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Abstract

We study the influence of a bandwidth parameter in inference with conditional es-

timating equations. In that aim, we propose a new class of smooth minimum distance

estimators and we develop a theory that focuses on uniformity in bandwidth. We es-

tablish a
√
n-asymptotic representation of our estimator as a process indexed by a

bandwidth that can vary within a wide range including bandwidths independent of the

sample size. We develop an efficient version of our estimator. We also study its behavior

in misspecified models. We develop a procedure based on a distance metric statistic for

testing restrictions on parameters as well as a bootstrap technique to account for the

bandwidth’s influence. Our new methods are simple to implement, apply to non-smooth

problems, and perform well in our simulations.
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1 Introduction

We address here inference on parameters identified by a set of conditional estimating equa-

tions. Common models that fit into this framework are regression models, conditional quan-

tile models, linear or nonlinear simultaneous equations, and econometric models of optimizing

agents. Earlier work on such models develops inference based on a finite number of uncondi-

tional estimating equations using instruments, as in Generalized Method of Moments (GMM),

see Hansen (1982), or Empirical Likelihood (EL), see Qin and Lawless (1994). More recent

work focuses on accounting for conditional equations at the outset to obtain more efficient

estimators. Some methods rely on increasing the number of considered unconditional estimat-

ing equations (or instruments) with the sample size, such as the minimum distance approach

of Ai and Chen (2003), or generalizations of GMM and EL by Donald, Imbens and Newey

(2003) and Hjort, McKeague and Van Keilegom (2009). Carrasco and Florens (2000) uses

a regularization approach to generalize the GMM approach to a continuum of estimating

equations. Other EL-type estimators use nonparametric smoothing to estimate conditional

equations, such as Antoine, Bonnal and Renault (2007), Kitamura, Tripathi and Ahn (2004),

and Smith (2007a,b). In these different approaches, the estimators’ sensitivity to the user-

chosen parameter (number of estimating equations, regularization parameter, or smoothing

parameter) remains largely unknown. This was one key motivation for the alternative esti-

mator of Dominguez and Lobato (2004), that does not require any user-chosen parameter but

is still
√
n-consistent and asymptotically normal.

Our central aim is to tackle the issue of the influence of the smoothing parameter when

used for inference with conditional estimating equations. For doing so, we introduce a new

estimator, labeled Smooth Minimum Distance (SMD). Heuristically, our method can be ex-

plained as follows. Let

E [g(Z, θ0)|X] = 0 a.s. (1.1)

be conditional estimating equations, where g(Z, θ) is a known r-vector valued function, r ≥ 1,

of a random vector Z = (Y ′, X ′)′ ∈ R
d+q and of a parameter θ ∈ Θ ⊂ R

p. We assume that

the true parameter value θ0 is identified by (1.1). Consider the contrast

E [g′(Z, θ)E (g(Z, θ)|X) f(X)] = E [E (g′(Z, θ)|X)E (g(Z, θ)|X) f(X)] , (1.2)

where f(·) is the density of X and g′(·, θ) denotes the transpose of g(·, θ). This contrast

is non-negative for any θ, and is zero if and only if θ = θ0. Using a kernel estimator of
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E (g(Z, θ)|X) f(X), an empirical equivalent of (1.2) based on cross-section observations is

given by

Mn,h(θ) =
1

2n(n− 1)

∑

1≤i 6=j≤n
g′(Zi, θ)g(Zj, θ)Kij , Kij =

1

hq
K

(
Xi −Xj

h

)
, (1.3)

where K(·) is a multivariate kernel and h = hn a sequence of bandwidths. Zheng (1996)

used such a statistic to construct a specification test for a regression model, and Delgado,

Dominguez and Lavergne (2006) generalizes his idea to conditional moment restrictions. Here

we use the above criterion for estimation instead. Intuitively the minimizer of Mn,h(θ) should

be a consistent estimator of θ0, but will be dependent of the bandwidth’s choice. However,

as will be shown, one does not need to estimate consistently E (g(Z, θ)|X) f(X) to estimate

consistently θ0, and our estimator is
√
n-consistent and asymptotically normal for a fixed,

non-vanishing bandwidth, as well as a vanishing one. Hence our estimator bridges a gap

between Dominguez and Lobato’s method, which does not require a user-chosen parameter,

and the competing EL and GMM-type methods that rely on smoothing.

