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Abstract

In this paper, we analyse the equilibrium of a sequential game-theoretical model of
lobbying, based on Groseclose and Snyder (1996), describing a legislature that votes
on two alternatives and two opposing lobbies, lobby 0 and lobby 1, that compete by
bidding for legislators�votes. In this model there is a strong second-mover advantage,
so the lobbyist moving �rst will make o¤ers to legislators only if he deters any credible
counter-reaction from his opponent, i.e. if he anticipates winning the battle. Our main
focus is on the calculation of the smallest budget that he needs to win the game and on
the distribution of this budget across the legislators. We study the impact of game�s
key parameters on these two variables and show the connection of this problem with
the combinatorics of sets and notions from cooperative game theory.
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In this paper, we consider a theoretical model of lobbying describing a legislature1 that

votes on two alternatives2 and two opposing lobbies, lobby 0 and lobby 1, that compete by

bidding for legislators�votes3. We examine how the voting outcome and the bribes o¤ered

to the legislators depend on the lobbies�willingness to pay, legislators�preferences and the

decision-making process within the legislature.

There are many di¤erent ways to model the lobbying process. In this paper, we adopt

the sequential model pioneered by Groseclose and Snyder (1996) and used by Banks (2000)

and Diermeier and Myerson (1999). In this model, the competition between the two lobbies

is described by a targeted o¤ers game where each lobby gets to move only once and in

sequence. For most of the paper, lobby 1 is pro-reform and moves �rst while lobby 0 is

pro-status-quo and moves second. Votes are assumed to be observable. A strategy for each

lobby is a pro�le of o¤ers, where the o¤er made to each legislator is assumed to be based on

his/her vote and to be honored irrespective of the voting outcome. The net payo¤ of a lobby

is its gross willingness to pay minus the total amount of payments made to the legislators

who ultimately vote for the policy advocated by this lobby. The legislators are assumed

to care about how they cast their vote (independent of the income) and about monetary

o¤ers. Therefore, voters do not truly act strategically as their voting behavior is simply a

best response to the pair of o¤ers made by the lobbies and is independent of the decisions

of other legislators. We focus on the complete-information environment, where the lobbies�

and the legislators�preferences are known to the lobbies when they bid. We characterize the

main features of the subgame perfect equilibrium of this game as a function of the following

key parameters of the environment.

� Each lobby�s maximal willingness to pay for winning4 (i.e. to have their favorite policy
selected). These two numbers represent the economic stakes under dispute and determine

the intensity and asymmetry of the competition.

1We depart from voluminous literature on the common agency setting in abandoning the assumption that
policies are set by a single individual or by a cohesive, well-disciplined political party. In reality, most policy
decisions are made not by one person but by a group of elected representatives acting as a legislative body.
Even when the legislature is controlled by a single party (as is necessarily the case in a two-party system if
the legislature consists of a single chamber), the delegation members do not always follow the instructions
of their party leaders.

2Hereafter, we will often refer to the two alternatives as the status quo (alternative 0) versus the change
or reform (alternative 1). While simplistic, many policy issues �t that formulation, like for instance: whether
or not a free-trade agreement should be rati�ed, whether or not the free sale for guns should be banned,
whether or not abortion should be allowed.

3By legislators, we mean all individuals who have a constitutional role in the process of passing legislation.
This may include individuals from what is usually referred to as the executive branch, such as the president
or the vice-president.

4Or, under an alternative interpretation, their respective budgets.
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� The voting rule describing the legislative process.
� The heterogeneity in the legislators�preferences.
The binary setting considered in this paper is the simplest setting to tackle the joint in-

�uence of these three inputs on the �nal outputs. The �rst item consists of a single number

per lobby, i.e. the amount of money this lobby is willing (able) to invest in this competi-

tion. The second item is also very simple. In this simplistic institutional setting, with no

room for agenda setting or other sophisticated legislative action which would arise in the

case of a large multiplicity of issues5, we only need to know the winning coalitions, i.e. the

coalitions of legislators able to impose the reform if the coalition unanimously supports this

choice. Despite its apparent simplicity, this combinatorial object allows accommodating a

wide diversity of legislatures. Banks and Groseclose and Snyder focus on the standard ma-

jority game, while Diermeier and Myerson consider the general case as we do. The third

item describes the di¤erences between the legislators other than those already attached to

the preceding item if these legislators are not equally powerful or in�uential in the voting

process. This "second" heterogeneity dimension refers to the di¤erences between their intrin-

sic preferences for the reform versus the status quo. This di¤erence, measured in monetary

units, can be large or small and negative or positive. Diermeier and Myerson disregard this

dimension by assuming that legislators are indi¤erent between the two policies, while Banks

and Groseclose and Snyder consider the general situation but derive their results under some

speci�c assumptions. We assume that legislators unanimously prefer the reform to the status

quo but di¤er with respect to the intensity of their preference.

The �rst contribution consists in identifying the conditions under which the lobby moving

�rst will make positive o¤ers to some legislators. In this sequential game, the lobby moving

last has an advantage as it can react optimally to its the opponent�s o¤ers without fear of

response. If the asymmetry is too weak, lobby 1 will abandon the prospect of in�uencing the

legislature as it will be rationally anticipating its defeat; in fact, it will make o¤ers only if it

is certain of success. If it does not make any o¤er, it is enough for lobby 0 to compensate a

minimal winning coalition of legislators for their intrinsic preferences towards reform. Lobby

1 will participate if its willingness to pay or budget is larger than lobby 0�s willingness to pay

or budget. This minimal amount of asymmetry, which we call the victory threshold, de�nes

by how much lobby 1�s stake must outweigh lobby 0�s stake to make sure that lobby 1 wins

the game. Our �rst result states that the calculation of the victory threshold amounts to

5Many formal models of the legislative process have been developed by social scientists to deal with more
complicated choice environments. We refer to Grossman and Helpman (2001) for lobbying models with more
than two alternatives.
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calculating the supremum of a linear form over a convex polytope, which is closely related to

the polytope of balanced families of coalitions introduced in cooperative game theory to study

the core and other solutions. This result enables us to take advantage of the voluminous

amount of work which has been done on the description of balanced collections. When

heterogeneity in legislators�preferences is ignored, the victory threshold only depends upon

the simple game describing the rules of the legislature. It corresponds to what Diermeier

and Myerson have called the hurdle factor of the legislature. Quite surprisingly, this single

parameter acts a summary statistic allowing us to predict the minimal budget that lobby 1

needs to invest to win the game.

Our second contribution consists in connecting the problem of computing the hurdle

factor to the covering problem, which is one of the most famous, but also most di¢ cult

problems in the combinatorics of sets or hypergraphs. We provide a short introduction to

this literature, show the connection with another famous parameter of a simple game, and

calculate the hurdle factor of several simple games. Once, it is established that the hurdle

factor is the fractional covering number of a speci�c hypergraph, we can take advantage of

the enormous body of knowledge in that area of combinatorics.

The third contribution consists in showing that the hurdle factor can alternatively be

calculated, surprisingly, as the maximum of speci�c equity criteria over the set of imputations

of a cooperative game with transferable utility attached to the simple game of the legislature.

The speci�c equity criterion is the minimum, across coalitions, of what the members of the

coalitions will get in the imputation and what they could get on their own, i.e. the �rst

component in the lexicographic order supporting the nucleolus. We use that result to show

how to calculate the hurdle factor for the important class of weighted majority games. While

there is a link between the weights of the legislators and the hurdle factor when the game is

homogeneous, we show that the relation is more intricate in the general case.

The connection with cooperative game theory is even more surprising as it allows us

to provide a complete characterization of the second dimension of lobby 1�s optimal o¤er

strategy. From what precedes, we know that the size of the lobbying budget is the hurdle

factor times the willingness to pay (or budget) of lobby 0. It remains to be understood how

this budget will be allocated across legislators. This is, of course, an important question as

we would like to understand which legislator�s characteristics determine lobby 1�s willingness

to buy his support and the amount that he will receive for selling his vote. As already

discussed, legislators di¤er in two respects: the intensity of their preference for lobby 1 and

their position/power in the legislature. The price of a legislator�s vote is likely to be a

function of both parameters. We show that the set of equilibrium o¤ers is the least core of
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the cooperative game used to calculate the hurdle factor. It may contain multiple solutions,

but the nucleolus6 is always one of them. We illustrate the calculation of these prices in

some important real world simple games and we revisit the model proposed by Diermeier

and Myerson for the optimal determination of the hurdle factor of a legislative chamber given

the other components of the legislative environment. One important conclusion is that these

prices have little to do with a legislator�s power as calculated through either the Banzhaf

index (Banzhaf (1962), (1968)) or the Shapley-Shubik index (Shapley and Shubik (1954)).

This suggests that the axiomatic theory of power measurement may not be fully relevant to

predict players�payo¤s in a game like this one7.

Some legislators will not receive any o¤er from lobby 1. We may wonder about the

identity and the number of legislators who will receive a positive o¤er. It is di¢ cult to

answer this question without being speci�c on either the legislators�s preferences or the

simple game. Our next contribution is to provide a characterization of this set in the case

where the simple game is the standard majority game, i.e. we describe the conditions under

which lobby 1 will target a minority, a minimal winning coalition or a supermajority and

whether it will bribe in priority those who are more or less reluctant to support the reform8.

The last contribution aims to show that the results of this paper hold, with some slight

modi�cations, when we assume that legislators pay attention to the outcome rather than to

their individual vote.

