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Abstract

This paper examines a model of multi-jurisdiction formation where individuals’ characteristics
are uniformly distributed over a finite interval. Every jurisdiction locates a public facility and
distributes its cost equally among the residents. We consider two notions of stability: Nash
stability and its refinement local Nash stability, and examine the existence and characterization
of stable partitions. The main feature of this analysis is that, even under the uniform distribution,
there are stable structures that exhibit a high degree of heterogeneity of jurisdiction sizes.
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1 Introduction

The main objective of this paper is to explore the question of jurisdiction formation for a specific

class of environments.1 Like any model of jurisdiction formation, its ultimate goal is to explain how

a given homogeneous or heterogeneous population of economic units (individuals, cities, regions)

divides itself into several groups (clubs, districts, jurisdictions). Of course, the details of the solution

depend upon the specific features of the problem, among which the reasons why agents desire to act

collectively within jurisdictions, but irrespective of those aspects, the description of an equilibrium

(or stable) partition amounts to the three following items: (1) equilibrium number of jurisdictions;

(2) equilibrium sizes of the jurisdictions; and (3) equilibrium composition of the jurisdictions.

The first question has attracted most of the attention. At the core of most models of jurisdiction

formation is some type of increasing returns to scale which is contrasted with the heterogeneity of

agent’s characteristics and tastes. The increasing returns to scale tends to favor the creation of

large groups, whereas the group heterogeneity may tip the scale in favor of smaller groups. The

equilibrium number of jurisdictions results from the trade-off between these two forces.

The second question has been much less explored from a theoretical perspective. Given the

equilibrium number of M jurisdictions, consider the M -dimensional vector, the coordinates of which

represent the mass of individuals in each jurisdiction. Then, we can compute various indices that offer

alternative perspectives on the degree of heterogeneity exhibited by the vector of jurisdictional sizes

that describes the distribution of individuals across jurisdictions. There is an important empirical

literature, such as the examination of distribution of the population across different units (cities,

counties, metropolitan areas, regions, countries), which focuses on the characteristics of the above

vector. The theoretical analysis of the economic mechanisms underlying population mobility offers a

wide range of models contrasting forces towards agglomeration and the different costs resulting from
1The literature on the formation of jurisdictions is vast and spans many different areas including among others game

theory, general equilibrium and local public finance (Westhoff (1977), Wooders (1978, 1980), Guesnerie and Oddou
(1981, 1988), Greenberg and Weber (1986, 1993), Demange(1994)).
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being in a very populated unit.2 There are two robust empirical regularities in the urban setting.3

One is that the largest cities satisfy Zipf’s law asserting that their sizes are inversely proportional to

their rank, whereas the other (often called the Gibrat’s law) postulates that the growth rate of city

populations does not depend on the size of the city.4 In our paper, the magnitude of heterogeneity

in sizes displayed by a jurisdictional structure P is captured through an index H(P ) defined as the

ratio between the largest and the smallest sizes.

The third question is equally important. Our paper considers an environment where each agent

prefers a jurisdiction populated with agents whose types are similar to her own. It is more difficult

to reach a compromise when the population of the jurisdiction is heterogeneous: if the willingness

to pay for public goods (vertical aspects) as well as preferences over public expenditures (horizontal

aspects) are similar within the jurisdiction, it is easier to facilitate the derivation of a commonly-

shared public policy. To make it short, intra-jurisdictional heterogeneity is costly. This class of

environments should be contrasted with those in which agents prefer instead to be with agents

with a different type.5 In our paper, like in many others, we assume further that the type consists

of a one dimensional parameter. Then, for a given size of jurisdiction, homogeneity is maximal

when the jurisdiction is an interval. In local public finance, this qualitative feature describing the

composition by types of the group is often referred to as stratification while in game theory it is

called consecutiveness.

In this paper we consider a model of provision of public goods which are differentiated along a

horizontal axis, where public goods are differentiated on the basis of a single parameter the preferences

over which intrinsically differ across agents. We will often refer to this parameter as location, but it

could be examined in different settings. If the public good is a school district as in Alesina, Baqir

and Hoxby (2004), this parameter represents a degree of bilingual education or number of courses
2Eeckhout (2004) proposes such a model to explain the distribution of a homogeneous population across cities. On

one hand, large cities are preferred by firms and workers because of the presence of various local externalities while on
the other hand, workers are exposed to higher property prices and commuting costs.

3See Rose (2005) for similar empirical observations with respect to countries rather than cities.
4The two laws seem to contradict each other. Several resolutions of this puzzle have been proposed (see e.g. Gabaix

(1999) and Eeckhout (2004)).
5See for instance the model of agglomeration proposed and studied by Ellison and Fudenberg (2003) where agents

prefer to be in a market with fewer agents of their own type.
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in black history. The type of an agent is assumed to be real number representing her ideal choice

of public good: any departure from the favorite choice incurs a cost which will be assumed to be

linear with respect to the distance to her ideal point. Following Alesina and Spolaore (1997), we will

further assume that heterogeneity in the population is described by the uniform distribution over

the unit interval. Within that model, we answer the three questions posed above for two equilibrium

concepts, Nash stability and local Nash stability. We also evaluate the degree of heterogeneity of

jurisdictional sizes in stable partitions by employing two indices, the size ratio of the largest and the

smallest jurisdiction in a partition, and the variance of the distribution of jurisdictional sizes.

We offer a full characterization of the set of Nash stable jurisdictional structures. We demonstrate

that intra-jurisdictional heterogeneity is minimal as all jurisdictions are intervals. We show all that

there are always Nash stable homogeneous jurisdictional structures that consist of jurisdictions of

equal size. However, there are also Nash stable structures with heterogenous jurisdictional sizes. We

also show that there is no upper bound of the size ratio the large and the small jurisdiction is not

bounded from above. We then proceed to a similar investigation in the case of local Nash stability

(which is more demanding concept that mere Nash stability) that is tested against deviations by

intervals of arbitrary small positive measure. We first show that the sizes of all the jurisdictions in

a locally Nash stable partition are bounded from below by a threshold that depends on the cost of

the public good. The main result asserts that a locally Nash stable jurisdictional structure exists if

and only if the cost of the public good is neither too high nor too low. The jurisdictions could be

of two different sizes, large and small, and the maximal heterogeneity exhibited by a jurisdictional

structure is bounded from above. The restriction on the maximal possible variance is also evaluated.