One may wonder why we introduce a new class of estimators when many are already

available. We believe that our approach has some interesting features, both from a theoretical

as well as a practical viewpoint as detailed below. In particular, SMD is consistent when

the bandwidth is fixed, while estimators based on instruments may be inconsistent if their

number is kept fixed, as pointed out by Dominguez and Lobato (2004). Though our approach

is not a generalization of any existing one, it shares some common features with many as

explained below. Hence, our main conclusion that the bandwidth’s influence should and can

be accounted for in inference is likely to carry over to other estimators.

To derive the properties of SMD, we do not adopt the usual simultaneous asymptotics,

where the bandwidth is assumed to decrease to zero as the sample size increases. Instead

we consider our estimator as indexed by the bandwidth h. Our analysis is thus akin to

recent work on uniform in bandwidth properties of kernel estimators, see Einmahl and Mason

(2005) and the references therein. But to our knowledge our work is the first of its kind for

a semiparametric estimator. As we show, SMD is
√
n-consistent and asymptotically normal

uniformly in h for a large range of bandwidths including bandwidths independent of the sample

size. However, its asymptotic variance depends on the bandwidth. In that respect, our theory

sheds light on the bandwidth’s influence. Moreover, it allows for a data-dependent bandwidth,

which is not available at the moment for alternative estimators. To obtain reliable inference

that accounts for the bandwidth’s influence, we extend a bootstrap method proposed by Jin,
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Ying and Wei (2001) and Bose and Chatterjee (2003) and we show that a bootstrap testing

procedure based on the SMD objective fuction is valid uniformly in the bandwidth.

We also derive a number of desirable results of SMD. First, its main properties are robust to

potential misspecification, i.e. when there exists no θ0 such that (1.1) holds. This is valuable

as misspecified models can still provide useful information, see e.g. White (1981). Schennach

(2007) shows that the excellent properties of the EL estimator degrades enormously under the

slightest misspecification, causing the loss of
√
n-consistency. Little is known on the behavior

of the EL generalizations to (1.1), but one should fear that a similar phenomenon occurs.

Second, the SMD objective function can be tailored to obtain a semiparametrically efficient

estimator, using a vanishing bandwidth and weighting optimally the functions in g(Z, θ).

The other practical advantages of our estimator are as follows. Our estimator is as simple

to implement as Dominguez and Lobato’s estimator. It is versatile and applies even when

g(·, θ) are non-differentiable, as in quantile regression. When the bandwidth is fixed, SMD is

similar in spirit to Dominguez and Lobato’s (2004) estimator and both are
√
n-asymptotically

normal. Their variances generally depend on the unknown data generating process, so that

it is generally not possible to rank them. Our contribution is to provide an alternative to

Dominguez and Lobato’s approach and to develop bootstrap tests. However, our current

theory only applies to independent observations, while the latters allow for dependent ones.

When the bandwidth goes to zero, our estimator can be rendered efficient and is thus com-

parable to alternative estimators. By contrast with the EL-type estimators of Donald and

al. (2003) and Kitamura and al. (2004), efficient SMD does not rely on a double optimiza-

tion problem whose complexity increases with the sample size. It generally obtains from a

two-step procedure and requires estimation of the conditional variance of g (·, θ0), but avoids
estimation of the optimal instruments, involving derivatives of E [g(Z, θ0)|X] with respect to
θ, as in efficient GMM, see e.g. Newey (1993).