Related Literature

The literature on lobbying is very dispersed and voluminous9. The closest papers to ours

are Banks (2000), Dekel, Jackson and Wolinsky (2006a, b), Diermeier and Myerson (1999),

Groseclose and Snyder (1996), Young (1978 a, b, c) and Shubik and Young (1978d). Like

us, they all consider the binary setting and assume that legislators care about their vote and

money rather than about the outcome. As already mentioned, the two-round sequential vote

buying model that we consider was constructed by Groseclose and Snyder. Banks as well

as Diermeier and Myerson also consider this game. Their speci�c assumptions and focus,

however, are quite di¤erent from ours. Banks and Groseclose and Snyder are primarily

interested in identifying the number and the identity of the legislators who will receive an

o¤er in the case of the simple majority game. By considering this important but speci�c

symmetric game, they make it impossible to evaluate the impact of legislative power on the

6The nucleolus also appears in a non-cooperative setting in Montero (2006) in a bargaining framework.
7This echoes Snyder, Ting and Ansolabehere (2005).
8Should the lobby seek to solidify support among those legislators inclined to support its positions anyway,

or should it seek to win over those who might otherwise be hostile to its views?
9We refer to Grossman and Helpman (2001) for a description of the state of the art.
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outcome. However, they consider more general pro�les of legislators�preferences: instead of

our unanimity assumption in favor of reform, Banks assumes that a majority of legislators

has an intrinsic preference for the status quo. This implies that lobby 1 needs to bribe at least

a majority to win; Banks provides conditions to the pro�le under which this majority will be

minimal or maximal but does not determine the optimal size in the general case. Diermeier

and Myerson assume instead that legislators do not have any intrinsic preference but consider

an arbitrary simple game. Their main focus is on the architecture of multicameral legislatures

and on the optimal behavior of each chamber under the presumption that it can select its own

hurdle factor to maximize the aggregate o¤er made to its members. Our paper is very much

related to the contributions of Young, who has analyzed a similar game and independently

derived proposition 4. He can be credited with being the �rst to point out the relevance of

the least core and the nucleolus in predicting some dimensions of the lobbyists�equilibrium

strategies10.

Dekel, Jackson and Wolinsky examine an open-ended sequential game where lobbies

alternate in increasing their o¤ers to legislators. By allowing lobbies to keep responding

to each other with counter-o¤ers, their game eliminates the asymmetry and the resulting

second-mover advantage of Groseclose and Snyder�s game. Several settings are considered,

depending upon the type of o¤ers that lobbies can make to legislators (up-front payments

versus promises contingent upon the voting outcome) and upon the role played by budget

constraints11. The di¤erence in lobbies�budgets plays a critical role in determining which

lobby is successful when lobbies are budget-constrained, while the di¤erence in their willing-

ness to pay plays an important role when they are not budget-constrained. When lobbies

are budget-constrained, Dekel, Jackson and Wolinsky�s main result states that the winning

lobby is the one whose budget plus half the sum of the value that each legislator attaches to

voting in favor of this lobby exceeds the corresponding magnitude calculated for the other

lobby. In contrast, when lobbies are not budget-constrained, what matters are the lobbies�

valuations and the intensity of the preferences held by a particular "near-median" group of

legislators. The lobby with a-priori minority support wins when its valuation exceeds the

10While we were working on this project, Ron Holzman pointed out to us the relevance of the notion of
least core for our problem. After completing our paper, we discovered, while reading Montero (2006), that
Young (1978a,b) reached the same conclusion a long time ago. In fact, he wrote four remarkable papers on
this topic, containing many more results and insights. In (1978c), he presents a model of lobbying without
opposition where the legislators are in charge (they "post" the price to which they are willing to sell their
vote and, then, the lobby selects the coalition). Young and Shubik (1978) develop another version of the
competitive model, which they call the session lobbying game, where the nucleolus is the equilibrium.
11These considerations, which are irrelevant in the case of our two-round sequential game, are important

in their game.
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other lobby�s valuation by more than a magnitude that depends on the preferences of that

near-median group. In our terminology, we can say that their main results are motivated

by the derivation of the victory threshold(s). Once the value of these thresholds are known,

the identity of the winner as well as the lobbying expenditures and the identity of bribed

legislators follow. Note, however, that Dekel, Jackson and Wolinsky limit their analysis to

the simple majority game and are not in a position to evaluate the intrinsic role of the simple

game and the legislative power of legislators.

Note, �nally, that the version of our game where the two lobbies make their o¤ers simul-

taneously instead of sequentially has the features of a Colonel Blotto game. These games

are notoriously di¢ cult to solve and very little is known in the case of asymmetric players.

1 The Model and the Game

In this section, we formally describe the main components of the problem as well as the

lobbying game which constitutes our model of vote-buying by lobbyists.

The external forces that seek to in�uence the legislature are represented by two players,

whom we call lobby 0 and lobby 1. Lobby 1 wants the legislature to pass a bill (change,

proposal, reform) that would change some area of law. Lobby 0 is opposed to this bill

and wants to maintain the status quo. Lobby 0 is willing to spend up to W0 dollars to

prevent passage of the bill, while lobby 1 is willing to pay up to W1 dollars to pass the bill.

Sometimes, we refer to these two policies in competition as being policies 0 and 1. We assume

that �W � W1�W0 > 0. While this assumption may receive di¤erent interpretations12, we

will assume here that the two lobbies faithfully represent the two opposite sides of society

with regard to this binary social agenda and that policy 1 is therefore the socially e¢ cient

policy. We could consider that the two lobbies represent more private or local interests and

that W1 and W0 ignore the implications of these policies on the rest of society: in that case

the reference to social optimality should be abandoned. Finally, we could instead consider

the budgets B1 and B0 of the two lobbies and assume that they are budget-constrained i.e.

that B1 � W1 and B0 � W0. Under that interpretation, the ratio W1

W0
should be replaced by

the ratio B1
B0
.This ratio, which is (by assumption) larger than 1, will be a key parameter in

our equilibrium analysis. Depending upon the interpretation, it could measure the intensity

of reform�s superiority as compared to the status quo or the ex ante advantage of lobby 1

12As explained forcefully in Dekel, Jackson and Wolinsky (2006), in general, equilibrium predictions will
be sensitive to the type of o¤ers that can be made by the lobbies and whether they are budget-constrained
or not. As explained later, these considerations are not relevant in the case of our lobbying game.

7



over lobby 0 in terms of budgets.

The legislature is described by a simple game13 i.e. a pair (N;W); where N = f1; 2; :::; ng
is the set of legislators and W the set of winning coalitions, satis�es: S 2 W and S � T

implies T 2 W . The interpretation is the following. A bill is adopted if and only if the

subset of legislators who voted for the bill forms a winning coalition. From that perspective,

the set of winning coalitions describes the rules operating in the legislature to make decisions.

A coalition C is blocking if NnC is not winning: some legislators (at least one) from C are

needed to form a winning coalition. We will denote by B the subset of blocking coalitions14;
by de�nition, the status quo is maintained as soon as the set of legislators who voted against

the bill forms a blocking coalition. The simple game is called proper if S 2 W implies

NnS =2 W . The simple game is called strong if S =2 W implies NnS 2 W and constant-sum

if it is both proper and strong, i.e. equivalently if B =W15. The set of minimal (with respect

to inclusion) winning (blocking) coalitions will be denotedWm (Bm): A legislator is a dummy
if he is not part of any minimal winning coalition, while a legislator is a vetoer if he belongs

to all blocking coalitions. A group of legislators forms an oligarchy if a coalition is winning

i¤ it contains that group, i.e. each member of the oligarchy is a vetoer and the oligarchy

does not need any extra support to win, i.e. legislators outside the oligarchy are dummies.

When the oligarchy consists of a single legislator, the game is called dictatorial.

In this paper, all legislators are assumed to be biased towards policy 1, i.e. all of them will

vote for policy 1 against policy 0 if no other event interferes with the voting process. Under

the interpretation o¤ered in this paper, this assumption simply means that legislators vote for

the policy maximizing aggregate social welfare. This assumption is of course controversial16

and becomes even more so when we abandon the interpretation in terms of social e¢ ciency.

It is introduced here for the sake of simplicity as, otherwise, we would have to consider an

additional parameter of di¤erences among the legislators that we prefer to ignore for the time

being. Indeed, in contrast to Banks (2000) and Groseclose and Snyder (1996), our assumption

on the preferences of legislators rules out the existence of horizontal heterogeneity. However,

legislators also value money, so we introduce instead some form of vertical heterogeneity.

More speci�cally, we assume that legislators di¤er with regard to their willingness to depart

from social welfare. The type of legislator i, denoted by �i; is the minimal amount of dollars

13In the social sciences it is sometimes called a committee or a voting game. In computer science, it is
called a quorum system (Holzman, Marcus and Peleg (1997)) while in mathematics, it is called a hypergraph
(Berge (1989), Bollobas(1986)). An excellent reference is Taylor and Zwicker (1999).
14In game theory, (N;B) is often called the dual game.
15When the simple game is constant-sum, the two competing alternatives are treated equally.
16It is, however, very common in the recent literature on lobbying (Grossman and Helpman (2001)).
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that he needs to receive in order to sacri�ce one dollar of social welfare. Therefore, if the

policy adopted generates a level of social welfare equal toW , legislator i�s payo¤ if he receives

a transfer ti is:

ti + �iW:

This payo¤ formulation is compatible with two behavioral assumptions. A �rst possibility

is that the component W appears as soon as the legislator has voted for a policy generating

a level of social welfare W regardless of whether this policy has ultimately been selected: we

will refer to this model as behavioral model P, where P stands for procedural. Alternatively,

the componentW appears whenever the policy ultimately selected generates a level of social

welfare W regardless of whether the legislator has voted for or against this policy: we will

refer to this model as behavioral model C, where C stands for consequential. In this paper,

we will focus exclusively on behavioral model P.

To promote passage of the bill, lobby 1 can promise to pay money to individual legislators

conditional on their supporting the bill. Similarly, lobby 0 can promise to pay money to

individual legislators conditional on their opposing the bill. We denote by ti0 � 0 and

ti1 � 0 the (conditional) o¤ers made to legislator i by lobbies 0 and 1 respectively. The

corresponding n-dimensional vectors will be denoted by t0 and t1 respectively.

The timing of actions and events that we consider to describe the lobbying game is the

following17.

1. Nature determines the type of each legislator.

2. Lobby 1 make contingent monetary o¤ers to individual legislators.

3. Lobby 0 observes the o¤ers made by lobby 1 and makes contingent monetary o¤ers to

individual legislators

4. Legislators vote.

5. Payments (if any) are implemented.

This game has n + 2 players. A strategy for a lobby is a vector in <n+. Each legislator
can choose among two (pure) strategies: to oppose or to support the bill.