Related Literature

The framework of this paper is that of Alesina and Spolaore (1997) (AS – henceforth) and we

assume that the distribution of types is uniform on the unit interval. AS examine the implications of

several alternative notions of stability but demonstrate that only homogeneous jurisdictional struc-

tures pass the tests. Since there is no jurisdictional size heterogeneity in their framework, AS only

examine the impact of the cost of the public good on the number of jurisdictions. Le Breton and We-
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ber (2003), Haimanko, Le Breton and Weber (2004, 2005) have considered non-uniform population

distributions and studied the consequences of polarization on both the efficient and the equilibrium

jurisdictional structures. In this paper, we maintain the assumption of uniformity to focus on the role

of increasing returns captured by the cost of the public good and contrast our results with AS. Bo-

gomolnaia et al. (2006) explore some of the questions addressed in this paper for arbitrary discrete

probability distributions. In particular, it is shown there that the existence of stable jurisdiction

structures is not guaranteed.

An important contribution of Alesina, Baqir and Hoxby (2004) examines the case where the initial

territory to be divided is a county and the jurisdictions are either the school districts, the school

attendance areas, the municipalities or the special districts within the county. The theory presented

considers differences between school districts as being horizontal. They examine the impact of the

different forms of heterogeneity on the resulting number of school districts and find strong evidence

of the impact of racial and income heterogeneity but little evidence that jurisdictions are shaped

by ethnic or religious heterogeneity. However, Alesina, Baqir and Hoxby focus only on the number

of jurisdictions, so that an empirical attempt to investigate characteristics of existing jurisdiction

structures together with a test of theories intended to explain the observed outcomes, is left for the

future research.

The paper is organized as follows. In the next section we present the model. Sections 3 and 4

are devoted to the examination of the concepts of Nash stable and Locally Nash stable partitions,

respectively. In Section 5 we offere some concluding remarks. The proofs of all results are relegated

to the Appendix.

2 The Model

The society, represented by a continuum of individuals uniformly distributed over the unit interval

I = [0, 1], faces a problem of location and financing of public facilities (e.g., libraries), and a partition

of individuals into jurisdictions, each assigned to one public facility. The facilities can be located

anywhere on I and the cost of each facility is given by a positive number g, independent of the
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facility location and the number of individuals assigned to it.

Every measurable subset S of I is a potential candidate to form a jurisdiction and we denote by

M (S) the set of its median locations:

M (S) =
{

p ∈ I : λ ({t ∈ S : t ≤ p}) = λ ({t ∈ S : t ≥ p}) =
1
2
λ (S)

}
, (1)

where λ(·) is the Lebesgue measure on I.

Each individual incurs a linear transportation cost from her location to that of public facility,

that is, the transportation cost of individual located at t to the facility located at p is given by

d(t, p) = |t− p|. It would be also useful to introduce the aggregate transportation cost of the set S

given by:

D (S) = min
p∈I

∫

S
d (t, p) dt. (2)

It is easy to see that the minimum in (2) is attained at p ∈ M (S). Thus, the efficiency principle

requires that whenever jurisdiction S forms, it selects a public facility location p from the set M (S).

Since the set M (S) is an interval and may contain more than one element, we assume that in such

circumstances the jurisdiction selects the middle point m (S) from the set M (S). (If M (S) is itself

is a single point, then m (S) obviously coincides with M (S)).

We assume that all formed (and potential) jurisdictions shared the cost of the facility g equally

among its members. Thus, the total cost incurred by an individual t in jurisdiction S, which consists

of her transportation cost and monetary contribution towards public facility, is equal to:

c(t, S) ≡ |t−m(S)|+ g

λ(S)
. (3)

For a fixed S, it is straightforward to check that this function is piecewise linear (and therefore

continuous) as a function of t. Let us now introduce the concept of n-jurisdiction structure for an

arbitrary positive integer n:

Definition 2.1: A n-jurisdiction structure or partition6 is a family P = (Si)1≤i≤n of n measurable

sets of positive measure with pairwise disjoint interior whose union is equal to the entire set
6In cooperative game theory this notion is called a coalition structure (Aumann and Dreze (1974), Greenberg (1994)).
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I.7 An n-jurisdiction structure P is stratified or consecutive if every set Si ∈ P is an interval.

A stratified n-jurisdiction structure is determined by n − 1 points 0 < x1 < . . . < xn−1 < 1:

Si = [xi−1, xi] for i = 1, . . . , n, where, by definition, x0 = 0, and xn = 1.

We now turn to main issue of this paper, the degree of a size heterogeneity displayed by a

jurisdiction structure. We introduce two notions. The first is the heterogeneity gap defined as the

ratio between the size of the largest and the smallest jurisdiction in P and the second is the variance

of jurisdiction sizes in P :

Definition 2.2: Let P be an n-jurisdiction structure. Let s (P ) and s (P ) denote the sizes of the

largest and smallest jurisdictions in P , respectively. Then the heterogeneity gap, H (P ), is

defined by their ratio:

H (P ) =
s (P )
s (P )

.

The size variance V (P ) of an n-jurisdiction structure P is defined as:

V (P ) =
∑

S∈P

(
λ (S)− 1

n

)2

.

The n-jurisdiction structure which consists of jurisdictions of equal size
1
n

(for which H (P ) = 1 and

V (P ) = 0) will be called homogeneous. All other partitions will be called heterogenous.

In the next section we examine the notion of Nash stable structures.