Our paper is structured as follows. In Section 2, we present our estimation method in

relation with previous approaches. We then develop our uniform-in-bandwidth theory, in-

cluding extensions to possibly misspecified models and efficient estimation. In Section 3, we

investigate a distance-metric procedure for testing restrictions on parameters and the validity

of a bootstrap method to determine critical values. In Section 4, we study the small sample

behavior of our estimator via a simulation study. Our estimator performs well in our experi-

ments, and the bootstrap test is found to yield accurate levels and good power in moderate

samples. Technical assumptions are gathered in Section 5. Two Appendices provides some

sufficient conditions for our technical assumptions to hold. To keep our paper short, proofs
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are made available on the web at http://gremaq.univ-tlse1.fr/perso/lavergne.

2 SMD Estimation

2.1 The Estimator

We set up a general framework that allows to review the literature and to introduce our esti-

mator. Accounting for conditional moments (1.1) is key for identification and efficiency. If one

transforms the conditional moments into a finite number of unconditional ones, then specify-

ing primitive conditions for identification may become difficult for a nonlinear in parameters

function g(·, ·). This is illustrated by Newey and McFadden (1994) for a simple consumption-
based CAPM model, where Z = (Y1, Y2, X

′)′ ∈ R
2+q, θ = (β, γ)′, and g(Z, θ) = βY1Y

γ
2 − 1.

Dominguez and Lobato (2004) discuss a nonlinear regression where similar issues appear,

see our simulations section. Moreover, accounting for conditional moments is expected to

increase estimation accuracy. Some existing approaches directly deal with conditional esti-

mating equations and gather them in a contrast as

∫
‖E [g(Z, θ)|X = t]‖2 dµ(t) ,

where ‖u‖2 = ∑r
l=1 |ul|2. An estimator of the contrast is then minimized over the parameter

space. Cristobal Cristobal, Faraldo Roca, and Gonzalez Manteiga (1987) is an early work

using such an approach in a regression context.1 The Conditional Continuously Updated

Estimator studied by Antoine and al. (2007) correspond to µ = PX , the distribution of

X, and appropriate reweighting of g (Z, θ) through its conditional variance. As noted in

the Introduction, the SMD objective function (1.3) estimates the contrast (1.2) when the

bandwidth tends to zero. Other existing approaches can be embedded into a framework that

replaces the conditional equations (1.1) by a set of unconditional ones, so that

E [g(Z, θ0)|X] = 0 a.s.⇔ E [g(Z, θ0)l(X, t)] = 0 ∀t ∈ T , (2.4)

for a well-chosen family of functions l(·, t) indexed by t ∈ T .2 For instance, one can consider
polynomial or Fourier series indexed by t ∈ N. Standard GMM accounts only for a finite

1We thank the Associate Editor for pointing out this reference.
2Some EL-type methods are not included, such as Kitamura and al. (2004).
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number of such unconditional moments. Donald, Imbens, and Newey (2003) consider GMM

when the number of moments increases with the sample size, where the contrast is

∫

Rq

‖Var−1/2[g(Z, θ0)l(X, t)]E [g(Z, θ)l(X, t)] ‖2 dµn(t) ,

with µn a measure with point masses at {1, . . . Kn} with Kn →∞. The estimator of Ai and

Chen (2003) proceeds of the same logic, as they themselves point out. However, as shown

by Stinchcombe and White (1998), there exists many families of functions l(·, t) such that

(2.4) holds. Carrasco and Florens (2000) suggest to use exp(tX) for X univariate and t in

an interval around zero. Dominguez and Lobato (2004) choose I(X ≤ t) and consider the

theoretical contrast ∫

Rq

‖E [g(Z, θ)I(X ≤ t)] ‖2 dPX(t) .

It should be clear that an incredible variety of estimators could be considered, each based on

a contrast of the form ∫

T

‖E [g(Z, θ)l(X, t)] ‖2 dµ(t)

for suitable choices of l(X, t) and µ. One could even generalize further by considering contrasts

based on a Lp measure instead of a L2 one. Each estimator is expected to be
√
n-consistent,

but none can be expected to be best in every particular case.

Our new estimator corresponds to the particular choice l(X, t) = eit
′X , see Bierens (1982).