The important thing to note is that the two lobbies move in sequence. Following Banks

(2000), Diermeier and Myerson (1999) and Groseclose and Snyder (1996), we assume that

lobby 1, the advocate for change, makes the �rst move and announces its o¤ers �rst, and

that lobby 1�s o¤ers are known to lobby 0 when lobby 0 makes its o¤ers to induce legisla-

tors to oppose the bill. This sequential version of the lobbying game should be contrasted

with the version where both lobbies move simultaneously or where lobbies make o¤ers in an

17Speci�c details and assumptions will be provided in due time.
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open-ended sequential and alternating bidding process. As pointed out by Dekel, Jackson

and Wolinsky (2006), in such a case the detailed speci�cation of the type of o¤ers as well as

the budget constraints (if any) may matter. For instance, we can assume that lobbies�o¤ers

are either up-front payments or campaign promises honored only if the policy supported by

the lobby is ultimately selected. If the moves are simultaneous budget-constrained campaign

promises, the lobbying game belongs to the family of Colonel Blotto games, a class of dis-

continuous two-player zero-sum games which are notoriously di¢ cult to solve; existence and

characterization of equilibria in mixed strategies has been proved in the symmetric case, i.e.

when W1 = W0 and for some very speci�c simple games, like the simple majority game. In

our case, where each lobby moves only once and in sequence, these di¤erences do not matter.

The speci�city of the sequential game which is considered here has been criticized by several

authors, including Dekel, Jackson and Wolinsky (2006) and Grossman and Helpman (2001).

In particular, in this game, there is a strong second-mover advantage. Note however, that

alternatively the results of this paper answer the following questions: how asymmetric must

the budgets or valuations of the two lobbies be to ensure the existence of a pure strategy

Nash equilibrium in the simultaneous version of the game, i.e. in this generalized Colonel

Blotto game? If it exists, what do the o¤ers made to legislators in such an equilibrium look

like and how do they depend upon their personal characteristics?

To complete the description of the game, we should specify the information held by the

players when they act. In this paper, we have already implicitly assumed that the votes of

the legislators are observable, i.e. by open voting, and that the vector � = (�1; �2; ::::; �n)

of legislators� types is common knowledge and without loss of generality such that �1 �
�2 � ::: � �n.. We refer to this informational environment as political certainty. This

has two implications: �rst, the lobbies know the types of legislators when they make their

o¤ers and second, each legislator knows the type of any other legislator when voting. The

environment where the type �i of legislator i is private information, to which we refer as

political uncertainty, is analyzed in Le Breton and Zaporozhets (2007) in the context of the

two lobbies moving simultaneously.

2 The Victory Threshold

In this section, we begin our examination of the subgame perfect Nash equilibria of the

lobbying game. Hereafter, we will refer to them simply as equilibria. Our �rst objective is to

calculate a key parameter of the game, which we call the victory threshold. Once calculated,

this parameter leads to the following preliminary description of the equilibrium. Either the
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ratio W1

W0
is larger than or equal to the victory threshold and then lobby 1 makes an o¤er and

wins the game, or W1

W0
is smaller than the victory threshold and then lobby1 does not make

any o¤er and lobby 0 wins the game. The victory threshold depends both upon the vector

of types � and the simple game (N;W). Given the second-mover advantage, the victory
threshold is larger than or equal to 1. Therefore,while necessary, W1 > W0 is not su¢ cient

in general to guarantee the victory of lobby 1. The victory threshold provides the smallest

value of the relative di¤erential leading to such a victory.

The equilibrium of the lobbying game can easily be described. Let t1 = (t11; t21; ::::::; tn1) 2
<n+ be lobby 1�s o¤ers. Lobby 0 will �nd it pro�table to make a counter o¤er18 if there exists
a blocking coalition S such that:X

i2S

�
ti1 + �

iW1

�
<
X
i2S
�iW0 +W0:

Indeed, in such a case, there exists a vector t0 = (t10; t20; ::::::; tn0) of o¤ers such that:

ti1 + �
iW1 < ti0 + �

iW0 for all i 2 S and
X
i2S
ti0 < W0:

The �rst set of inequalities implies that legislators in S will vote against the bill, while

the last one simply says that the operation is bene�cial from the perspective of lobby 0.

Therefore , if lobby 1 wants to make an o¤er that cannot be cancelled by lobby 0, it must

satisfy the list of inequalities:X
i2S

�
ti1 + �

i�W
�
� W0 for all S 2 B:

The cheapest o¤ers t1 meeting these constraints are the solutions of the following linear

program:

Min
t1

X
i2N

ti1

subject to the constraints (1)X
i2S

�
ti1 + �

i�W
�
� W0 for all S 2 B

and ti1 � 0 for all i 2 N:

Let t�1 be any optimal solution of problem (1). Lobby 1 will �nd it pro�table to o¤er t�1
if the optimal value to this linear program is less than W1: It is then important to be able

18We assume that a legislator who is indi¤erent between the two o¤ers will vote for the reform.
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to compute this optimal value. To do so, we �rst introduce the following de�nition from

combinatorial theory.

De�nition 1. A family of coalitions C is (sub)balanced if there exists a vector � 2 <#C,
called (sub)balancing coe¢ cients, such that:X

S2Ci

�(S) � (= 1) for all19 i 2 N

and �(S) � 0 for all S 2 C:

The following result summarizes the equilibrium analysis of the sequential game.

Proposition 1. Either (i) W1 �
P

S2B �(S)
�
W0 �

P
i2S �

i�W
�
for all vectors of sub-

balancing coe¢ cients � attached to B. Then lobby 1 o¤ers t�1, lobby 0 o¤ers nothing and

the bill is passed. Or (ii) W1 <
P

S2B �(S)
�
W0 �

P
i2S �

i�W
�
for at least one vector of

subbalancing coe¢ cients � attached to B. Then lobby 1 does not make any o¤er, lobby 0

o¤ers t�0 with t
�
i0 = �

i�W + " for all i 2 S and t�i0 = 0 otherwise where " is an arbitrarily
small positive20 number and S is any coalition in the family of coalitions T 2 B such thatP

i2S �
i�W < W0 and the bill is not passed.

Proof. Let v� (B;�) be the optimal value of problem (1). From the duality theorem of

linear programming, v� (B;�) is the optimal value of the following linear program:

Max
�

X
S2B

�(S)

"
W0 �

X
i2S
�i�W

#
subject to the constraintsX
S2Bi

�(S) � 1 for all i 2 N

and �(S) � 0 for all S 2 B.

The conclusion follows. �

This result21 leads to several conclusions. If W0 �
P

i2S �
i�W � 0 for all S 2 B, then

� = 0 is a solution and therefore v� (B;�) = 0. We are in case (i), but lobby 1 promises

nothing. If, instead, W0 �
P

i2S �
i�W > 0 for at least one S 2 B, then v� (B;�) > 0. Note

20To take care of indi¤erences.
21Note that we could replace B by Bm in the statement of proposition 1.
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further that for any vector of subbalancing coe¢ cients � attached to B:

X
S2B

�(S)

"
W0 �

X
i2S
�i�W

#
= W0

X
S2B

�(S)��W
X
S2B

�(S)
X
i2S
�i

= W0

X
S2B

�(S)��W
X
i2N

�i
X
S2Bi

�(S)

� W0

X
S2B

�(S)��W
X
i2N

�i:

We deduce:

X
S2B

�(S)

"
W0 �

X
i2S
�i�W

#
� W0


�(B)��W
X
i2N

�i;

and therefore

v� (B;�) + �W
X
i2N

�i � W0

�(B); (2)

where 
�(B) � v�(B;0), called hereafter the hurdle factor22, is the value of the problem:

Max
�

X
S2B

�(S)

subject to the constraintsX
S2Bi

�(S) � 1 for all i 2 N

and �(S) � 0 for all S 2 B.

After simpli�cations, we deduce that if we are in case (i), then:

W1

W0

�

�(B) +

P
i2N �

i

1 +
P

i2N �
i
: (3)

Inequality (3) is simply a necessary condition for case (i) to prevail. It is also su¢ cient

for any problem where it can be shown that all the coordinates of t�1; the solution to problem

(1), are strictly positive. Indeed, in that case, we deduce from the complementary slackness

condition, that: X
S2Bi

�(S) = 1 for all i 2 N;

and (2) becomes an equality.

22This terminology is based on Diermeier and Myerson (1999).
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The force of proposition 1 is to reduce the derivation of the victory threshold to the

exploration of the geometry of a convex polytope: the polytope of the vector of subbalancing

coe¢ cients attached to B. To use it e¢ ciently, it may be appropriate to consider an arbitrary
family of balanced coalitions, i.e. with edges not necessarily in B. If we de�ne the function
� over coalitions of N as follows:

�(S) =

�
W0 �

P
i2S �

i�W if S 2 B;
0 otherwise.

then the duality argument used in the proof of proposition 1 shows that in the statement

we can trivially replace "
P

S2B �(S)
�
W0 �

P
i2S �

i�W
�
for all vectors of subbalancing co-

e¢ cients � attached to B" by "
P

S�N �(S)�(S) for all vectors of balancing coe¢ cients �".

The �rst formulation is useful if we can characterize the vector of subbalancing coe¢ cients

attached to B23. This amounts �rst to exploring the combinatorics of simple games. A
classi�cation of simple games was �rst provided by Morgenstern and von Neumann (1944)

and further explored by Isbell (1956)(1959). The second formulation takes advantage of

the tremendous volume of research accomplished in cooperative game theory. Indeed, it

is well known since Bondareva (1963) and Shapley (1967) that a game with transferable

utility has a nonempty core i¤ it is balanced. As pointed out by Shapley, this amounts to

checking the balancedness inequalities for the extreme points of the polytope of balanced

collections of coalitions. He demonstrated that vector � is an extreme point of the polytope

of balanced collections i¤ the collection of coalitions fSgS�N :�(S)>0 is minimal in terms of
inclusion within the set of balanced collections of coalitions. A minimal balanced collection

has n sets at most24. Peleg (1965) has given an algorithm for constructing the minimal bal-

anced sets inductively. We illustrate the mechanical use of proposition 1 through a sequence

of simple examples .

Example 1. Consider the simple majority game with 3 legislators, i.e. S 2 Bm i¤

#S = 2 i.e. S = f1; 2g, f1; 3g and f2; 3g. The set of vectors of subbalancing coe¢ cients is
the polytope described by the set of extreme points

(0; 0; 0) ; (1; 0; 0) ; (0; 1; 0) ; (0; 0; 1) ;

�
1

2
;
1

2
; 0

�
;

�
1

2
; 0;
1

2

�
;

�
0;
1

2
;
1

2

�
and

�
1

2
;
1

2
;
1

2

�
:

From the ordering of the �i and proposition 1, we deduce that

v�(B; �) = Sup

�
W0 � (�1 + �2)�W;

3W0 � 2 (�1 + �2 + �3)�W
2

; 0

�
;

23Holzman, Marcus and Peleg (1997) contains results on the polytope of balancing coe¢ cients for an
arbitrary proper and strong simple game.
24We refer to Owen (2001) or Peleg and Sudhölter (2003) for a complete and thorough exposition of this

material.
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�(B) = 3

2
W0:

The �rst (respectively second) term is the largest whenever (�1 + �2)�W � W0 � 2�3�W
(respectively W0 � 2�3�W ) and v�(B; �) = 0 whenever (�1 + �2)�W � W0.