3 Nash Stability

This section is devoted to the examination of the implications of Nash stability and the charac-

terization of Nash stable jurisdiction structures. Note that in a model with a continuum of agents,

the action of a single individual has no impact on the aggregate outcome:
7If one allows for null-set jurisdictions, then their members would incur infinitely high costs; and such a jurisdiction

could be merged with any other jurisdiction of positive measure, without affecting the cost of the members of the latter.
The pairwise disjoint interior simply means that some jurisdictions may have common border points, which would not
affect our results.
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Definition 3.1: A jurisdiction structure P = {S1, . . . , Sn} is Nash stable if c(t, St) ≤ c(t, Si) for all

t ∈ I and for every Si ∈ P , where St denotes the jurisdiction in P that contains t.8 For a given

project cost g and n > 0, we denote by N (g, n) the set of all Nash stable n-partitions.

Nash stability simply requires that the no individual would desire to move from her current jurisdic-

tion to another one.

Obviously, the set I itself is trivially a Nash stable 1-partition. The following proposition describes

some preliminary properties of Nash stable jurisdiction structures.

Proposition 3.2: (i) Every Nash stable jurisdiction structure P is stratified.

(ii) A stratified n-jurisdiction structure P = (x1, . . . , xn−1) is Nash stable if and only if the

function c(t, St) is continuous in t over the set I.

Since every Nash stable structure is stratified, the continuity requirement has to be verified only

at locations of those individuals t, called peripheral, who are located at the border of two adjacent

jurisdictions. Every peripheral individual located at one of the border points xi, i = 1, . . . , n− 1, is

indifferent between the two adjacent jurisdictions9 [xi−1, xi] and [xi, xi+1], i.e., cxi (Si) = cxi (Si+1)

for every i = 1, . . . n − 1. The simple observation above leads to a formulation of Nash stability in

terms of an elementary system of n− 1 equations with n− 1 variables which is, in fact, a recursive

equation of the second order. Namely, P = (x1, . . . , xn−1) is Nash stable if and only if

xi − xi−1

2
+

g

xi − xi−1
=

xi+1 − xi

2
− xi +

g

xi+1 − xi
(4)

for every i = 1, . . . , n− 1. The last condition can be rewritten as

Ψ (si) = Ψ (si+1) for all i = 1, . . . , n− 1, (5)

where si = xi − xi−1 and Ψ(s) denotes the total cost incurred by a peripheral individual in a

jurisdiction of size s:

Ψ (s) ≡ g

s
+

s

2
. (6)

8Given Definition 2.1, the set St may not be well-defined over a null set of individuals. We will show, however, that
in stratified partitions those individuals incur the same cost in both jurisdictions they belong.

9This condition is called border indifference in Bogomolnaia et al. (2005).
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The function Ψ is strictly convex and attains its minimum at s∗ =
√

2g, which is the optimal jurisdic-

tional size from the point of view of the peripheral individual. Since lims→0 Ψ(s) = lims→∞Ψ(s) = ∞,

for any w > Ψ(s∗) = s∗, there are two values of s that satisfy Ψ (s) = w. This yields a useful obser-

vation:

Proposition 3.3: Every Nash stable jurisdiction structure is either homogeneous or consists of

jurisdictions of two different sizes which yield the same value of Ψ.

We have the following results concerning Nash stable partitions:

Proposition 3.4: Let n > 1 be an integer. Then

(i) The homogeneous n-jurisdictional structure is Nash stable.

Denote gn =
1

8 (n− 1)
for every n.

(ii) A Nash stable heterogenous 2-jurisdiction structure exists if and only if g < g2.

(iii) For n ≥ 3, a Nash stable heterogenous n-jurisdiction structure exists if and only if g ≤ gn.

Regarding three questions formulated in the introduction, Nash stability does not impose any bounds

on the number of jurisdictions in a homogenous partition and places an upper bound for heterogenous

partitions. There could be an inter-jurisdictional heterogeneity when a stable structure may contain

jurisdictions of two possible sizes. Finally, Nash stability implies stratification, and, thus, intra-

jurisdictional homogeneity.

Now let us evaluate the heterogeneity gap and the variance for Nash stable partitions. For any

n > 0 and cost of the project g > 0, define HN (n, g) and V N (n, g) as:

HN (n, g) = max
P∈N (g,n)

H (P ) and V N (n, g) = max
P∈N (g,n)

V (P ) .

If N (g, n) = ∅, then we define HN (n, g) = V N (n, g) = −∞. We have

Proposition 3.5: For every integer n > 0 we have

(i) supg>0 HN (g, n) = ∞ and (ii) supg>0 V N (g, n) = 1− 1
n

.

This proposition shows that Nash stability, in fact, does not have an impact on heterogeneity gap,

and there could be Nash stable structures that contain jurisdictions with sharply distinct sizes.
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4 Local Nash stability

In this section, we examine the implications of a more demanding concept of locally Nash stable

partition which has been introduced by Jehiel and Scotchmer (1997, 2001) in a somewhat different

framework. This notion aims to test the stability of a given jurisdiction structure against deviations

by coalitions of positive but arbitrarily small size. Indeed, if an individual finds it (strictly) beneficial

to migrate, then a small neighborhood of that individual may contemplate the same migrational

choice. If such a group move takes place, then it affects the outcome of the jurisdiction absorbing

the migrants but also the situation in jurisdictions they left behind.

While coalitional deviations are often questioned on the basis of credibility, coordination and

communication, it is important to point out that if a deviating group has to be “very small”, this

would eliminate most of those arguments. Formally,

Definition 4.1: An n-jurisdiction structure P = {S1, . . . , Sn} is said to be locally Nash stable if

there exists ε > 0 such that there is no interval T , whose length |T | ≤ ε, and a jurisdiction

S ∈ P such that c(t, S ∪ T ) < c(t, St) for all t ∈ T .

For every g > 0 and n > 0, L (g, n) denotes the set of all locally Nash stable n-jurisdiction

structures.

Note that the notion of a local Nash stability is weaker than stability under free mobility in Bogo-

molnaia et al. (2005), where there is no restriction on the size of a deviating group.

While the formal proof is provided in the Appendix, it is evident from the above discussion that

local Nash stability is indeed a refinement of Nash stability:

Corollary 4.2: Every locally Nash stable jurisdiction structure is Nash stable.