For a probability measure µ with support Rp and h > 0, θ0 is the unique minimizer of

∫

Rq

‖E[g(Z, θ)eit′X ]‖2 dµ(ht) . (2.5)

For a typical measure µ such as a the standard normal, low frequency moments (corresponding

to small t) have more importance than high frequency moments (large t). The bandwidth h

allows to vary the dispersion of the measure, so that for h going to zero, the measure tends

to equalize weights across frequencies. The above contrast writes

E

[
g′(Zi, θ)g(Zj, θ)

∫

Rq

eit
′(Xi−Xj)dµ(ht)

]
= E

[
g′(Zi, θ)g(Zj, θ)h

−q
∫

Rq

eit
′(Xi−Xj)/hdµ(t)

]
,

where Zi = (Y ′i , X
′
i)
′ and Zj are independent copies of Z. If we denote by K ((Xi −Xj)/h)

the last integral (with respect to µ), the contrast becomes

E
[
g′(Zi, θ)g(Zj, θ)h

−qK ((Xi −Xj)/h)
]
. (2.6)
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It is uniquely minimized at θ0, irrespective of the choice of the parameter h.
3 Now, with at

hand independent copies {Z1, . . . Zn} from Z, a natural estimator of our contrast is obtained

after replacing the expectation by a double average, leading to Mn,h(θ). Our SMD estimator

is then defined as

θ̃n,h = argmin
Θ
Mn,h(θ) .

The resulting estimator is practically as simple to implement as Dominguez and Lobato’s

estimator. It depends continuously on the bandwidth h and thus allow for a convenient study

of the bandwidth’s influence. As an example, consider the previously mentioned nonlinear

CAPM-type model where g(Z, θ) = βY1Y
γ
2 − 1 and K(·) is the standard normal multivariate

density φ(·). Then

Mn,h(θ) =
1

2n(n− 1)

∑

1≤i 6=j≤n
(βY1iY

γ
2i − 1)

(
βY1jY

γ
2j − 1

)
h−qφ

(
Xi −Xj

h

)

EMn,h(θ) = E

[
E(βY1iY

γ
2i − 1|Xi)E(βY1jY

γ
2j − 1|Xj)h

−qφ

(
Xi −Xj

h

)]

=

∫

Rq

‖E(βY1Y γ
2 − 1|X)f(X)e−it′X‖2φ(ht) dt ,

which is zero if and only if E(βY1Y
γ
2 − 1|X) = 0 a.s. Other kernels could alternatively be

used, see next section.

2.2 Consistency

We use the following notations throughout the remaining of the paper. For a matrix A, A′

is its transpose, ‖A‖ is the Frobenius norm, λmin(A) and λmax(A) denote the smallest and

the largest eigenvalue of A when A is symmetric. For a real-valued function l(·), ∇θl(·) and
Hθ,θl(·) respectively denote the p column vector of first partial derivatives and the p×p matrix
of second derivatives with respect to θ ∈ R

p. For a vector-valued function l(·) ∈ R
r, ∇θl(·)

denotes the p× r matrix of first derivatives of the entries of l(·) with respect to entries of θ.
We introduce a more general version of our estimator, where

Mn,h(θ) =
1

2n(n− 1)

∑

1≤i 6=j≤n
g′(Zi, θ)W

−1/2
n (Xi)W

−1/2
n (Xj)g(Zj, θ)Kij ,

3The relationship between (2.5) and (2.6) was first noted in Fan and Li (2000) in the context of specification

testing.
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and Wn(·) → W (·) is a sequence of non-random positive definite (p.d.) weighting matrices

that may depend on θ. In practice the typical use of our estimator involves first estimation

with an identity weighting matrix and fixed bandwidth, and second efficient estimation with

an estimated optimal weighting matrix and a vanishing bandwidth, as detailed in Section

3.4. To obtain scale-invariance with respect to X, we recommend that the observations X be

scaled in practice.