We will examine later how to derive the optimal (o¤ers) of lobby 1 and in particular the

personal characteristics of the legislators who are o¤ered some positive amount. This will

obviously depend on two main features: �i i.e. his/her personal propensity to vote against

social welfare and also his position in the family of coalitions. If legislator i is a dummy, then

obviously, ti1 = 0. But if he is not a dummy, then in principle all situations are conceivable:

he may receive something in all optimal o¤ers, in some of them or in none of them. It will be

important to know the status of a legislator according to this classi�cation in three groups.

In example 1, no legislator is a dummy. However, if (�1 + �2)�W � W0 � 2�3�W , then
the relevant extreme point is (1; 0; 0). Since

P
S2B3 �(S) < 1 in that case, we deduce from

complementary slackness that t31 = 0.

Example 2. Consider the simple game with 4 legislators25 de�ned as follows: S 2 Bm
i¤ S = f1; 2g, f1; 3g, f1; 4g or f2; 3; 4g. According to Shapley (1967), besides partitions, the
minimal balanced families of coalitions are (up to permutations):

ff1; 2; 3g ; f1; 2; 4g ; f1; 3; 4g ; f2; 3; 4gg ; ff1; 2g f1; 3g f1; 4g f2; 3; 4gg ;
ff1; 2g f1; 3g f2; 3g f4gg ; ff1; 2g f1; 3; 4g f2; 3; 4gg

with the following respective vectors of balancing coe¢ cients
�
1
3
; 1
3
; 1
3
; 1
3

�
;
�
1
3
; 1
3
; 1
3
; 2
3

�
;
�
1
2
; 1
2
; 1
2
; 1
�

and
�
1
2
; 1
2
; 1
2

�
:We deduce from proposition 1 that:

v�(B; �) = Sup

 
4W0�3(�1+�2+�3+�4)�W

3
; 5W0�3(�1+�2+�3+�4)�W

3
;

2W0�(2�1+�2+�3)�W
2

; 3W0�(2�1+2�2+2�3+2�4)�W
2

;W0 � (�1 + �2)�W; 0

!

= Sup

�
5W0 � 3 (�1 + �2 + �3 + �4)�W

3
;W0 � (�1 + �2)�W; 0

�

�(B) =

5

3
W0:

Example 3. Consider the simple game with 3 legislators de�ned as follows: S 2 Bm i¤
S = f1; 2gor f1; 3g. The set of vectors of subbalancing coe¢ cients is the polytope described
by the set of extreme points (0; 0) ; (1; 0) ; (0; 1). We deduce from proposition 1 that:

v�(B; �) = Sup (W0 � (�1 + �2)�W; 0) ;
25As demonstrated by Von Neumann and Morgenstern ((1944), 52C), this is the only strong simple four-

person game without dummies.
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�(B) =W0:

Example 4. Consider the simple game with 5 legislators de�ned as follows: S 2 Bm
i¤ S = f1; 2g, f1; 3g, f1; 4; 5g, f2; 3; 4g or f2; 3; 5g. The geometry of the polytope becomes
more intricate. We will demonstrate later, through a di¤erent technique, that when � = 0,

the relevant extreme point is the vector
�
1
5
; 1
5
; 3
5
; 2
5
; 2
5

�
i.e.


�(B) = 9

5
W0:

3 Complements and Extensions

Proposition 1 constitutes an important element of the toolkit to determine the victory thresh-

old. In this second section, we continue this exploration of the problem aiming to add more

elements to the toolkit. In the �rst subsection, we show that in the special case where � = 0,

our problem is strongly connected to one of the most famous problem in the combinatorics

of sets. We elaborate on the relationship with this branch of applied mathematics and show

how we can take advantage of this body of knowledge to get a better understanding of our

own questions, which include the determination of the hurdle factors attached to a simple

game. In the second subsection, we �nd, quite surprisingly, that the set of equilibrium o¤ers

to the legislators made by the �rst mover lobby coincides with the least core (and always

contains the nucleolus) of the simple game. We then explore, within the important class of

weighted majority games, how legislators�personal positions in the simple game translate

into personal prices and we evaluate, through real world examples, the di¤erences among

their respective prices. Finally, in the third subsection, we characterize the size and the com-

position of the coalitions of legislators receiving an o¤er in the case of the simple majority

game and for an arbitrary �.

3.1 Fractional Matchings and Coverings

The main purpose of this section is to connect our problem to the covering problem, which is

considered to be one of the most famous problems in the combinatorics of sets. As pointed

out by Füredi (1988), "the great importance of the covering problem is supported by the

fact that apparently all combinatorial problems can be reformulated as the determination of

the covering number of a certain hypergraph". A hypergraph is an ordered pair H = (N;H)
where N is a �nite set of n vertices and H is a collection of subsets of N called edges. The

rank of H is the integer r(H) �Max f#E : E 2 Hg. If every member of H has r elements,

we call it r�uniform. An r�uniform hypergraph H is called r�partite if there exists a
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partition fNkg1�k�K of N such that #(Nk \E) = 1 holds for all E 2 H and all k = 1; :::K.

The maximum degree of the hypergraph H, denoted D(H), is the number Maxi2NDegH(i)

where DegH(i) � # fE 2 H : i 2 Eg. A hypergraph is D�regular if DegH(i) = D(H) for
all i 2 N . Given an integer k, a hypergraph is k�wise intersecting if any of its k edges have
a non-empty intersection; intersecting is used in place of 2-intersecting. An (r; �)�design
is a hypergraph (N;H) such that for all i 2 N , DegH(i) = r and for all fi; jg � N ,

# fS 2 H : fi; jg � Sg = �. It is called symmetric if n = #H. Then, n = r2�r+�
�

. A

projective plane of order n, denoted by PG(2; n) is a symmetric (n + 1; 1) design. More

generally, a t�dimensional �nite projective space of order q, denoted by PG(t; q), where q
is a primepower, is an (r; �)�design with r = qt + qt�1 + ::::+ 1 and � = qt�1 + ::::+ q + 1.
Given an integer k, a k-cover of H is a vector t 2 f0; 1; ::::; kgn such that:X

i2S
ti � k for all S 2 H: (4)

A k�matching of H is a collection fE1; :::::; Esg(repetitions are possible) such that Ej 2
H for all j = 1; :::s every i 2 N is contained in at most k of Ej. A 1�cover (1�matching) is
simply called a cover (matching) of H. Note that a cover is simply a set T intersecting every

edge of H i.e. T \E 6= ? for all E 2 H while a matching is a collection of pairwise disjoint

members of H . A k�cover t� minimizing
P

i2N ti subject to the constraints (4) is called

an optimal k�cover and 
�k(H) �
P

i2N t
�
i is called the k�covering number. A k�matching

��maximizing
P

S�N �(S) is called an optimal k�matching and ��k(H) �
P

S�N �
�(S) is

called the k�matching number. When k = 1, 
�1(H) is the minimum cardinality of the

covers and is called the covering number of H while ��1(H) is the maximum cardinality of a

matching and is called the matching number of H. A hypergraph H is 
�critical if each of
its subfamilies has a smaller covering number i.e. 
�1((N;H� fEg)) < 
�1(H) for all E 2 H.
A fractional cover of H is a vector t 2 <n such that:X

i2S
ti � 1 for all S 2 H (5)

and ti � 0 for all i 2 N .

A fractional matching of H is a vector � 2 <#H such that:X
S2Hi

�(S) � 1 for all i 2 N (6)

and �(S) � 0 for all S 2 H:
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A fractional cover t� minimizing
P

i2N ti subject to the constraints (5) is called an optimal

fractional cover and 
�(H) �
P

i2N t
�
i is called the fractional covering number. A fractional

matching ��maximizing
P

S�N �(S) subject to the constraint (6) is called an optimal frac-

tional matching and ��(H) �
P

S�N �
�(S) is called the fractional matching number.

It follows from these de�nitions that the hurdle factor of the simple game (N;W) is the
fractional covering number of H = (N;B). If , in contrast to what has been assumed in the
preceding section, money is available in indivisible units, then the appropriate parameter

becomes 
�W0
(H) where the integer W0 is the value of policy 0 for lobby 0 (when C = B i.e.

when lobby 0 is the follower) expressed in monetary units. The case where W0 = 1 is of

particular interest, as it describes the situation where lobby 0 has a single money unit to

spend in the process. The problem is now purely combinatorial: who should be the legislators

on which lobby 1 should spend one unit to prevent lobby 0 from a targeting a single pivotal

legislator26. Hereafter, the integer 
�1(H) will be called the integral hurdle factor. While

we will mostly focus on the divisible case, it is also interesting to note the implications of

indivisibilities on the equilibrium outcome of the lobbying game. Note, �nally, that if we

invert the order of moves between the two lobbies, then the relevant simple game is the dual

game (N;B) and the corresponding hurdle factor, which we will call the dual hurdle factor,
is the fractional covering number of H = (N;W). The following developments apply equally
to both hurdle factors and we will often use the symbol H without specifying whetherH = B
or H =W. For an arbitrary hypergraph H, we have the inequalities:

��1(H) �
��k(H)

k
� ��(H) = 
�(H) � 
�k(H)

k
� 
�1(H). (7)

We immediately deduce from these inequalities that the value of the hurdle factor in-

creases with the "degree" of indivisibility; indivisibilities act as additional integer constraints

in the linear program describing the determination of the optimal fractional matchings and

coverings. The calculation of the covering number27 of an arbitrary hypergraph is an NP-

hard problem, in contrast to the determination of the fractional covering number which

amounts to solving a linear program. The examples presented below arise from the theory

of simple games. In some cases, the hypergraph H describes the family of minimal winning

coalitions, while in some others it represents the family of minimal blocking coalitions.

