin-
uous and uniform distribution of agents and rule out a possibility of formation of non-
consecutive jurisdictions.

2This restriction can be easily relaxed by assuming that the cost of the public project
is positively correlated with the size of the jurisdiction, namely, g(S) = g + a#S, where
g and « are positive parameters, and #S stands for the cardinality of the set S.



to the Equal share (ES) rule, which requires the equal contribution % of
each member of jurisdiction S.

In addition to her contribution towards the financing of the public project,
every jurisdiction member incurs a transportation cost, d(I*,1), between her
own location and that of the public project at I. We assume that the trans-
portation costs of all agents are linear; precisely, d(I*,1) = |l — I|.

For every jurisdiction S denote by M (S) the set of its median project
locations:

M(S) = {l € S :min[#{i € S|I' <1}, #{i € S|I' > 1}] > ;#S} (D

That is, [ is a median location of the jurisdiction S if, at least, half of the
members of S are located to the left of [ and at [, and, at least, half are
located to the right of [ and at [ itself. It is easy to see that M(S) is
a nonempty interval. Under the assumption of linearity of transportation
costs, every jurisdiction that minimizes its aggregate transportation cost,
D(S), must place the public project at one of its median locations. Since
the median set M (S) is not necessarily a singleton, we need to specify a
selection rule from this set.

We first consider the case with the pre-determined selection rule by as-
suming that every jurisdiction S, if it forms, always chooses the mean m(S)
of two extreme points of the median set M (S). Thus, m(S) is equidistant
from the endpoints of M (S). (Obviously, if the set M (.S) consists of a single
point, this very point will be chosen by S.) We will call this selection mech-
anism the MM rule and examine it in the next section. We further relax
the exogeneity of the selection rule and allow a jurisdiction to choose any
alternative location from the median set M (S).

It is important to note that the ES and MM rules define a hedonic game:
once a jurisdiction is formed, the total cost for each its member is uniquely
determined. Specifically, a member ¢ of jurisdiction S incurs the total cost

ei(8) = |m(S) — '] + #15. ()

Thus, every agent has well-defined preferences over the set of jurisdictions to
which she could belong, and the cost of all agents is fully determined once



we know the partition of the society into jurisdictions. Note that in this
paper, the gross benefits derived from the consumption of the public good
are not specified and are assumed only to be large enough to rule out the
possibility that any agent would be left out of all jurisdictions that produce
public projects. In order to guarantee this voluntary participation, it suffice
to assume that benefits exceed the project cost.

We first consider the standard notion of core stability, where a partition
P is core stable if no group of agents (not necessarily from the same juris-
diction) could reduce their costs by creating their own jurisdiction. This
notion is closely related to that of the core of a coalition structure (Aumann
and Dreze (1974)):

Definition 2.1: Let P = {S1,..., Sk} be a jurisdiction structure. We say
that a jurisdiction S C N blocks P if

for all i € S, where k(i) is the number of the jurisdiction in P that
contains ¢. A jurisdiction structure P is called core stable if there
exists no jurisdiction S which blocks P.

The next definition of Nash stability can be viewed as a free mobility
equilibrium, where no agent has an incentive to move to either another ju-
risdiction or to the “empty” one.

Definition 2.2: A jurisdiction structure P = {S1,...,Sk} is called Nash
stable if

¢i(Skwy) <9 and  ¢i(Sk)) < ci(SpU{i}) (4)
for every agent ¢ and all S € P.

Note that a Nash stable jurisdiction structure is, in fact, a pure strategies
Nash equilibrium of the non-cooperative game, where each agent announces
her “address” and all the agents with the same address form a jurisdiction
(Le Breton and Weber (2004)).

Since by Definition 2.2, an individual can contemplate move to another
jurisdiction without the consent of its members, some or even all of them
could be worse off after this move, which is impossible under the core sta-
bility. Thus, there is no logical connection between the notions of core and
Nash stability.



We will examine both notions of stability and examine the existence
of core and Nash stable jurisdiction structures. When a stable partition
exists, we will investigate its stratification or consecutiveness properties (cf.
Greenberg and Weber (1986)):

Definition 2.3: A jurisdiction S C N is consecutive if for all i,k € S,
1" < I, every agent j with I' < I < [¥ also belongs to S.