Proposition 3.2(i) and Corollary 4.2 imply that any locally Nash stable jurisdiction structure

is stratified. We can now exploit that property to identify small intervals which are threats to

the stability of a jurisdiction structure. It turns out that jurisdiction structures with too many

jurisdictions or, equivalently, whose jurisdictions are too small, are likely to be unstable. Indeed, a
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small enlargement of the jurisdiction leads to a sharp decrease of the tax paid by the residents while

the transportation cost remains almost unchanged.

Proposition 4.3: Let g > 0 and P be a Nash stable n-jurisdiction structure with n > 1. Then P

is locally Nash stable if and only if λ (S) ≥ ĝ for every jurisdiction S ∈ P , where ĝ =
√

2g

3
.

Note that Proposition 4.3 implies a homogeneous n-jurisdiction structure is locally stable if and only

if n ≤ 1/ĝ.

We can now determine the range of the project costs g for which there exist locally Nash stable

jurisdiction structures:

Proposition 4.4: Let n > 1 and g > 0. There exist two values, g(n) < g(n), such that

(i) When n = 2, a heterogeneous locally Nash stable n-jurisdiction structure exists if and only

if g ∈ [g(n), gn). (Recall that gn =
1

8(n− 1)
as we defined above).

(ii) When n = 3, a heterogeneous locally Nash stable n-jurisdiction structure exists if and only

if g ∈ [g(n), gn] \ { 1
2n2

}.

(iii) When n = 4, 6, a heterogeneous locally Nash stable n-jurisdiction structure exists if and

only if g ∈ [
g(n), g(n)

] \ { 1
2n2

}.

(iv) When n 6= 2, 3, 4, 6, a heterogeneous locally Nash stable n-jurisdiction structure exists if

and only if g ∈ [
g(n), g(n)

]
.

The existence of the bound for homogenous partitions follows from Proposition 4.3, which also

provides an upper bound on the project cost g for heterogenous partitions. The argument for

the existence of a lower bound is more intricate. For small values of g a heterogeneous jurisdiction

structure contains large jurisdictions whose size is substantially larger than the efficient size s∗ =
√

2g.

Thus, the peripheral individuals in these jurisdictions incur a significant transportation cost. This,

in turn, implies that peripheral individuals in small jurisdictions must share a substantial tax burden

imposed by the cost of public facility. Since, by assumption, g is very small, this implies that the size

of these small jurisdictions is “very small”, too, which may contradict Proposition 4.3. This reasoning
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suggests that in any heterogeneous jurisdiction structures, the size of small and large jurisdictions

should not diverge too much or, stated differently, the heterogeneity gap should not exceed some

threshold.

As in the preceding section, for any n > 0 and g > 0, define HL (n, g) and V L (n, g) as:

HL (n, g) = max
P∈L(g,n)

H (P ) and V L (n, g) = max
P∈L(g,n)

V (P ) .

If L (g, n) = ∅, then, as before, both HL (n, g) and V L (n, g) are equal to −∞. We have the following

result:

Proposition 4.5: (i) Let n > 1. Then

(i) maxg>0 HL (g, n) = 3 and (ii) supg>0 V L (g, n) ≤ 1
3n

. (The equality is strict for every n of

the form n = 4m, whereas the inequality is very tight for other values of n.)

We can now sort out the limitations on the set of jurisdiction structures imposed by local Nash

stability. First, the number of jurisdictions is not unrestricted anymore: for a given g there is an

upper bound on the number of jurisdictions in the partition, or, alternatively, for a given n, g has

to be sufficiently small. Obviously the constraints on locally Nash stable heterogeneous jurisdiction

structures are tighter than in the Nash stability case: there is a lower bound on g and the upper

bound on g is smaller than that for Nash stability. Finally, as a subset of the Nash stable jurisdiction

structures, the locally Nash stable partitions do not display any intra-jurisdictional heterogeneity.

It is important to compare the notion of local stability employed in this paper with the A-

stability of Alesina and Spolaore (1997). To be precise, a stratified jurisdiction structure P =

(x1, . . . , xn−1) is A-stable if for all ε > 0, i = 1, . . . , n − 1 and µ ≤ ε, there exists t ∈ [xi, xi + µ]

such that c(t, (Si−1 ∪ [xi, xi + µ]) ≥ c(t, [xi + µ, xi+1]). In contrast, a stratified jurisdiction structure

P = (x1, . . . , xn−1) is locally Nash stable if for all ε > 0, i = 1, . . . , n − 1 and µ ≤ ε, there exists

t ∈ [xi, xi+1 + µ] such that c(t, (Si ∪ [xi, xi + µ]) ≥ c(t, Si+1). Both definitions assert that a structure

is locally stable under the condition that whenever a small group S contemplates a migration to an

adjacent jurisdiction, there is a member of S who would prefer to stay in the original jurisdiction.
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The two definitions, however, differ in the evaluation of the benefits attached to the option of staying

in the “home” jurisdiction. Under local Nash stability the home jurisdiction remains untouched

if at least of one of potential migrants declines the proposed move, whereas under A-stability the

migration move always takes place and all considerations are of ex post nature. Thus, the local Nash

stability is a game theoretical concept that describes the robustness of the jurisdiction structure

against group deviations of arbitrarily small size. It is in the spirit of strong Nash equilibrium

(Aumann (1959)), where no group deviation takes place as soon as there is a member of the group

who prefers the pre-deviation situation to the post-deviation one. The concept of A-stability is more

of a mechanical nature that describes the response of a jurisdiction structure to a local exogenous

shock. The implications of the two concepts are quite different. In particular, a straightforward

calculation shows that A-stability rules out the size heterogeneity, whereas the local Nash stability

does not.