Example 5 (Quali�ed Majorities/minorities). Consider the case of an arbitrary
symmetric simple game i.e. S 2 H i¤ #S = q where q is a �xed integer. In that case, it
26To support that interpretation, we need to assume, however, that a legislator who is indi¤erent breaks

the tie in the direction of lobby 0.
27It has been demonstrated by Chung, Furedi, Garey and Graham (1988) that for any rational number x,

there exists a, hypergraph H = (N;H) such that ��(H) = x.

18



is easy to show that 
�(H) = n
q
. For instance, in the case of the winning coalitions of the

majority game ( q = n+1
2
is n is odd and q = n+2

2
is n is even), we obtain:


�(H) =
�

2n
n+1

if n is odd,
2n
n+2

if n is even.

which tends to 2 when n tends to in�nity. In contrast:


�1(H) =
�

n+1
2
if n is odd,

n+2
2
if n is even.

When n is odd, the family of blocking coalitions of the majority game coincides with

the family of winning coalitions. Instead, when n is even, the family of minimal blocking

coalitions H is the family of subsets of cardinality n
2
and then 
�(H) = 2 while 
�1(H) = n+2

2
:

Example 6 (Symmetric Simple Games). The games considered in example 5 display
a total symmetry28, in the sense that the group of automorphisms of the simple game is the

entire group of permutations. We can consider simple games exhibiting some regularity

without displaying such a level of symmetry29. This is the case of the (r; �)�design and
in particular the projective planes of order n, PG(2; n) which were de�ned earlier. Simple

calculations show that 
� (r; �) = r�1
�
+ 1

r
and therefore 
� (PG(2; n)) = n+ 1

n+1
.

Another example of a hypergraph displaying some symmetry in line with Erdös and

Lovasz (1975) is the following30. Consider a set S with 2
 � 2 elements where 
 is a given
integer. For each partition � = (P; P 0) of S where P [ P 0 = S and #S = #S 0 = 
 � 1, take
a new element i�. Let N � S [� fi�g and let H be the collection of all 
�tuples of the form
P [ fi�g where � = (P; P 0) is a partition. Then, it is easy to verify that 
�(H) = 2 and


�1(H) = 
:

Example 7 (Compound Simple Games). The following class of hypergraphs de-
scribes an important class of voting procedures. Let (Nr;Wr)1�r�R be a family of R hy-

pergraphs with Nr \ Nt = ? for all r; t = 1; :::; R with r 6= t. Let (N;W) be such that
N = [Rr=1Nr and S 2 W i¤ S \ Nr 2 Wr for all r = 1; ::::; R. This is the de�nition of a

multicameral legislature as de�ned by Diermeier and Myerson (1999): a reform is approved

if it is approved in all the di¤erent R chambers according to the rules (possibly di¤erent)

28This hypergraph is often called the complete q�graph.
29Von Neumann and Morgenstern (1944) o¤er a clear de�nition of symmetry based on the group of

automorphisms of the game, i.e. the group of permutations leaving the winning coalitions invariant. We
may for instance require this group to be k�transitive for some integer k. With such a de�nition, the
symmetry of the game increases along with the value of k.
30The nucleus coterie constructed by Holzman, Marcus and Peleg (1997) and the symmetric hypergraph

considered by Le Breton (1989) bear similarities with that hypergraph.
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being used in the chambers. It is easy to show that:


�(B) =
RX
r=1


�(Br):

This multicameral system is a special case of a compound simple game as �rst de�ned by

Shapley (1962). Let
�
f1; ::::; Rg ; eH� be a hypergraph on the set of chambers: eH describes

the power of coalitions of chambers (Diermeier and Myerson (1999)�s de�nition corresponds

to the case where eH = ff1; ::::; Rgg, i.e. each chamber has a veto power). In general, S 2 H
i¤:

fr 2 f1; ::::; Rg : S \Nr 2 Wrg 2 fW :
The computation of 
�(W) is now more intricate. If

�
f1; ::::; Rg ;fW� is uniform as well

as (Nr;Wr) for all r = 1; :::::; R, then (N;W) is also uniform. Füredi (1981)�s inequality
gives an upper bound on 
�(W).
Consider the case where R = 2K + 1 and #Nr = 2nr + 1 for all r = 1; :::::; R where

K; n1; :::nR are integers and assume that
�
f1; ::::; Rg ;fW� and (Nr;Wr) for all r = 1; ::::; R

are the simple majority games. Exploiting the symmetry of the game, the determination of

an optimal fractional cover is equivalent to the determination of a vector (t1; :::; tR) 2 <R+
minimizing

PR
r=1(2nr + 1)tr subject to the constraints:X
r2S

(nr + 1) tr � 1 for all S � f1; ::::; Rg such that #S = K + 1:

With the change of variables Tr = (nr + 1) tr, the problem is equivalent to the minimiza-

tion of 2
PR

r=1(
nr+

1
2

nr+1
)Tr subject to the constraints:X

r2S
Tr � 1 for all S � f1; ::::; Rg such that #S = K + 1:

This problem is almost identical to the covering problem attached to the majority game.

The only di¤erence lies in the fact that the weights on the variables do not need to be the

same if the populations in the chambers di¤er in size. When they are identical, using the

calculation in example 1, we deduce that:


�(W) = (2K + 1) (2n+ 1)

(n+ 1) (K + 1)
,

which tends to 4 when n becomes large.

In general it is di¢ cult to derive the exact value of 
�(H) whenH is the family of minimal
blocking or winning coalitions describing the decision making process of the legislature.
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In the above examples, we have examined the covering numbers of either the family

of winning or the family of blocking coalitions. In the case of the hypergraph of winning

coalitions, i.e. when we want to calculate the dual hurdle factor, it is traditionally assumed

that it is intersecting, i.e. that the simple game (N;W) is proper. In such case, it should
be clear from what precedes that the intersection pattern of winning coalitions plays some

role in the determination of the integral and fractional hurdle factors. A cover is a set which

intersects every edge. When the simple game is proper, the set of minimal winning coalitions

is an intersecting family. Any set in W is therefore a cover. This implies that the integral

covering number is smaller than MinE2W#E. The knowledge of the integral hurdle factor

provides useful information of the smallest size of a group of legislators able to collectively

control the legislative process. When it is equal to 1, we have the familiar notion of a vetoer.

When the number is equal to k, this means that there is a subset of k legislators which is

represented in any winning coalition and that no smaller subset has this property. When the

game is strong, the optimal cover is itself a winning coalition: a vetoer is then a dictator.

The following proposition relates the integral hurdle factor to another key parameter

of a simple game known as the Nakamura number (Nakamura (1978)). The Nakamura

number provides the exact largest possible cardinality of the set of alternatives, such that

the core of the voting game resulting from the list of winning coalitions is non-empty for

every conceivable preference pro�le. This parameter has attracted a lot of attention in the

theory of voting and committees.

De�nition. Let G = (N;W) be a simple game. The Nakamura number of G, is the
integer:

�(G) =

�
MinW 0�W #W 0 such that: \S2W 0 S = ?;
+1 if \S2W S 6= ?:

Proposition 2. For any simple game


�(H) � 
�1(H) � 1 +
(Min #S : S 2 H)� 1

�(G)� 2 if �(G) 6=1

and


�(H) = 
�1(H) = 1 if �(G) =1:

Proof. If �(G) <1, it follows from the de�nition of the Nakamura number that the col-

lection H of minimal winning coalitions is a (�(G)� 1)-intersecting family. The conclusion
follows from an inequality established in Lovasz (1979). If �(G) = 1, then any fig with
i 2 T � \S2WS is obviously an optimal cover.�
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There is an obvious trade-o¤ between the number of minimal winning coalitions and the

magnitude of the hurdle factors. If we have many coalitions inWm, the hurdle factor is more

likely to be a large number31. The hurdle factor is also often sensitive to the addition or the

deletion of a coalition fromWm, i.e. situations de�ned above as 
�critical hypergraphs. For
instance, it is easy to check that the hypergraphs attached to the simple games in example

1, the Erdos-Lovasz�s simple game in example 2 and the cyclic majority game are 
�critical.

3.2 Weighted Majority Games

In this section, we focus on the important class of weighted majority games. A simple game

is a weighted majority game if there exists a vector ! = (!1; :::::::; !n; q) of (n+ 1) )non neg-

ative numbers such that a coalition S is in W i¤
P

i2S !i � q; !i > 0 is the weight attached
to legislator32 i. The vector ! � (!1; ::::; !n) is called a representation of the simple game.
It is important to note that the same game may admit several representations. A simple

game is homogeneous if there exists a representation ! such that
P

i2S !i =
P

i2T !i for all

S; T 2 Wm. This representation is called the homogeneous representation of the simple game,

as Isbell (1956)33 has demonstrated that an homogeneous simple game admits a unique (up

to multiplication by a constant). The homogeneous representation ! for which
P

i2N !i = 1

is called the homogeneous normalized representation and a homogeneous representation !

for which !i is an integer for all i 2 N is called an integral representation.

Consider an arbitrary cooperative game with transferable utility (N; V ) and let x 2 Xn ��
y 2 <n+ :

Pn
i=1 yi = V (N)

	
. Let �(x) be the 2n dimensional vector34 whose components are

the numbers V (S) �
P

i2S xi arranged according to their magnitude, i.e. �i(x) � �j(x) for
1 � i � j � 2n. The nucleolus of (N; V ) is the unique vector x� 2 Xn such that �(x�) is

the minimum, in the sense of the lexicographic order, of the set f�(y) : y 2 Xng. The least
core35 is the subset of Xn consisting of the vectors x such that �1(x) = �1(x

�). It will be

denoted LC(V;N); by construction x� 2 LC(V;N)
To any simple game, we attach the cooperative game with transferable utility (N; V )

31For instance, when all minimal winning coalitions are of the same size r i.e. Wm is r�uniform, we may
ask how small the hypergraph can be if we want the covering number to be at least equal to r?
32In many applications, it is more relevant (if party discipline is strong) to assume that the players in the

legislature are the di¤erent parties to which the legislators belong rather than the legislators themselves; in
such a case, !i denotes the number of legislators a¢ liated to party i.
33See also the generalization by Ostmann (1987).
34This vector is called the vector of excesses attached to x.
35This notion was �rst introduced by Maschler, Peleg and Shapley (1979).
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de�ned as follows:

V (S) =

�
1 if S 2 W ;
0 if S =2 W :

In such case, only minimal winning coalitions matter in "minimizing" the vector of ex-

cesses. The least core consists in the subset of vectors x such that

x 2 ArgMax
y2Sn

Min
S2Wm

X
i2S
yi;

where Sn �
�
y 2 <n+ :

Pn
i=1 yi = 1

	
. Let:

C� �Max
y2Sn

Min
S2Wm

X
i2S
yi:

The following simple assertion holds true for any simple game.