It would be useful to introduce an additional notation. For every juris-
diction S we denote by L(S) the minimal interval that contains locations
of all members of S. Obviously, L(S) is the convex hull of locations of all
peripheral members of S. Denote by L(S) the interior of L(S). Then, ac-
cording to Definition 2.2, a jurisdiction S is consecutive if there is no agent
j & S, whose location I/ lies in the interior of L(S), i.e. I¥ € L(S). This in-
terpretation of consecutiveness allows to introduce the notion of consecutive
partition:

Definition 2.4: A partition P = {S1,...,Sk} is consecutive if for every
two jurisdictions Sk, S; € P, Sk # Sy, the intersection L(Sg) () L(St)
is empty.

Obviously, every jurisdiction in a consecutive partition is consecutive,
whereas the opposite is not necessarily true. Indeed, consider the following
society with four agents, 1,2,3,4, where [! = [? < [3 = [*. By Definition
2.3, jurisdictions S7 = {1,3} and Sy = {2,4} are consecutive. However, the
partition {S1, S2} is not. Indeed, the intervals L(S1) and L(S2) are identical
and have a common nonempty interior.

3 Results on Hedonic Games

Our first result indicates that there could be a society without core stable
partitions:

Proposition 3.1: Under ES and MM rules, a core stable jurisdiction struc-
ture may fail to exist.

Consider a society with eight agents, located at the points I' = 0, 12 =

B=U'=A=L P=B=34=3andl6=1"=8=C=4 -6, where s

is a small positive number (see Figure 1).
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Figure 1. A society that admits no core stable jurisdiction structure under ES and MM rules.

The complete proof of the fact that this society does not admit a core
stable jurisdictional structure, as well as of all other results of the paper, is
relegated to the Appendix. Here we provide the sketch of the proof.

In this example there are three groups of agents: agent 1 at 0 on the
left, agents 2,3,4,5, located in the middle at points A and B, and agents
6,7,8 located at C on the right. The last three should be together in the
same jurisdiction; moreover, they would prefer to be together with 2,3,4,5
in the jurisdiction N \ {1}. But if N \ {1} forms, then agent 1, together
with the group 6, 7,8 would form a blocking jurisdiction. Next, if {1,6,7,8}
forms, the agents 2, 3,4, 5 would offer agent 1 to form a blocking jurisdiction
{1,2,3,4,5}. But then, again, agents 6, 7,8 together with agents 2,3,4,5
are better off in the jurisdiction N \ {1}. Thus, there is a blocking cycle
of “dividing a dollar” type game, and since the grand jurisdiction IV is not
core stable, no core stable partition would emerge.

It is important to point out that a core stable jurisdiction structure P
does not need to be consecutive. Moreover, even when a particular society
admits core stable jurisdiction structures, it could be the case that none of
these stable structures is consecutive.

Proposition 3.2: Under ES and MM rules, a consecutive core stable ju-
risdiction structure may fail to exist even if the set of core stable
jurisdiction structures is nonempty.

Consider the following example with 34 agents, where [' =0, > = ... =
114 = a, ll5 — l16 — ll? — b, 118 - ... = l27 = ¢, and l28 - ... = l34 =d
(see Figure 2). The exact values of a, b, ¢, d are defined in the Appendix; one
can, however, notice their relative values on Figure 2, where d ~ 1/4. We
claim that for this society, a set of core stable jurisdiction structures, while
being nonempty, contains no consecutive partitions.
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Figure 2. A society which admits a core stable partition, but with no consecutive core stable partitions.

There are three groups of agents: agent 1, located at the far left, a large
group C' of 26 agents, located around the middle (but not at the same lo-
cation), and a medium size group R of 7 agents located on the right. The
large group C' would not admit either of the smaller groups, since such an
admission would shift the median of C' and could make some of its members
worse off. At the same time the group R would accept agent 1, who, given
increasing returns to scale, would be happy to join a larger group. Thus,
there is a core stable partition which consists of two jurisdictions, the group
in the middle C' and the union of two smaller groups {1} J R, while there
are no consecutive core stable jurisdiction structures.

Even though a core stable structure may fail to exist, there are societies
that do admit core stable (and even consecutive) jurisdiction structures.
One such class is equidistant societies, where the distance between every
two adjacent agents is the same. Formally, a society IV is equidistant if
there exists [ > 0, such that I — "1 =1 for i = 2,...,n. We have

Proposition 3.3: Under ES and MM rules, every equidistant society ad-
mits a core stable consecutive jurisdiction structure.

However, even in this case, there could exist a non-consecutive core stable
jurisdiction structure:

Proposition 3.4: There exist equidistant societies, that, under ES and
MM rules, admit a core stable non-consecutive jurisdiction structure.