5 Synthesis and Concluding Remarks

In this section we wish suggest several avenues for further research. We have shown that our

stability concepts allow for heterogeneous jurisdiction structures. The heterogeneity, however, is

limited to two different sizes. This conclusion is based on the assumption of uniform density, in

absence of which one could generate more sophisticated patterns of jurisdictions’sizes. Note that the

stability conditions for stratified structures can be expressed through the recursion mechanism that

starts at points θ0 = 0 and θ1 and proceeds to generate other border points of the partition. To

make it more precise, present the jurisdictional structure as a sequence:

[θ0, θ1] , [θ1, θ2] , . . . ,
[
θn−1, θ

0
]
.

where θ0 = 1. Then

θi −m(θi−1, θi) +
g

F (θi)− F (θi−1)
= m(θi+1, θi)− θi +

g

F (θi+1)− F (θi)
, (7)

where F denotes the cumulative function of the population distributed over the interval [0, 1], and

m(θ, θ′) is the median of the interval [θ, θ′]. This leads to a second order “dynamical” system
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θi+1 = h(θi, θi−1), where h is a multi-valued function derived from solving (8). In the case of the

uniform distribution, we obtain

θi+1 = 2θi − θi−1, or θi+1 = θi +
2g

θi − θi−1
.

In fact, in that case the “dynamical” system is equivalent to a simpler one that links the sizes of two

adjacent jurisdictions by either si+1 = si or si+1 = 2g/si.

Clearly, any other population density function will generate a more sophisticated recursive equa-

tion and richer patterns of heterogeneity in sizes. Along that line of research, the closest contributions

are due to Jehiel and Scotchmer in a setting where the public goods are differentiated along a single

vertical dimension (say, quantity) and where the type of an individual is her willingness to pay dis-

tributed uniformly over an interval
[
θ0, θ

0
]
, where θ0 > 0. It is shown there that there is a unique

locally Nash stable jurisdiction structure. The constructive proof is based on explicit computation

of the second order “dynamical” system h, where θi+1/θi = h(θi/θi−1).

It is interesting to note that the equilibrium jurisdictional structure in this setting displays strong

size heterogeneity, where the rightmost jurisdiction is the largest one and contains at least half of

the population. A repeated application of that argument and a more detailed estimation lead to

the establishment of bounds on the heterogeneity gap, and it certainly could be the case that this

approach could lead to promising results in our framework.

The two stability concepts we examine in this paper reflect the paradigm of free entry. It is there-

fore natural to examine what would be the predictions of stability concepts incorporating barriers to

entry. In the case of local Nash stability, the arrival of a small group of migrants, say, from the right

side of the jurisdiction, is welcomed by most of the residents on the right side of the median, as the

migration brings them a double dividend: the cost is shared among a larger group and the location of

the public facility is shifted in their direction. Others may be disadvantaged by the migration wave

and could oppose it if possible. The definition of stability may also call for a precise definition of

the feasibility conditions under which a profitable move can be effective.10 One such concept is the
10See Bogomolnaia and Jackson (2002) for general results.
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B-stability of Alesina and Spolaore (1997). In a companion paper, Bogomolnaia et al. (2005) provide

a characterization of the set of stable jurisdictions where no new group can be created under the

requirement that its members would unanimously prefer a new jurisdiction rather over their current

ones. The insights gained there suggest additional directions of the future research.

Appendix

Proof of Proposition 3.2: (i) Suppose, in negation, that there exists a non-stratified Nash

stable jurisdiction structure P . This implies that there exist S, T ∈ P , and s1, s2 ∈ S, s∗ ∈ T such

that s1 < s∗ < s2. Let, without loss of generality, m(S) < m(T ). Consider the following cases.

Case 1. c(t, S) ≥ c(t, T ) for all t ∈ I. If the inequality is always strict, every individual in S

would migrate to T . If not, we must have c(m(S), S) = c(m(S), T ), and, therefore, c(t, S) > c(t, T )

for all t > m(S). Then every individual in S located to the right of m(S) would rather migrate to

T , a contradiction to the Nash stability of P .

Case 2. c(t, S) ≤ c(t, T ) for all t ∈ I. It can be examined in the same manner as Case 1.

Case 3. The two sets, {t ∈ I|c(t, S) < c(t, T )} and {t ∈ I|c(t, S) > c(t, T )}, have a positive

measure. Then the difference δ (t) = c(t, S)− c(t, T ) is nondecreasing in t on I. Moreover, it satisfies

δ (m (S)) < 0 and δ (m (T )) > 0 and strictly increases on [m (S) , m (T )].

Since s∗ ∈ T , c(s∗, S) ≥ c(s∗, T ) and δ (s∗) ≥ 0. Thus, s∗ > m (S), and δ (s2) > 0, yielding

c(s2, S) > c(s2, T ). That is, s2 would rather move to T , again contradicting our assumption of Nash

stability of P . 2

(ii) It is sufficient to prove, for a stratified partition P = (x1, . . . , xn), the equivalence between

Nash stability and border indifference, which amounts to the equalities c(xi, Si) = c(xi, Si+1) for all

i = 1, . . . , n− 1.

Let P be a Nash stable stratified jurisdiction structure, and assume that there exists i such

that, without loss of generality, c(xi, Si) > c(xi, Si+1). Since the functions c(·, Si) and c(·, Si+1) are

continuous, there exists an interval T ≡ [xi − µ, xi] ⊂ Si such that c(t, Si) > c(t, Si+1) for all t ∈ T ,

a contradiction to the Nash stability of P .
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Conversely, assume that c(xi, Si) = c(xi, Si+1) for all i = 1, . . . , n−1, or, equivalently, the function

c(t, St) is continuous in t. For any S ⊂ I, denote by

∆S(t) ≡ c(t, S)− c(t, St), (8)

the difference between the payoff that individual t receives while staying at his home jurisdiction, and

that she would receive from migrating to jurisdiction S. We claim that this function is continuous

(actually, piecewise linear) and (weakly) single-dipped, with a minimum at m (S).

Continuity follows directly from our assumption. To prove single-dippedness, it is enough to show

that the function ∆S(t) is non-increasing for t ≤ m (S) (the case t ≥ m (S) is treated in a similar

manner).