Proposition 3. Let (N;W ) be a simple game. Then, 
�(W ) = 1
C� :

Proof. By de�nition of C�, there exists y 2 <n+ such that:
nX
i=1

yi = 1 and
X
i2S
yi � C� for all S 2 Wm:

Therefore, the vector z such that zi � yi
C� for all i = 1; ::::::; n veri�es:

nX
i=1

zi =
1

C�
and

X
i2S
zi � 1 for all S 2 Wm

implying that 
�(W) � 1
C� .

Assume that 
�(W) < 1
C� . This means that there is a vector z 2 <

n
+ such that:

nX
i=1

zi = 

�(W) and

X
i2S
zi � 1 for all S 2 Wm:

Therefore, the vector y such that yi � zi

�(W)

for all i = 1; ::::::; n veri�es:

nX
i=1

yi = 1 and
X
i2S
yi �

1


�(W) for all S 2 Wm:

Since 1

�(W)

> C�, this contradicts our de�nition of C�:�

The proof is also quite instructive by itself as it also demonstrates that the set of optimal

fractional covers of (N;W) is, up to a division by C�, the least core of the game induced by
the simple game. Since the set of optimal fractional covers is, up to the multiplication by
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W0, the set of o¤ers to legislators made by lobby 1 at equilibrium, the least core provides a

complete characterization of lobby 1�s equilibrium behavior.

Proposition 3 raises a number of questions. First, is it simple to calculate the quantity

C� for some particular families of simple games? Second, what does the least core look like,

i.e. how are the di¤erent legislators treated? We answer these questions when (N;W) is a
weighted majority game

Peleg (1968) has demonstrated36 that the normalized homogeneous representation of an

homogeneous strong weighted majority game (N;W) coincides with the nucleolus x of (N; V ).
Similarly, the integral representation of the nucleolus (which is well de�ned) is the minimum

representation of the game, i.e. the unique minimal integral representation of the game.

Since the nucleolus is an element of the least core, proposition 3, combined with Peleg�s

result, provides a straightforward way to calculate ��(W) for strong homogeneous weighted
majority games. The task amounts to discovering the weight of each minimal winning

coalition in the normalized homogeneous representation. For instance, the weighted majority

game resulting from a legislature with 4 parties where the number of representatives of each

party is described by the vector ! = (49; 17; 17; 17) is exactly the apex game considered

in example 2. It is easy to see that the normalized homogeneous representation is here�
2
5
; 1
5
; 1
5
; 1
5

�
. It follows that 
�(W) = 5

3
.

The task is more intricate, however, when the simple game is not homogeneous37. Peleg

has also proved that the minimal integral representation of the nucleolus is a minimal integral

representation of the game if some condition is ful�lled, and has disproved by means of a

counterexample of size 12 that the assertion holds true in general. He asks whether this

assertion holds true when the simple game has a minimum integral representation. This

conjecture has been disproved by Isbell (1969) by means of a counterexample of size 19.

Therefore, within the class of non homogeneous weighted majority games38, the relationship

between the nucleolus (and then covering) and the set of minimal representations is less

transparent. In such a case, the computation of 
�(W) can exploit the general algorithms
which have been developed to calculate the nucleolus.

As already pointed out, besides the knowledge of 
�(W), it is of interest to know how
the amount of money 
�(W)W0 is allocated across legislators or parties. This question is of

36See also Peleg and Rosenmüller (1992).
37Several authors, including among others (Ostmann (1987), Peleg and Rosenmuller (1992), Rosenmuller

(1987) and Sudhölter (1996)), have investigated the class of homogeneous weighted majority games, which
are not necessarily strong. Sudhölter has introduced a notion of nucleolus (called the modi�ed nucleolus),
which is a representation of the game when it is homogeneous.
38The question becomes even more complicated when we move outside the world of weighted simple games,

as exempli�ed by the calculation of the nucleolus of compound simple games (Meggido (1974)).
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course very important as we would like to know which characteristics of legislator i (parties)

besides �i determine the "price" of that legislator from the perspective of lobby 1 (in fact, on

the market for votes where the two lobbies compete). This is related to the position of i in

the set of minimal winning coalitions39. In a weighted majority game, we intuitively expect

this price to be positively correlated with the weight of the legislator, if not even exactly

proportional to that weight. We have just seen that this intuition is correct in the case of a

homogeneous weighted majority game (for an appropriate vector of weights), but that the

exact relationship between weights and price is less clear otherwise40.

Proposition 3 establishes an "unexpected" connection between the least core which has

been developed in cooperative game theory and the set of equilibrium monetary o¤ers in

this non-cooperative game. The exploration of the least core of the simple game reveals all

that we expect to discover about the payo¤s of the legislators in the lobbying game. We

know that the nucleolus is one of those vectors, but as we will see, the least core may also

contain some other vectors. It is obvious that legislators who are dummies will never receive

any o¤er from the lobbies. However, as illustrated through some of the following examples,

there are situations where legislators who are not dummies do not receive any o¤er.

Example 3 Revisited. The simple game considered in example 3 is a weighted majority
game; ! = (2; 1; 1) is a representation. It is easy to see that the core (and therefore the least

core and the nucleolus) is equal to the vector (1; 0; 0). The �rst legislator gets all the money

despite the fact that neither legislator 2 nor legislator 3 is a dummy. Legislator 1 needs

one of them to pass or to block (depending upon the interpretation of the hypergraph) the

proposal. Legislators 2 and 3, however, are perfect substitutes and in excess supply on this

market. Their internal competition drives down their price to 0. Note otherwise that this

game is not strong and therefore Peleg�s theorem does not apply. In fact the nucleolus is not

a representation of the game while the modi�ed nucleolus (1
2
; 1
4
; 1
4
) is.

Example 8 (Vector Weighted Majority Games). In many situations, the type

39The pattern of these positions de�nes, in some sense, the power of legislator i. There is an extensive
literature on the measurement of the power of players in simple games with a prominent place occupied
by the Banzhaf index (1965)(1968) and the Shapley-Shubik index (1954). The view that any of this one-
dimensional power measures helps in predicting the legislators�payo¤s in strategic environments where their
votes can be bought has been disputed by several authors (see, for instance Snyder, Ting and Ansolabehere
(2005) in the context of a legislative bargaining model).
40In some cases it will be possible to order, partially or totally, the legislators according to desirability

as de�ned by Maschler and Peleg (1966). Legislator i 2 N is at least as desirable as legislator j 2 N if
S [fjg 2 W implies S [fig 2 W for all S � Nn fi; jg. Legislators i and j are symmetric or interchangeable
if S[fjg 2 W i¤ S[fig 2 W for all S � Nn fi; jg. Peter Sudhölter has drawn our attention to the fact that
the least core does not necessarily preserve the desirability relation. Krohn and Sudhölter (1995) illustrate
many simple games with such a feature. Note, however, that the nucleolus preserves desirability.
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of legislator, de�ned by a vector of traits or attributes, is an important parameter in the

explicit description of winning or blocking coalitions: for instance, the type of legislator

may consist of the chamber to which he belongs (in a multicameral system), the legislator�s

gender, geographic area (east, west, north, south), and so on. Let us assume that there are

K mutually exclusive possible types and denote by nk the number of legislators of type k. A

coalition is a K�tuple of integers m � (m1; ::::::;mK) where mk � nk for all k = 1; :::::; K:
We consider the setting where there exist J vectors

�
aj1; :::::; a

j
K ; b

j
�
2 <K+1+ such that a

coalition m is winning i¤:

KX
k=1

ajkmk � bj for j = 1; ::::::; J:

This framework generalizes41 the concept of a weighted majority game: in the case of

a strong weighted majority game, the set of di¤erent weights is the set of types, J = 1,

a = (1; 1; ::::; 1) and

b =
jP

1�k�K nk!k
2

+ 1
k
42. The minimal winning coalitions are the lower vertices of the

polyhedron described by the above inequalities and the hypercube
KY
k=1

f0; 1; ::::nkg. We

illustrate the calculation of the hurdle and dual hurdle factors and the least core in the

following speci�c case, which describes the U.S. federal legislative system43. Let K = 4;

J = 2, a1 =
�
0; 1; 1

2
; 33
2

�
; a2 = (1; 0; 0; 72), b1 = 67, b2 = 290, n1 = 435; n2 = 100; n3 = 1 and

n4 = 1 . This simple game represents a bicameral system (the House of Representatives and

the Senate) with two additional players: the vice president and the president. A coalition is

winning if it contains either more than half the house and more than half the senate (with the

vice president playing the role of tie-breaker in the senate), together with the support of the

president or two-thirds of both the house and the senate (to override a veto by the president).

The determination of the least core is reduced to the minimization of 435x1+100x2 +x3+x4
with respect to (x1; x2; x3; x4) 2 <4+ under the constraints:

218x1 + 50x2 + x3 + x4 � 1

218x1 + 51x2 + x4 � 1

290x1 + 67x2 � 1:

41Taylor and Zwicker (1999) call vector weighted games such simple games. Among the real world voting
systems which are vector-weighed, we can cite the system to amend the Canadian constitution and the
di¤erent decision rules for the council of ministers of the EU like those prescribed by the treaty of Nice.
42bxc denotes the integer part of x:
43This representation of the U.S. federal legislative system appears in Taylor and Zwicker (1999).
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Note that if x3 + x4 = 0, then the relevant inequality is 218x1 + 50x2 � 1. Since
435
218
' 1:9954 < 100

50
= 2, the minimum is obtained in

�
1
218
; 0
�
leading to the value 1:9954. If

instead x3 + x4 > 0, then the inequalities 290x1 + 67x2 � 1 and 218x1 + 50x2 + x3 + x4 � 1
are the relevant inequalities. This follows from the fact that necessarily at the optimum,

x3 � x2. Indeed, if instead x3 > x2, then the �rst inequality is implied by the second. Since
x3 > 0, we could reduce it by some small positive amount without violating the constraints

as x3 does not appear in any active constraint, contradicting our assumption of a minimum.