To show an example of an equidistant society with a core stable non-
consecutive jurisdiction structure, consider eight agents {1, ..., 8}, and their
two-jurisdiction partition P = {{2,3,4,5}, {1,6,7,8}}. We choose the dis-
tance [ between adjacent agents in such a way that (i) the lowest cost of a



peripheral® agent in a consecutive jurisdiction of size k is attained at k = 4;
and (ii) agent 1 prefers jurisdiction {1,6,7,8} to staying alone. Then no
group of agents can block, since in any jurisdiction, different from {1}, at
least one agent, who is not 1, is peripheral, and thus she would face a cost
at least as high as in P.

Proposition 3.3 is, in fact, a finite counterpart of the Alesina and Spo-
laore (1997) result for the continuum of agents uniformly distributed over
the finite interval. However, unlike Alesina and Spolaore, we consider a pos-
sibility of non-consecutive jurisdictions and show in Proposition 3.4 that a
core stable partition can be non-consecutive. While the lack of consecutive-
ness in core stable structures may seem counterintuitive, the phenomenon
of nonconsecutive jurisdiction formation has been noticed in Greenberg and
Weber (1985) and in Brams, Jones and Kilgour (2002).

Let us now turn to Nash stability. Contrary to core stable partitions,
any Nash stable partition is stratified:

Proposition 3.5: Under ES and MM rules, every Nash stable jurisdiction
structure is consecutive. Moreover, in every Nash stable partition, any
two agents located at the same point belong to the same jurisdiction.

The intuition is clear. In a non-consecutive partition, there are two
agents, i € S and j € S’ from different jurisdictions, such that ¢ is closer to
m(S") than j, whereas j is closer to m(S) than ¢. But if ¢ does not want to
switch to S’, then j would have liked to move to S, implying that such a
jurisdictional structure is not Nash stable.

In general, we cannot guarantee Nash stability in our framework. The
source for possible Nash instability is that by moving to another jurisdiction,
an agent necessarily affects the recipient jurisdiction project’s location, and,
therefore, contributions of its members. This argument allows us to con-
struct a “cycle of individual improvements” accompanied by other agents’
cost increases. When the impact of a migrating agent on the project loca-
tion in a new jurisdiction is mitigated (see next section), we obtain the Nash
stability in the quasi-hedonic framework.

Proposition 3.6: Under ES and MM rules, a Nash stable jurisdiction
structure may fail to exist.

3An agent is peripheral in jurisdiction S if her location is either leftmost or rightmost
among all locations of members of S.

10



Consider the following example with five agents, where [' =0, [ = [3 =

23 l4 _ 29 and l5 = % (See Figul“e 3)

30° 30

1 2,3 4 5
Y g r Y Y
0 23/30  29/30 191/120

Figure 3. A society that admits no Nash stable jurisdiction structure.

We will show that, in a Nash stable partition, agents 2 and 3 belong
to the same jurisdiction, and moreover, are joined by agent 4. Given the
formed group T = {2,3,4}, agent 1 will join T" only if agent 5 joins it,
too. However, agent 5 would join 7" only if agent 1 would not. These “cat
and mouse” preferences rule out the existence of a pure strategies Nash
equilibrium.

But, as in the core stability examination, equal distances between every
pair of adjacent agents guarantee Nash stability:

Proposition 3.7: Under ES and MM rules, every equidistant society ad-
mits a Nash stable jurisdiction structure (which, by Proposition 3.5,
is consecutive).

We have already pointed out that there was no logical relationship be-
tween the concepts of stability and Nash stability. It is formally stated by
the following proposition:

Proposition 3.8: Under ES and MM rules,
(i) there exist core stable jurisdiction structures which are not Nash
stable;

(ii) there exist Nash stable jurisdiction structures which are not core
stable.

In fact, we show that in the society examined in Figure 1 with no core
stable partition, the grand jurisdiction is Nash stable. On the other hand,
the society in Figure 3, which does not admit a Nash stable partition, has a
core stable partition P = {{1},{2,3,4},{5}}.