By continuity of c(t, St), it suffice to consider each jurisdiction separately. Consider jurisdiction

Si such that m (Si) < m (S). Put Ri =
g

λ [S]
− g

λ [Si]
and let t ∈ Si. Then

∆S (t) = |t−m (S) | − |t−m (Si) |+ Ri ={
m (S)−m (Si) + Ri, t ≤ m (Si);
m (S) + m (Si) + Ri − 2t, t ≥ m (Si).

(9)

Since ∆S (t) is single-dipped with a minimum at m (S), and obviously ∆Si (m (Si)) = 0 for all

i = 1, . . . , n, we conclude that c
(
t, St

) ≤ c (t, Si) for all t ∈ I and all i = 1, . . . , n, i.e. P is Nash

stable. 2

Proof of Proposition 3.4: (i) follows directly from (6) as all the equations are satisfied when

si =
1
n

for all i = 1, . . . , n. 2

(ii) Let P be a Nash stable heterogenous n-jurisdiction structure. Then, there are exactly two

different values in the bundle (s1, . . . , sn) (at least two, due to heterogeneity, and no more than two,

since equation Ψ (s) = w has at most two solutions). Let w denotes the common value of Ψ (sk).

The two different sizes, s and s′ are the roots of the quadratic equation

Ψ (s) =
s

2
+

g

s
= w, (10)

where s = w−
√

w2 − 2g and s′ = w +
√

w2 − 2g as long as w ≥ √
2g. Since there are no real roots

for w <
√

2g and a single root for w =
√

2g, in any heterogeneous n-jurisdiction structure we should
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have w >
√

2g. Let k be the number of small jurisdictions of size s and l be the number of large

jurisdictions of size s′, where k + l = n. Since ks + ls′ = 1, we obtain:

l
(
w +

√
w2 − 2g

)
+ k

(
w −

√
w2 − 2g

)
= nw + (l − k)

√
w2 − 2g = 1. (11)

If n = 2, we have l = k = 1 and (12) turns into 2w = 1. Thus, a Nash stable 2-jurisdiction structure

exists if and only if 1 = 2w > 2
√

2g or g < g2.

Consider now the case where n > 2. As l > 0 in any heterogeneous structure, we must have

k < n. Since both k and l are integers, l − k ≥ 2− n and

1 = nw + (l − k)
√

w2 − 2g ≥ nw − (n− 2)
√

w2 − 2g ≥ min
w>

√
2g

{
nw − (n− 2)

√
w2 − 2g} (12)

The expression nw − (n− 2)
√

w2 − 2g attains its minimum when

w =
n
√

2g√
n2 − (n− 2)2

>
√

2g. (13)

The minimal value is equal to
√[

n2 − (n− 2)2
]
· 2g. Hence, if a heterogeneous Nash stable n-

jurisdiction exists, we must have 1 ≥
√[

n2 − (n− 2)2
]
· 2g or g < gn. This completes the “only if”

part of the proof. The proof of the “if” part utilizes the property stated in the following auxiliary

proposition, the proof of which is obtained by simple calculus:

Lemma A.1: The expression

nw − (k − l)
√

w2 − 2g (14)

increases monotonically in w for w ∈ [
√

2g, +∞), when k ≤ l. It is single-dipped with the

minimum at

w =
n√

n2 − (k − l)2

√
2g (15)

when k > l. This expression is unbounded from above when w approaches infinity.

If g = gn, then the (n− 1, 1) jurisdiction structure is Nash stable since w =
n
√

2g√
n2 − (n− 2)2

>
√

2g.

If g < gn, the collection of n− 1 small jurisdictions and one large jurisdiction corresponding to that

value of w is not an n-jurisdiction structure any longer as we have (n− 1) s + s < 1.
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However, the expression nw − (n− 2)
√

w2 − 2g = 1 is continuous and due to Lemma A.1, un-

bounded from above, hence, there exists w such that nw − (n− 2)
√

w2 − 2g = 1. By construction,

the corresponding heterogeneous (n− 1, 1) jurisdiction structure is Nash stable. 2

Proof of Proposition 3.5: (i) From proposition A1, for any small g we can always find a

heterogeneous Nash stable (k, l) jurisdiction structure with w ∈

 n√

n2 − (k − l)2

√
2g, +∞


. Let

k = n − 1 and l = 1. As g converges to 0, the size of small jurisdictions tends to 0 as well since it

is smaller than
√

2g. Hence, the size of the unique large jurisdiction converges to 1 and therefore,

limg→0 s/s = +∞. 2

(ii) A simple rearrangement of V (P ) yields:

V (P ) =
n∑

i=1
s2
i −

1
n

,
(16)

Since for all i = 1, . . . , n si ≤ 1, we obtain s2
i ≤ si and therefore

n∑
i=1

s2
i ≤

n∑
i=1

si = 1. This implies that

for any stratified jurisdiction structure P = (s1, . . . , sn) : V (P ) ≤ 1 − 1
n

. Consider a Nash stable

(n− 1, 1) jurisdiction structure and let g → 0. Since as before s converges to 0 and s converges to 1,
n∑

i=1
s2
i → 1 and V (P ) → 1− 1

n
. 2

Proof of Corollary 4.2: Let P be a locally Nash stable jurisdiction structure and assume

on the contrary that P is not Nash stable i.e, there exists i such that, without loss of generality,

c(xi, Si) > c(xi, Si+1). The continuity of the functions c(t, Si) and c(t, Si+1) implies that there exists

T = [xi − µ, xi] ⊂ Si such that c(t, Si) > c(t, Si+1) for all t ∈ T . We can choose µ small enough so

that m (T ∪ Si+1) ≥ xi. Since λ(Si+1 ∪ T ) > λ(Si+1) and xi < m(Si+1 ∪ T ) < m(Si+1), it follows

that c(t, Si+1) > c(t, T ∪ Si+1), and, therefore, c(t, Si) > c(t, T ∪ Si+1) for all t ∈ T , a contradiction

to P being locally Nash stable. 2

We now use the following proposition that allows us to identify those small intervals which
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represent an actual threat to local Nash stability of jurisdiction structures. Naturally, it turns out

that those intervals are located on the other side of the border with jurisdictions they consider as

migration targets:

Lemma A.2: A stratified jurisdiction structure P = (x1, . . . , xn−1) is locally Nash stable if and

only if there is an ε > 0 such that there does not exist a jurisdiction Si ∈ P and µ ≤ ε for

which one of two inequalities hold:

c(t, Si ∪ [xi − µ, xi]) > c(t, Si−1) for all t ∈ [xi − µ, xi] (17)

c(t, Si ∪ [xi+1, xi+1 + µ]) > c(t, Si+1) for all t ∈ [xi+1, xi+1 + µ] . (18)

Proof: Consider a stratified jurisdiction structure P satisfying the properties (18)-(19) stated above,

and let us show that it is locally Nash stable. Let ε > 0 be such that the properties hold and assume,

without loss of generality, that ε < min
i=j,...,n

λ (Sj).