Then x4 = 72x1 + 17x2 and the objective to be minimized is 507x1 + 117x2. The minimum

is obtained for x1 = 0, x2 = 1
67
and x3+x4 = 17

67
. Since the lower bound on x4 is 1� 51

67
= 16

67
,

we obtain that the upper bound on x3 is 1
67
. For any such solution, the value of the program

is 117
67
' 1:746 < 1:9954. We have just proved that the dual hurdle factor of the US federal

legislative game is 1:746 and that the least core is a one dimensional convex set, namely

the convex hull of the vectors
�
0; 1

67
; 1
67
; 16
67

�
and

�
0; 1

67
; 0; 17

67

�
. Interestingly, the members of

the House do not get any o¤er although they are not dummies and the o¤er made to the

president is around 16 times larger than the o¤er made to any single senator or to the vice

president.

Let us now look at the U.S. federal legislative game from the point of view of the blocking

coalitions, i.e. at the hurdle factor. It is easy to see that the minimal blocking coalitions

(m1;m2;m3;m4) are the following:

m1 = 146; m2 = m3 = 0; m4 = 1

m1 = 0; m2 = 34; m3 = 0; m4 = 1

m1 = 218; m2 = m3 = m4 = 0

m2 = 51; m1 = m3 = m4 = 0

m2 = 50; m3 = 1; m1 = m4 = 0:

In such case, we obtain that the least core consists of the unique vector
�
1
218
; 1
51
; 1
51
; 17
51

�
(which is the nucleolus) and that the hurdle factor is approximately 4:3144:
44This result should be contrasted with the claims formulated by Diermeier and Myerson (1999) in their

footnote 9. They write "....The veto-override provision is not signi�cant. The 2
3 veto override option allows

that lobby 1 can get a bill passed by paying 3W0 in the house and 3W0 in the senate, rather than paying
W0 to the president plus 2W0 in the house and 2W0 to the senate. So the alternative legislative path that
is allowed by the 2

3 veto override has a hurdle factor of 6, which is higher than the hurdle factor of 5 that
is available without it. Thus our analysis predicts that lobbyists for change should generally ignore the more
expensive option of overriding a presidential veto, and should lobby just as they would if the congress were
a purely serial bicameral legislature with a presidential veto...". This prediction di¤ers from ours, as for
instance, they predict that the president will receive 20% of the "cake" while we predict that he will receive
only 7:74%. Additionally, they predict that the bribe o¤ered to the president will be 50 times larger than
the bribe o¤ered to any single senator, while we predict that it will be 17 times larger.
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Example 9 (The United Nations Security Council). The voters are the 15 countries
that make up the Security Council, 5 of which are called permanent members whereas the

other 10 are called nonpermanent members. Passage of a bill requires a total of at least

9 votes, subject to approval from any one of the 5 permanent members. It is easy to

show that this simple game is a weighted majority game: assigning a weight of 7 to each

permanent member, a weight of 1 to any nonpermanent member and a quota equal to 39

provides a representation. If lobby 1 acts to pass a reform (here a resolution), the problem

of determining the least core is reduced to the minimization of 5x1 + 10x2 with respect to

(x1; x2) 2 <2+ under the constraints:

x1 � 1 and 7x2 � 1:

We deduce that the least core consists of the unique vector
�
1; 1

7

�
(which is the nucleolus)

and that the hurdle factor 5 + 10
7
is approximately equal to 6:43:

If instead lobby 0 acts to block a reform, the problem of determination of the least core is

reduced to the minimization of 5x1+10x2 with respect to (x1; x2) 2 <2+ under the constraint:

5x1 + 4x2 � 1:

Now we obtain that the least core consists of the unique vector
�
1
5
; 0
�
(which is the

nucleolus) and that the dual hurdle factor is equal to 1. Here, only the permanent members

receive an o¤er and with a hurdle factor equal to 1, lobbying expenditures by lobby 1 remain

moderate.

Example 10 (Diermeier and Myerson�s Multicameral Systems). The main ob-
jective in Diermeier and Myerson�s paper is to determine the optimal hurdle factor of one

of the chambers (say the House) in a multicameral system, given the hurdle factors of the

other chambers where optimal means maximizing the expected aggregate amount of bribes

received by the members of the house. They assume that W0 and W1 are independent and

identically distributed random variables and they o¤er detailed illustrations of the optimiza-

tion problem in the case where the marginals are either lognormal or uniform. It is important

to bear in mind that they conduct their analysis under the assumption that there is no uncer-

tainty about which lobby will move �rst: lobby 1 always moves �rst. Let t be the sum of the

hurdle factors of the other chambers and s be the hurdle factor of the house. Lobby 1 makes

o¤er when W1

W0
� s + t. In such a case, the house receives sW0. When instead W1

W0
< s + t,

the house does not receive any transfer. Let F (s; t) be the corresponding expected income

of the house. Diermeier and Myerson�s central result asserts that the best response s�(t) of
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the house, which can be implemented by choosing of an appropriate simple game (N;W),
increases as the external hurdle factor t increases.

Conceivably, in some circumstances, the lobby which wants the status quo to be preserved

acts �rst. If that is the case, the relevant simple game is the dual game and the relevant

hurdle factor is the dual hurdle factor. As is demonstrated below, if lobby 0 makes an o¤er,

then the member of the house receives a fraction of the total bribe (in fact the totality) i¤

their hurdle factor is smaller than the hurdle factor of the other chamber. Consider the case

of a bicameral system and let bt be the dual hurdle factor of the other chamber and bs be
the dual hurdle factor of the house45. Let bF (bs;bt) be the corresponding expected income of
the house. If we assume that the two situations occur with probabilities46 p and 1� p, then
in the simple case where there is no other chamber (unicameral legislature), the expected

income is now:

pF (s; 0) + (1� p)F (bs; 0)
as F = bF in the unicameral case. A new trade-o¤ appears as increasing s now has two

e¤ects: a direct e¤ect like before (as active lobbying becomes less likely) and an indirect

e¤ect through a decrease of bs. Of course, in the above expressions, there is a one to one
relationship between the two hurdle factors bs = 
� (W) and s = 
� (B). If we limit the
implementation to symmetric quota games i.e. S 2 W i¤#S � q, we deduce from example

5 that bs = 
� (W) = n
q
and s = 
� (B) = n

n�q+1 . If n is large, we deduce that:

q

n

� (W) =

�
1� q

n

�

� (B) i.e. bs = s

s� 1

This leads to the �rst order condition :

p
@F

@s
(s; 0) =

1� p
(s� 1)2

@F

@s

�
s

s� 1 ; 0
�

The following table provides the value of the optimal hurdle factor for di¤erent values of

the parameters p and � in the lognormal case.

The �rst line of table 1 is of course similar to the �rst line of table 3 in Diermeier

and Myerson. An interesting observation is that moving from p = 1 to the more balanced

assumption p = 1
2
leads to the optimality of the standard majority game for a large range of

values of � (approximately when � is less than 1:57). Exploiting the symmetry for p = 1
2
, we

know that if s is a solution then s
s�1 is also a solution. In table 1, we have reported the largest

45 i.e. bs = 
� (W). The above examples show that unless the simple game is constant-sum (in which casebs = s), the two factors behave quite di¤erently.
46Diermeier and Myerson assume p = 1.
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Table 1: Optimal Hurdle Factor in Lognormal Model.

�

p 0:6 0:8 1:0 1:2 1:3 1:5 1:6 1:7 2:0 3:0

1 1:0 1:0 1:2414 1:8516 2:3392 3:9872 5:3765 7:4056 21:9487 3122:3942

0:75 1:0 1:5486 1:6915 1:9293 2:189 3:5283 4:8525 6:8422 21:3253 3121:9111

0:5 2:0 2:0 2:0 2:0 2:0 2:0 3:0271 5:4101 20:01 3120:9446

of the two solutions47. Interestingly enough, it is larger than Diermeier-Myerson�s optimal

hurdle factor for small enough values of � and smaller afterwards. When � gets larger than

1:57, the optimal48 hurdle factor increases but stays smaller than Diermeier-Myerson�s one.

In a multicameral legislature, F�s second argument is no longer equal to 0. As de�ned

in example 7, let (Nr;Wr)1�r�R be a family of R hypergraphs with Nr \ Nt = ? for all

r; t = 1; :::; R with r 6= t. Let (N;W) be such that N = [Rr=1Nr and S 2 W i¤ S \Nr 2 Wr

for all r = 1; ::::; R i.e. a reform is approved if it is approved in all the di¤erent R chambers

according to the rules (possibly di¤erent) in use in the chambers. Given the hurdle factors


� (Wr) of each chamber r = 1; ::::::; R, let us calculate 
� (W). It is the value of the linear
program:

Mint2<n+

RX
r=1

X
i2Nr

tir

under the constraints

RX
r=1

X
i2Sr

tir � 1 for all R� tuple (Sr)1�r�R such that Sr 2 Wr for all r = 1; :::; R:

Let � 2 <R+ be such that
PR

r=1 �r = 1. The value of the above program is less than the

value of the program:

Mint2<n+

RX
r=1

X
i2Nr

tir

under the constraintsX
i2Sr

tir � �r for all R� tuple (Sr)1�r�R such that Sr 2 Wr for all r = 1; :::; R:

47The largest is the unique solution when p is slightly on the right of 12 .
48The function which is maximized displays interesting nonconvexities.
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But this new problem is decomposable into R disjoint minimization programs. We deduce

from that argument that:


� (W) �
RX
r=1

�r

� (Wr) for all � 2 <R+ such that

RX
r=1

�r = 1:

Since the above inequality is an inequality for any vector � attached to a solution of the

initial problem, we deduce:


� (W) =Min�2<R+
RX
r=1

�r

� (Wr) under the constraint

RX
r=1

�r = 1;

and therefore:


� (W) =Min1�r�R 
� (Wr) :

This result has important implications for the determination of the optimal dual hurdle

factor by the house. Indeed, in the case where the �rst-mover lobby is the lobby which

wants to block the passage of the reform, the amount of money received by the house will

critically depend upon its dual hurdle factor compared to the dual hurdle factors of the other

chambers. If it is larger than the smallest one, then the house will not be approached by the

lobby. The game describing the interaction between the chambers displays discontinuous

payo¤ functions. In the case of two chambers and p = 1
2
, we obtain that the payo¤ of

chamber 149 is equal to:8><>:
F (
�(B1);
�(B2))