11



4 Quasi-hedonic games

We now relax the MM rule and allow a jurisdiction to choose any project
from its median set. We call this requirement arbitrary median — AM rule.
The ES and AM rules create a quasi-hedonic setting, where the location
of the public project and, hence, the transportation costs are not uniquely
determined by the composition of the jurisdiction when its median set is
not a singleton. To determine the agents’ costs, one has to specify the
pair (P,L), where P = {Si},c.<x is a partition of N, and the set L =
{m1,...,mx} consists of project selections from the corresponding median
sets, i.e., mi € M(Sk). We denote by ¢;(m,S) the total cost of an agent
i € S in this game when S chooses the location m:

¢i(m,S) = |m—li]+#15. (5)

Definition 2.1 of core stability can be modified to the quasi-hedonic set-
ting:

Definition 4.1: Let (P, L) be a pair, where P = {S1,...,Sk} is a juris-
diction structure and L = {mq,...,mg} is a set of locations with
my € M(Sg) for all k =1,..., K. We say that a jurisdiction S C N
blocks (P, L) via m if for all i € §

ci(m, S) < ci(mgy, Sk, (6)

where k(i) is the number of the jurisdiction in P to which i belongs.

A partition (P, L) is called core stable if there is no jurisdiction S and
location m € M (S) such that S blocks (P, L) via m.

Alas, as the following proposition shows, our extension of the set of
possible project choices for all jurisdictions does not guarantee the existence
of a core stable jurisdiction structure:

Proposition 4.2: Under ES and AM rules, a core stable jurisdiction struc-
ture may fail to exist.

Consider a society with five agents, N = {1,2,3,4,5}, whose locations
are given by ' =2 =13 =0,1*=1° = % (see Figure 4).

12
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Figure 4. A society that admits no core stable jurisdiction structure under ES and AM rules.

The essence of this example, similarly to that in Proposition 3.1, is the
same as in the “dividing a dollar” cooperative game. There are three groups
of agents, {1}, {2,3}, {4,5}, which “bribe” each other in the cyclical man-
ner. Indeed, suppose, that the first two groups cooperate by forming the
jurisdiction {1,2,3}. Then, the group {4,5} offers {2,3} to cooperate and
locate the project at the point, say, 1’%, where all agents 1,2, 3,4 are better
off.

Given the jurisdiction {2,3,4,5} is formed, agent 1 would offer the co-
operation to 4 and 5. This again increases the payoff of all three agents
1,4,5. And finally, the group {2, 3} offers 1 to rejoin it as the group {1, 2,3}
guarantees all its members a higher payoff. At the same time, the union of
all groups, {1,2,3,4,5} is unstable, as the jurisdiction {4, 5} would block it.

In order to define Nash stability for quasi-hedonic games, we have to
specify a median shift in the jurisdiction joined by a new member. Note
that for every jurisdiction S and every agent i € S, the relationship between
the median sets of S and S J{i} is given by the following:

Remark 4.3: For every jurisdiction S and every agent i ¢ S, the intersec-
tion of the two sets, M (S) and M (S| J{i}), is a singleton.

In this setup we minimize the impact of a new member on the jurisdic-
tion’s choice of public project. Suppose agent ¢ € T joins jurisdiction S that
has selected public project m € M(S). If m is a median of the enlarged
coalition S" = S J{i} as well, then m will naturally be sustained by S’. If
m is not a median of S’ then, by Remark 4.3, there is a unique project m/
which is the median of both S and S’. In order to preserve consistency of
the median choice by both S and S’, m’ will be chosen by S’. The similar
procedure will be applied to the choice of the median in the jurisdiction T’
abandoned by agent i. We will call this selection mechanism by consistent
median - CM rule.

13



Definition 4.4: Let (P, L) be a pair, where P = {S1,...,Sk} is a juris-
diction structure and L = {mj,...,mg} is a set of locations with
my € M(Sy) for all k =1,..., K. We say that (P, L) is Nash stable
if, for any agent ¢ and for any jurisdiction S € P such that i € Si,
we have

ci(migy, Seey) < g and  cilmygy, Sigy) < (M (S)NM(Sk L), Sk (i)

(7)

It turns out that the CM rule which allows flexibility of jurisdictions’
project choices brings about the existence of a Nash stable partition:

Proposition 4.5: Under ES and CM rules, there exists a Nash stable par-
tition.

To prove this result we use the potential functions approach pioneered by
Rosenthal (1973), and further developed by Monderer and Shapley (1996),
and Konishi, Le Breton and Weber (1997, 1998). In order to apply this
technique in our framework, we define the function 7 over the set P of all
partitions of N and then show that every minimum of 7 yields a pure strate-
gies equilibrium of the quasi-hedonic game.

To conclude, consider again the society in Figure 3 (Proposition 3.6),
where a Nash stable partition fails to exist under ES and MM rules. Con-
sider, however, the partition {{1},{2,3,4},{5}}. Under ES and CM rules,
agent 5 would not join the jurisdiction {2,3,4}. If she were to join, the
location of the public project in the enlarged coalition would remain at the
point % and she would rather stay alone. Thus this partition is Nash stable
under ES and CM rules.