Assume that P is not locally Nash stable. Then there exists an interval J (not adjacent to some

Si) with λ (J) < ε and a jurisdiction Si ∈ P such that c(t, St) > c(t, J ∪ Si) for all t ∈ J . If

J ∩Si 6= ∅, then λ (J \ Si) < ε and the interval J \Si, adjacent to Si, satisfies on of the two previous

equations, thus contradicting the stated property. Consider now the case where J ∩ Si = ∅. Since

λ [J ] < ε < min
j=1,...,n

λ [Sj ] < λ [Si], it follows that m (Si ∪ J) /∈ J .

Note now that the value of the function ∆Si∪J (t), defined in (9), is negative for all t ∈ J . Then,

from the properties of the function ∆S (t) established in the proof of Proposition 3.2, it follows that

∆Si∪J (t) < 0 for all t between m (Si ∪ J) and the set J , and, in particular, for all t located between

the jurisdiction Si and the interval J .

Let J ′ be the interval of the same size as J but adjacent to Si on the same side of Si as J .

Since m (Si ∪ J) = m (Si ∪ J ′) and λ (Si ∪ J) = λ (Si ∪ J ′) we conclude that ∀t ∈ J ′ the inequality

c(t, St) > c(t, Si ∪ J) = c(t, Si ∪ J ′) holds, a contradiction to the stated property on P . 2

Proof of Proposition 4.3: Consider a jurisdiction S of a size s in a Nash stable partition P and
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an interval J of size µ adjacent to S on the right. It is straightforward to check that ∆S∪J (t′) ≥ 0

for all t′ ∈ J if and only if this inequality holds for t, the right endpoint of the interval J .

Since P is Nash stable, c(t, St) = Ψ(s)− µ. Moreover, c(t, S ∪ J) = Ψ(s + µ) as t is the endpoint

of the new interval jurisdiction S ∪ J of size s + µ. Thus,

∆S∪J (t) = Ψ (s + µ)−Ψ(s) + µ ≥ 0 ⇔ Ψ (s + µ)−Ψ(s) ≥ −µ. (19)

Since
d2Ψ(s)

ds2
=

2g

s3
> 0, inequality (20) holds for all µ > 0 if and only if

dΨ(s)
ds

≥ −1.

As
dΨ(s)

ds
=

1
2
− g

s2
, we deduce that

1
2
− g

s2
≥ −1 if and only if s ≥ ĝ. 2

Proof of Proposition 4.4: For n > 1 denote

g(n) =
3

2(3n− 2)2
, and g(n) =

3
2(n + 2)2

.

Proof of (i): For n = 2, there exists a heterogeneous Nash stable jurisdiction structure if

g < g2 = g(2) =
1
8
. It is locally Nash stable if and only if the size of the small jurisdiction is at least

ĝ. Since when n = 2, w =
1
2

in (11), we deduce that the partition it is locally Nash stable if and

only if
1
2
−

√
1
4
− 2g ≥ ĝ ⇔ g ≥ 3

32
= g(2). (20)

To proceed with other cases, recall that every heterogenous locally Nash stable n-partition consist

of jurisdictions of two sizes, s and s′. From (11) and Proposition 4.3 we have ss′ = 2g, and moreover,

ĝ ≤ s <
√

2g < s′. (21)

As in the proof of proposition 3.4, consider a collection of k jurisdictions of size s and n−k jurisdictions

of size s′ =
2g

s
. Denote by L(k, s) the total size of this collection:

L(k, s) = ks +
2g(n− k)

s
. (22)

This collection turns into a heterogenous locally Nash stable n-partition for some k, 1 < k < n and s

satisfying (22), if L(k, s) = 1, the total population mass of I. It is useful to point out that the function
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L(k, ·) is single-dipped on the relevant interval (0,
√

2g) with a minimum at sm(k) =
√

(n− k)/k
√

2g

if k > n/2 and is monotonically decreasing if k ≤ n/2.

We will use the following results:

Lemma A.3: If g >
1

2n2
, and the set of all heterogeneous locally stable n-structures is nonempty,

it contains a partition into n− 1 small and one large size jurisdiction. Moreover, if n > 3 and

g > g(n) then there are no locally stable heterogeneous n-partitions.

Proof: Suppose that there is a heterogenous locally stable n-partition for k′ < n−1, i.e., there exists

s satisfying (22) such that L(k′, s) = 1. But then L(n − 1, s) < 1. For g >
1

2n2
, it is easy to verify

that L(k,
√

2g) > 1 for all 1 < k < n. By continuity of the function L, there exists s̄, s < s̄ <
√

2g

such that L(n− 1, s̄) = 1.

Let n > 3. Then the minimum sm(n − 1) of the function L(n − 1, ·) is less than or equal to ĝ.