2
+

bF (
�(W1);
�(W2))
2

if 
� (W1) < 

� (W2) ;

F (
�(B1);
�(B2))
2

+
bF (
�(W1);
�(W2))

4
if 
� (W1) = 


� (W2) ;
F (
�(B1);
�(B2))

2
if 
� (W1) > 


� (W2) ;

if we assume that ties are broken equally. Interestingly enough, if both chambers were

acting under the presumption that the lobby which will move �rst is the pro-status quo lobby,

then the game becomes a Bertrand game50 where behavioral responses converge to the Nash

equilibrium (1; 1). It would be interesting to know what we obtain in the general case. When

it is taken for granted that the pro-reform lobby moves �rst, Diermeier and Myerson found

convergence towards the Nash equilibrium (2:20; 2:20) in the case of a bicameral legislature

implemented by a quota of 54:5%; note that then 
� (W) ' 1:835.
49The payo¤ of chamber 2 is obtained similarly.
50The game arising from the assumption considered by Diermeier and Myerson (1999) displays the features

of a Cournot game.
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3.3 Buying Supermajorities

In the two preceding subsections, we have assumed that � = 0 and we have therefore ignored

the impact of vector � on the equilibrium outcomes of the lobbying game. We have focused

our attention on the implications of the rules governing the decision process within the

legislature and the "power" derived by the legislators as a result of their status. We have

covered a large class of simple games describing many alternative institutional legislative

settings and isolated the in�uence of that component of the price of a legislator.

In this last subsection, we reintroduce vector �, but we focus our attention on a very

special (while important) simple game: the classical majority game. In that respect, the

analysis of this section is aligned with the framework of Banks (2000) and Groseclose and

Snyder (1996)(2000). Given the symmetry of the simple game, all legislators are alike in

terms of their power in the legislature. This means that if two legislators i and j receive

di¤erent o¤ers from the lobby, the rationale for this di¤erential should be based on di¤erences

between �i and �j. We have seen, in the previous subsections, that some legislators endowed

with limited power within the legislature were, sometimes, totally ignored by the lobby. Here,

a legislator i with a large �i will be cheap for lobby 1 and expensive for lobby 0. Finally,

we have also observed that most of the time the lobby was bribing a coalition strictly larger

than a minimal winning coalition. These considerations raise a number of questions:

� What will be the size of the coalition of legislators receiving o¤ers from the lobby?

Since the �i are nonnegative numbers, lobby 1 may bribe a submajority coalition (at the

extreme, nobody at all), a minimal majority or a supermajority (at the other extreme,

everybody) depending upon the pro�le �. Which legislators will be part of that coalition

and, in particular, when the cheapest strategy of lobby 1 consists in bribing the whole

legislature?

�Which legislators will be part of the bribed coalition? Will we observe a �ooded coalition
as in Banks (2000) or a non�ooded coalition as in Groseclose and Snyder (1996)(2000), where

�ooded refers to the fact that lobby 1 bribes in priority the legislators more willing to support

the reform.

� What are the di¤erences between the o¤ers received by the legislators who are in the
coalition?

The following proposition answers these three questions in the case where (N;W) is the
classical majority game and n is odd51 i.e. n = 2k � 1 for some integer k � 2.
Proposition 4. If W1 is large enough, there exists an optimal o¤er t�1 = (t

�
11; t

�
21; ::::::; t

�
n1)

51Therefore, this game is constant-sum.
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by lobby 1 described by an integer m� 2 f0; 1; ::::; ng and [such such that t�i1 > 0 and

t�i1 + �
i�W = t�j1 + �

j�W for all i; j = 1; ::::;m�. Further, either W0

k
> �k�W and

m� is determined as the unique smallest integer m such that W0

k
� �W�m if any, and

m� = n otherwise. Or W0

k
� �k�W and m� is the smallest value of m � k � 1 such that

W0 < �W
hPk

l=m+1 �
l +m�m+1

i
.]

Proof. [Assume without loss of generality that �1 � �2 � ::::::: � �n. Let t�1 =

(t�11; t
�
21; ::::::; t

�
n1) be an optimal solution to problem (1)] and x�i1 � t�i1 + �

i�W for all

i = 1; :::; n. Problem (1) can be expressed equivalently as follows:

Min
t1

X
i2N

xi1 ��W
X
i2N

�i

subject to the constraints (8)X
i2S
xi1 � W0 for all S � N such that #S = k

and xi1 � �i�W for all i 2 N:

Let v� (k;�) be the optimal value of problem (8). From the duality theorem of linear

programming, v�(k;�) is the optimal value of the following linear program:

Max
�

X
S2H

�(S)W (S)��W
X
i2N

�i

subject to the constraintsX
S2Hi

�(S) � 1 for all i 2 N

and �(S) � 0 for all S 2 H.

where H = fS � N such that either #S = k or #S = 1g and:

W (S) =

�
W0 if #S = k
�i�W if S = fig

It can be shown52 that to solve (10) the relevant families � of balanced collections of

coalitions attached to H are in one to one correspondence with the sets S such that either

#S � k or S = ?.

For all S such that #S = m � k : �(T ) = 1

Ck�1m�1
for all T � S with #T = k and �(fig) = 1 for all i 2 NnS

For S = ? : �(fig) = 1 for all i 2 N
52A detailed proof can be obtained from the authors upon request.
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We obtain then that the victory threshold v�(k;�) is equal to:

sup

 
0; sup
k�m�n

m

k
W0 ��W

mX
i=1

�i

!

The function m
k
W0��W

Pm
i=1 �

i is "concave" as a function of the variablem. Therefore,

it admits a unique maximizer de�ned as the largest value m� of m such that:

W0

k
� �W�m

or
W0

k
< �W�k

Case 1 : W0

k
� �W�m for some m 2 fk + 1; :::; ng :

Let

t�i1 =

�
W0

k
��W�i for all i = 1; ::::;m�

0 for all i = m� + 1; ::::; n

This solution is optimal since the attached budget is v�(k;�) =m�

k
W0 � �W

Pm�

i=1 and
W0

k
< �W�i for all i = m�+1; ::::; n. Further, it satis�es, by construction, the conditions of

the proposition.

Case 2: �W�k � W0

k
< �W�k+1:

Let

t�i1 =

�
W0

k
��W�i for all i = 1; ::::; k
0 for all i = k + 1; ::::; n

This solution is optimal since the attached budget is v�(k;�) =m�

k
W0 � �W

Pm�

i=1 and
W0

k
< �W�i for all i = k + 1; ::::; n. Further, it satis�es, by construction, the conditions of

the proposition.

Case 3 : W0

k
< �W�k and W0 > �W

Pk
l=1 �

l

Fromwhat precedes, the budget attached to an optimal o¤er is equal toW0��W
Pk

i=1 �
i.

Let m� � k � 1 and de�ne t�1 as follows:

t�i1 =

�
x� ��W�i for all i = 1; ::::;m�

0 for all i = m� + 1; ::::; n
;

where

x� �
W0 ��W

Pk
l=m�+1 �

l

m� :

It is straightforward to check that
P

1�i�n t
�
i1 = v�(k;�). This solution which satis�es

the conditions of the proposition is optimal if:

x� � �W�m�
and x� � �W�m�+1,
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i.e.

�W
kX

l=m�+1

�l +�Wm��m
�+1 � W0 � �W

kX
l=m�+1

�l +�Wm��m
�
:

Since the function �W
Pk

l=m+1 �
l + �Wm�m is increasing in m and takes the value

k�W�k when m = k � 1, we deduce from the inequalities W0

k
< �W�k and W0 >

�W
Pk

l=1 �
l that there is a largest value of m� � 1 such that the above inequalities hold.

Case 4 : W0 � �W
Pk

l=1 �
l:

In such case v�(k;�) = 0 i.e. m� = 0 �

In proposition 4 we have exhibited an optimal o¤er such that all the legislators bribed

by lobby 1 end up with an identical net payo¤ (Groseclose and Snyder call these strategies

leveling strategies). There may exist other optimal strategies, even when m� > 0. For

example, in the case where k = 3, �1 = �2 = �3 = 0, �4 = �5 = � with W0 < ��W , we

derive easily that any o¤er t1 2 R5+ such that
P

1�i�3 t
i
1 = W0 and t41 = t

5
1 = 0 is optimal.

Let us examine how proposition 5 answers the three questions formulated at the beginning

of the subsection. Note �rst that if:

W0

k
> �W�n, i.e.

W1

W0

< 1 +
1

k�n
;

then lobby 1�s cheapest o¤er consists in bribing all the legislators. The corresponding

cost is nW0

k
� �W

Pn
l=1 �

l and lobby 1 will therefore �nd it pro�table to do so i¤:

W1 �
nW0

k
��W

nX
l=1

�l, i.e.
W1

W0

�
�
2k�1
k

�
+
P

i2N �
i

1 +
P

i2N �
i

;

i.e. inequality (3) since ��(B) = 2 � 1
k
. For lobby 1 to bribe at least a majority of

legislators, it is necessary and su¢ cient that:

W0

k
> �W�k, i.e.

W1

W0

< 1 +
1

k�k
:

It will bribe a minimal majority if:

1 +
1

k�k+1
� W1

W0

< 1 +
1

k�k
:

The corresponding cost is W0� �W
Pk

l=1 �
land lobby 1 will therefore always �nd it

pro�table to do so. At the other extreme, if:

W0 < �W

kX
l=1

�l;
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then, lobby 1 does not o¤er any bribe.

While derived under quite di¤erent assumptions, proposition 4 shares some common

features with Banks�s main result53. He assumes that there is a majority of legislators who

have an intrinsic preference for the status quo: without lobbying, the reform is rejected by

the legislature. We assume instead that legislators� intrinsic preferences are unanimously

oriented towards the reform side. Under his assumption, lobby 0 has a double advantage:

it is second mover in the game and has a majority of partisans, while, in our case, the

second advantage is entirely eliminated. Both Banks and our analysis prove the optimality

of levelling schedules, but his coalition is non�ooded while it is �ooded in our case. We

provide a complete characterization of the optimal size m�, while Banks provides necessary

and su¢ cient conditions for this coalition to be minimal winning on the one hand and

universalistic on the other hand54.
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