5 Appendix

Since we have already sketched the intuition of Propositions 3.1, 3.6, 4.2,
the completion of the details of the formal proofs are left to the reader.

Proof of Proposition 3.2: Denote N* = {2,...,14}, N* = {15,16, 17},
N¢={18,...,27}, R={28,...,34},and C = N*|JN®|J N¢ (R for “right”,

14



and C for “center”.) The locations a, b, ¢, d obtain the following values:

_ 1. _ 1 2 .
€= %+ 525 + mmgg + 26+ 26; (8)
8 26-27 33:34 )

_ 1 2 2 26
d—g"ﬁ‘mﬁ‘m‘i‘w‘i‘l&'ﬁ-zé—f,

where €,0 and £ are small positive numbers. We shall show that the set
of core stable partitions, while nonempty, does not contain a consecutive
partition.

We will use the following four observations:

() §< g+ <z +d—c<i<g;+d—c+ 5> This implies that
all members of group R have the following preferences:

RlJQ - RJQ - R JC - R> R JC|J{1}, (9)

where @ is any nonempty jurisdiction with fewer than 7 agents, and @’ is
a jurisdiction with exactly 7 agents. That is, all agents located at d, would
prefer to be joined by at least one, but no more than six, other agents, to
being in the jurisdiction with 7 other agents; the latter outcome is preferred
to being in the jurisdiction with all other agents, excluding 1. This, in turn,
is preferable to forming jurisdiction R, whereas the grand coalition is the
least desired option among those listed here.

(i) 95 + ¢ —a < 5. This implies that all members of C prefer C'|JR to
both C'|J{1} and C.

(iii) 55 +c—b~+3(b—a) < 55. This implies that all members of C prefer
C' to participating in a jurisdiction with no more than 23 agents.

(iv) % < 3 + 25%. The members of N¢ prefer C' to C'(J{1}, and thus,
would be worse off when agent 1 joins C.

We first show that the partition P into two jurisdictions, C and {1} U R,
is core stable.

Observation (i) implies that no member of group R would engage in
blocking within the jurisdiction whose median is to the left of d. Thus, a
jurisdiction S, that contains a member of R, could block only if its median
m(S) is located at d, implying that #S < 14. However, observation (iii)
guarantees that no member of C' would find it profitable.

15



Thus, it remains to consider possible blocking threats to P from juris-
dictions S C {1}JC. Observation (iv) implies that {1} |JC itself cannot
block. The case S = {1} is, obviously, impossible; hence, S contains some
agents from C. Observations (iii) and (iv) imply that 23 < #S < 26 and
S contains both types of agents in C, those located to the left and those
located to the right of m(C) = “t°. Since the contribution to finance a
project in S is at least as much as in C, those agents from S to whom m(S)
is not closer than m(C') would reject the membership in S, a contradiction
which shows that P is indeed, core stable.

Now assume, in negation, that there is a consecutive core stable partition
P. First, consider the case where there is S € P that contains C.

If SN R =0, then P is either {{1},C, R} or {{1}|JC, R}. But both
would be blocked by C'|J R, as by observation (i), group R prefers C'|J R to
R, and by observation (ii), C' prefers C'|J R to both C'|J{1} and C.

If SN R # (), then S does not contain agent 1 (otherwise m(S) < m(N),
the grand coalition, and by observation (i), R would block P). But then
{1} U R blocks P.

Consider now the case where C' is not a subset of any jurisdiction from
P. Observation (iii) implies that if all jurisdictions in P contain no more
than 23 agents, C' would block P. Hence, there is a jurisdiction S € P with
#S > 24. Obviously, m(S) < ¢, because no more than 7 agents from S are
located to the right of c.

Let SN R # (. Then, #S > 33, since otherwise 1/#S5+26/(33-7) — & >
1/7 and R will block P. But if #S > 33, then consecutiveness implies that
C C S, a contradiction.

Let SN R = (). Since S is consecutive, the group ({1} JC) \ S contains
two (possibly empty) consecutive groups of agents, denoted by X; and X,
(X is to the left of X,).

We claim that all the agents in R belong to the same jurisdiction 7T
Indeed, if it is not the case then either there exists a (unique, due to con-
secutiveness!) jurisdiction @ € P with @\ R # (), and then RU @ will block
P, or not, in which case R itself will block P.