Since L(n − 1,
√

2g) > 1, it follows that there is no heterogenous Nash locally stable n-structure if

L(ĝ) > 1, or g > g(n). 2

Lemma A.4: If g <
1

2n2
, and the set of all heterogeneous locally stable n-structures is nonempty,

it contains a partition into one small and n−1 large size jurisdictions. The latter occurs if and

only if

L(1, ĝ) ≥ 1, or org ≥ g(n) =
3

2(3n− 2)2
. (23)

Proof: Suppose that there is a heterogenous locally stable n-partition for k′ > 1, i.e., there exists s

satisfying (22) such that L(k′, s) = 1, hence, L(1, s) > 1. For g <
1

2n2
, we have L(k,

√
2g) < 1 for

all 1 < k < n. From the continuity of L we obtain the existence of s̄, s < s̄ <
√

2g with L(1, s̄) = 1.

Since the function L(1, ·) is monotonically decreasing on the interval
(
0,
√

2g
)
, the existence of s̄ is

guaranteed if and only if (23) holds. It is easy to check that (23) is equivalent to g ≥ 3
2 (3n− 2)2

.2

Lemma A.5: If g =
1

2n2
, and the set of all heterogeneous Nash locally stable n-structures is

nonempty, it contains a partition into
n

2
+1 small and

n

2
− 1 large size jurisdictions for even n,

and
n + 1

2
small and

n− 1
2

large size jurisdictions for odd n. Moreover, if k >
n

2
, then there
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exists a Nash locally stable (k, n− k)-partition if and only if the number of small coalitions k

satisfies:

2k ≤ (3−
√

3)n. (24)

Proof: Note that if g =
1

2n2
, then L(k,

√
2g) = 1 for all k, 1 < k < n. Let n be an even number (the

consideration for the odd case is very similar). Assume that there is a heterogenous locally stable

n-partition for k′ 6= n

2
+ 1, i.e., there exists s satisfying (22) such that L(k′, s) = 1. Then k′ >

n

2
,

since otherwise L(k′, s) > 1 over the entire interval (0,
√

2g).

Then we have L(
n

2
+ 1, s) > L(k′, s) = 1. Since for s̄ close to

√
2g we have L(

n

2
+ 1, s̄) < 1, there

exists s̃ such that the structure with
n

2
+ 1 small coalitions of the size s̄ and

n

2
− 1 large coalitions

is locally Nash stable.

Now, to prove the inequality (24), consider a union of k small (of size s) and n− k large (of size
2g

s
) jurisdictions such that s = ĝ. For this union, L(k, s) ≥ 1 ⇔ there exists a desired partition, due

to single-dippedness of L(). But direct calculations result in L(k, s) ≥ 1 ⇔ (k + 3(n − k))ĝ ≥ 1 ⇔

2k ≤ (3−√3)n.

Proof of (ii). Let n = 3. If g > g3 =
1
16

, by Proposition 3.3 and Corollary 4.2, then there

is no heterogeneous Nash locally stable 3-jurisdiction structure, whereas, by Lemma A.3, it exists

whenever g ∈ [g(3),
1
18

) and fails to exist if g < g(3).

Now let us consider the case where g ∈ (
1
18

,
1
16

). Then sm(2), the minimum of the function

L(2, ·) is
√

g > ĝ, and L(2, sm(2)) < 1, whereas L(2,
√

2g) > 1. Thus, there is a heterogeneous Nash

stable 3-jurisdiction structure. Finally, if g =
1
18

, the condition (24) in Lemma A.5 is violated for

k = 2, the only possible k >
n

2
, thus ruling out the existence of s ∈ [sm(2),

√
2) such that L(2, s) = 1.

Proof of (iii). By Lemmas A.3 and A.4, there exists a locally Nash stable n-jurisdiction struc-

ture if g ∈ [g(n), g(n)] and g 6= 1
2n2

. Again, if g =
1

2n2
, the condition (24) in Lemma A.5 is

violated, since the only case for k >
n

2
is when k = 3 for n = 4, and k = 4, 5 when n = 6. All cases
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can be easily examined, and a heterogeneous Nash locally stable n-jurisdiction structure fails to exist.

Proof of (iv). Let n be either 5 or greater or equal to 7. The analysis proceeds like in (iii) with

the only difference that condition (24) is satisfied for k =
n

2
+1 or k =

n + 1
2

respectively, depending

on the oddity of n, which yields the existence of a locally Nash stable heterogeneous n-jurisdiction

structure for all g ∈ [g(n), g(n)].2

Proof of Proposition 4.5: (i) From the fact that s ≥ ĝ in any locally Nash stable heterogeneous

structure we deduce that s ≤ 3ĝ. Hence, in any locally Nash stable heterogeneous n structure we

must have H (P ) ≤ 3. To attain this value, take a (n− 1, 1) structure for g =
3

2 (3n− 2)2
, where the

size of the small jurisdictions is equal to ĝ. Hence, the size of the large one is equal to 3ĝ.

(ii) First we show that for every number of large coalitions l = n − k, there exists a value of g

such that a union of k small and n− k big jurisdictions is a locally Nash stable structure with small

jurisdictions of the size ĝ. To find such a value of g, we solve the equation:

kĝ + 3lĝ = 1 ⇔ g =
3

2 (n + 2l)2
. (25)

We note that the maximal variance among the heterogeneous locally Nash stable n-structures is

attained when the size of small jurisdictions is equal to ĝ. Indeed, consider an arbitrary locally Nash

stable structure P , and let the size of small coalitions, s 6= ĝ, or H (P ) < 3. This implies both s > ĝ

and s < 3ĝ. Thus, the variance is smaller than in the case where s = ĝ and s = 3ĝ.

Thus, it suffice to examine the structures P such that H (P ) = 3 for different k, l such that

ks + 3ls = 1. From s =
1

k + 3l
=

1
n + 2l

and s =
3

n + 2l
, we are left with the following problem:

max
l=1,...,n−1

(n− l)
1

(n + 2l)2
+ l

9
(n + 2l)2

⇔ max
l=1,...,n−1

n + 8l

(n + 2l)2
. (26)

Ignoring the integer constraint on l, this leads to l =
n

4
, and therefore k =

3n

4
small jurisdictions.

This implies that the maximal variance is equal to 3n/(n +
n

2
)2 − 1

n
=

1
3n

. If n is not a multiple of

4, the maximal variance is reached for one of the two integer values of l close to
n

4
. 2
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