We now have three cases:

Case 1. #X; = 3 (hence, X, = (}). In this case each of two agents from
X; \ {1} will be better off by joining S. The same holds for every member
of S, since m(SJ{i}) = m(S) = b, where i € X; \ {1}. Hence, P is blocked
by a coalition S J{i}.

Case 2. 0 < #X; < 3. Then, an agent 1 contributes more than %
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At the same time if she joins a jurisdiction T', her contribution would be
not higher then é +d < %, and, again, her migration does not affect m(T).
Hence, T'|J{1} blocks P.

Case 3. X; = (). Then, X, # (), since otherwise S contains C, the case
which has been already covered. Moreover, we have m(S) = a. If a member
of X, migrates to jurisdiction S, she would pay less than in P (where her
contribution is higher than 5)). Since m(S) = m(SU{i}) = a, it follows
that S|J{i} is a blocking coalition.

Therefore, there is no consecutive core stable partition. [J

Proof of Proposition 3.3: Consider an equidistant society where the
distance between any two adjacent agents is [ > 0. Note that in any consec-
utive jurisdiction with & < n agents the total contribution of the peripheral
agent is given by fi(k), where

1 k-1

fl(k) = E + Tl- (10)

We extend the domain of the function f; to the set of all positive real num-
bers, so that the function f : IR, — IR is defined by:

Note that f;(-) is convex, attains its minimum at z* = \/27l, is decreasing
on the interval (0,z*) and is increasing on the interval (z*,00). Thus, we
obtain the existence of an integer k* such that f(k) > f(k*) for all positive
integers k (if there are two such k*, we choose the largest among the two).
This value £* indicates the (optimal) size of a consecutive jurisdictions that
minimizes the cost of the peripheral agents.

If k* > n, we claim that the grand jurisdiction IV is stable. Suppose, in
negation, that there is a jurisdiction .S that blocks N. Then the contribution
of the peripheral agent ¢ in S is, at least, f;(#S). However, the contribution
of 7 in N would be no more than f;(n). The convexity of f implies fi(#S5) >
fi(n) > fi(k*), a contradiction to the fact that coalition S blocks N.
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Consider the case where k* < n. Construct a consecutive partition P,
where, starting with agent 1, all agents are divided into m consecutive juris-
dictions of the size k*, and, possibly, one jurisdiction Q = {mk* +1,...,n}
that consists of fewer than £* agents. We shall show that P is stable.
Assume, to the contrary, that there exists a blocking jurisdiction S and
consider two peripheral agents 7,7 in S. Each of them contributes at least
fi(#S) in S. On the other hand, the maximal contribution of an agent in
N\ Q is fi(k*). Since fi(#S) > fi(k*), and S is a blocking jurisdiction,
it follows that neither i nor j belongs to N \ . Thus, S is a subset of
Q@ with #S < #Q. But the contribution of 7 (and j) in @ does not ex-
ceed f1(#@Q). However, the monotonicity of the function f; to the left of k*
implies fi(#S) > fi(#Q) > fi(k*), which contradicts the assumption of S
being a blocking jurisdiction. [J

Proof of Proposition 3.4: Consider an equidistant society with eight
agents, where the distance between adjacent agents is ! = é. It is easy to ver-
ify that the minimum of the function f;/g(), defined by (11), is 7/16 and is
attained at k* = 4. Consider now the partition P = {{2,3,4,5},{1,6,7,8}},
at which every agent, except 1, pays at most 7/16. But in every jurisdic-
tion S with at least two agents, the peripheral agents pay at least that
amount, and there is a peripheral agent (not agent 1), who will not take
part in blocking via S. As for singletons, even S = {1} does not block P,
since the total contribution of 1 in P is 5—85 —i—% < 1. Thus, P is core stable. [

Proof of Proposition 3.5: Let P be a Nash stable partition. We first
demonstrate that agents in the same location belong to the same jurisdiction
in P. Indeed, if there are two agents ¢ € Sy(;) € P and j € Sy(;) € P with
[" =17, but Sy;) # Sk(;), take the one, say, i, whose total contribution, c;,
is greater or equal to that of j, ¢;. The move of i to Si;) is beneficial to
agent j, both in terms of transportation costs to the median of Sy ;) {4}
and the monetary contribution to financing the public project in a larger
jurisdiction. Thus, the total contributions of i and j in Sy;y [J{i}, denoted
¢; and c}, respectively, satisfy

> > =, (12)

a contradiction to the fact that P is Nash stable. But once this is a case,
it is obvious that consecutiveness of P is guaranteed by consecutiveness of
all the jurisdictions in P. Suppose by contradiction that there exist three
agents, 1, j, k with I* < 7 < [¥, such that i,k € S € P whereas j € S’ € P
with S # S’
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The Nash stability conditions applied for agents ¢ and k imply

7 1 7 / . 1 7 ! 1
|l —m(5)|+% <|l'=m(S U{Z})|+m <l —m(5)|+w, (13)
or
K S I s’ L 1 14
[l —m(S)] — |I" — m( )I<#S,—%' (14)
Similarly,
¥ —m(S)| — |IF —m(S")| < 1 —i. (15)
#S' #S

Since the function |l — m(S)| — [l — m(S’)| is monotone in [, it follows that

. . 1
|l3—m(S)|—|—#S < |l]—m(S')|—|—#S/. (16)
However, the last inequality implies
F-mS UGN+ gy <P -miS)+ g ()

a violation of the Nash stability requirement for j.[J

Proof of Proposition 3.7: The proof proceeds in a sequence of claims.
First, we establish the bounds for the size of the optimal jurisdiction k* that

minimizes the contribution of the peripheral members given by equation
(10).
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Claim 1: X )
kE<k*<k+1, (18)

where k is the (unique) positive solution of the equation

k(k+1)= 7. (19)

Proof: Since the function f is strictly decreasing to the left of its min-
imum and increasing to the right of it, it is easy to see that the minimal
value of f across all positive integers lies within the interval (l;:, k+ 1], where
fi(k) = fi(k+1). (The fact that the left side of the interval is open is due to
the convention to take the largest value of & if there are two minima points.)
But the latter equality implies (18).

Claim 2: Let P be a consecutive partition of N into jurisdictions of
sizes r and r 4+ 1, where k* < r. Then no agent would switch to another
jurisdiction in P.

Proof: Take an agent ¢ € S € P. Her contribution in S does not exceed
f1(#5S). If she joins another jurisdiction 7" € P then ¢ would be peripheral
in T'(J{i} and her contribution would be at least fj(#1 + 1). But since
#S > k*, we have fi(#T + 1) > fi(#S) > fi(k*). Thus, agent i would not
move to another existing jurisdiction in P.

Claim 3: A jurisdiction S contains an agent who would rather stay
alone if and only if #S > %

Proof: For every jurisdiction .S, the incentive to leave and form a one-
agent jurisdiction is strongest for the peripheral members of .S. Their contri-
bution is fj(#S5) = % + #Sgll, which does not exceed 1 if #5 < % Thus,
the peripheral agents would prefer staying in S rather than being alone.

Claim 4: If n > m(m — 1) for some positive integer m, there exists a
consecutive partition of N into consecutive jurisdictions with m or m + 1
members.

Proof: Let Z = m(m — 1). If n = Z, we divide all individuals into
m — 1 jurisdictions of the size m. For all numbers exceeding Z, we set the
following process:

(i) forn = Z+1,...,Z +m — 1 we add one agent to (different) existing
jurisdictions;

(ii) for n = Z + m we create m jurisdictions of the size m;
(iii) forn=Z+14+m,...,Z 4+ 2m — 1, we repeat (i);
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(iv) for n = Z 4 2m we create m + 1 jurisdictions of the size m; etc.

By repeating this process we construct a required partition for every
number n which is not smaller than Z.

We are now in position to prove the assertion of the proposition. By
Claim 2, the grand jurisdiction is Nash stable whenever n < % It remains
to consider the case where n > % By (19), we have

and by Claim 1, o
n>k(k+1) >k (E*—1). (21)

Then by Claim 4, we have a partition of N into jurisdictions of sizes k* and
k* + 1. Thus, by Claims 2 and 3, the proof is completed if £* + 1 < %
It remains, therefore, to consider the case where k* + 1 > % If the last

inequality is satisfied then
- 1
h=—s+\7t7>7-2 (22)

This inequality holds if and only if either < [ > % or [ < % and

2 4 2 9 2
7>*_3*+":’2_\/§§7§2+‘/§' (23)

R PR B

1
4

Combining these two cases, we obtain that the inequality (22) is equivalent
tol>2—+/2.

Then, either [ > 1 or 2 — V2 <1 < 1. In the first case the partition of
N into singletons is Nash stable. In the second case, if n is even, then the
partition of N into consecutive pairs is Nash stable. If n is odd, we claim
that a partition of IV into consecutive pairs and one singleton is Nash stable.
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Indeed, since f;(z) attains its minimum at

V2/1<\/24+V2 <2 (24)

for I > 2 — /2, it follows that k* = 2, and no member of a two-agent ju-
risdiction wants to join another pair. Since [ < 1, no one wants to leave a
two-person jurisdiction, and the inequality £* + 1 > % implies that being

a singleton is preferable over being a member of a three-agent jurisdiction. [J

Proof of Proposition 3.8: Consider a society with eight agents, intro-
duced in Figure 1, where the agents are located on the interval [0, % — 9],
where ¢ is a very small positive number, with the median of the grand ju-
risdiction located at % It is easy to verify that the grand jurisdiction N
is Nash stable, whereas Proposition 3.1 demonstrates that the set of core
stable partitions in this society is empty.

On the other hand, consider a society with five agents given by Figure
3, that was examined in the proof of Proposition 3.6, where the location of
the agents are given by I! = 0, I? = 3 = %, 4= % and I° = %. We
have proved that this society does not admit a Nash stable partition. Let
us show, however, that the partition P = {{1},{2,3,4},{5}} is core stable.

Suppose, in negation, that there exists a blocking jurisdiction S. Assume
that agent 1 belongs to S. If m(S) < %, then #S = 2 and no other agent
would join 1. If m(S) > g—g, agent 1 would join only if S = N (otherwise
her costs exceed one). However, agent 5 would not join N. Hence, S does
not contain 1.

Note that agents 2 and 3 could contemplate joining S only if #5 > 4.
But at {2,3,4,5} they contribute % which exceeds %, the contribution of 2
and 3 in P. Hence, S does not contain either of agents 2 and 3.

Finally, it is trivial to check that neither of jurisdictions {4,5} and {4}

can block P. Thus, P is indeed core stable.[]

Proof of Proposition 4.5: Define a function 7 over the set P of all
partitions of N in such a way that for any partition P = {Sk},o<x € P,
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the value 7(P) is given by

#Sk 1
(D(Sk) S ) . (25)
r=1

K
m(P) =)
k=

1

Suppose that the function m(-) attains its minimum over P at P =
{Sk}i<i<x- (Due to the finiteness of N, this minimum always exists.) We
will prove that, regardless of the choice of project locations my € M(Sy), P
is Nash stable.

Assume that there is an agent i € S € P and a jurisdiction S; € P,
t # k, such that ¢ would be better off by joining the jurisdiction S, i.e.,

Ci<mk, Sk) > Ci(mla St U{Z})> (26)

where m' = M(S;) N M (S;\U{#}) is, by Remark 4.3, uniquely defined and is
chosen according to CM rule.

Denote by P’ € P a partition that is obtained from P by replacing Sy
and S; by Si\{i} and S;|J{i}, respectively. We have

#Sk 1 #Sy 1
m(P) —n(P') = (D(Sk) +D -+ D)+ T) -

#Sk—1 1 #Si+1 1
- (D(Sk\{i})Jr > ;+D(5tU{i})+ > T)

r=1 r=1

= (D(Sy) - D(S\D) + (D(s) - D(si D) + #Sy  H#S A1

Since D(Si\{7}) is the minimum of the aggregate transportation costs in
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jurisdiction Sg\{¢}, we have

D(Sk) = Y |mp—V|=|mp U+ > |my—V|

JESK F€SK\{}

v

I — U]+ > |m” = V| = |my, — '] + D(S\{i}),
Jj€SK\{i}

where m” € M(Sk \ {i}). (A specific choice of m” does not matter here.
For consistency reasons, we may assume that it also satisfies the CM rule.)
Moreover,

DS\ = D = =m =1+ D |m =] = |/ = |+ D(Sy).

jese UL} JESL
Hence, we obtain

1 _ 1
#Sk  #S:+1

7(P) —n(P") > ‘mk - li| - }m' - li‘ + (27)

= (=14 2 )= (1 =+ gy ) = e S0 5t > 0,

which contradicts the initial assumption that the minimum of the function
m(-) is attained at P.

Similarly, assume that there exists an agent 7 € S; who is better off by
forming a one-agent jurisdiction. This move would create a new partition
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P" and we have

#5Sk #Skfll
#(P) — (P ( sk+§j> ( (S + Zﬁl)

A #Sk 1 #S5k— 1
[ — 1] + D(S\ i) + :;( (Sk\{é}) Z " )
r=1

(Ime =01+ ) = 1= eomns S0 = (b, (31) > 0

again, leading to a contradiction.[]
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