To avoid technicalities, our assumptions are spelled out in Section 5, and only the central

ones are discussed in the text. From our previous discussion, a restriction on the kernel K(·)
is that

K(u) =

∫

Rq

eit
′udµ(t)

for a measure µ(·) that is strictly positive (but for a set of isolated points). This is true for
products of the triangular, normal, Laplace, and logistic densities, see Johnson, Kotz, and

Balakrishnan (1995, Section 23.3), and for a Student density, see Hurst (1995).4 One can also

allow for other kernels if X has a bounded support. In that situation indeed, it is sufficient

to consider a continuum of moment conditions E
[
g(Z, θ0)e

it′X
]
= 0 for t in an neighborhood

of the origin, see Bierens (1982), so that any positive measure µ whose support includes a

neighborhood of 0 is suitable. This potentially yields higher-order kernels taking negative

values, such as the normalized sinc kernel corresponding to a uniform µ. We also assume that

the class of functions {(x, x̄) 7→ K((x − x̄)/h), x, x̄ ∈ R
q, h > 0} is Euclidean for a constant

envelope. We give a formal definition of an Euclidean class in Section 5, but we here explain

what this entails. Sufficient conditions for the above class of functions to be Euclidean in the

case of product kernels is that the univariate kernel is bounded and of bounded variation, see

e.g. Nolan and Pollard (1987). Any of the above kernels satisfies these requirements. We also

assume that the families Gk = {g(k)(·, θ) : θ ∈ Θ}, 1 ≤ k ≤ r, are Euclidean for a squared

integrable envelope. Again the Euclidean property is a mild one for parametric families of

functions. Practically, any function g(·, θ) which is continuous almost everywhere for any

θ with an uniformly bounded second moment fulfills the Euclidean condition. We are now

ready to state our first result.

Theorem 2.1. For an i.i.d. sample and under Assumptions 1(i)–(ii), 2, 3, and 4(i)–(ii),

suph0≥h>0, nh2q≥ln(n+1) ‖θ̃n,h − θ0‖ = op(1) for arbitrary finite h0 > 0.5

4Some of the sufficient conditions listed in Appendix A require a number of finite moments, so that the

Student density should be chosen with enough degrees of freedom.
5Here and in what follows, we abstract from measurability issues of the suprema with respect to h.
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Consistency is obtained under more general conditions that the ones imposed for most com-

peting estimators, see e.g. Kitamura et al. (2004) who impose smoothness of the function

g(·, ·), a vanishing bandwidth, and more stringent conditions on its behavior. It is also ob-

tained irrespective of the sequence of matrices Wn(·), assuming it is well-behaved. This will
prove useful in Section 2.4.

2.3 Uniform in Bandwidth Asymptotic Normality

This section contains our central result. We assume smoothness of the functions τ(x, θ) =

E [g(Z, θ)|X = x], specifically that all second partial derivatives with respect to the com-

ponents of θ exist in a neighborhood N of θ0 and that ‖Hθ,θτ
(k)(X, θ) − Hθ,θτ

(k)(X, θ0)‖ ≤
H(X)‖θ−θ0‖a, ∀ θ ∈ N , k = 1, . . . r, for some a ∈ (0, 1] and H(·) with EH4 <∞. While this

is implied by a similar condition on g (Z, θ), our assumption does not require differentiability of

g (Z, θ) and thus allows to cover the case of quantile regression. Let Fn = {φn,h(·) : h ∈ [0, h0]}
be the family of functions defined by

φn,h(z) = E
[
∇θτ(X, θ0)W

−1/2
n (X)h−qK ((x−X)/h)

]
W−1/2

n (x)g (z, θ0) , for h ∈ (0, h0],

and φn,0(z) = ∇θτ(x, θ0)W
−1
n (x)g (z, θ0) f(x). We introduce the following condition

Condition E. The class of functions ψn(·) is such that

{x 7→
∫
ψn(x− uh)K(u)du : h ∈ [0, h0]}

is uniformly Euclidean for the envelope Ψ(·). Here, uniformly means that the envelope and

the constants in the definition of the Euclidean family are independent of n.6

If Condition E holds for ∇θτ(·, θ0)W−1/2
n (·)f(·), then the sequence of (centered) empirical

processes {Gnφn,h : h ∈ [0, h0]} indexed by Fn, where Gnφn,h = n−1/2
∑n

i=1 φn,h(Zi), weakly

converges to a tight zero-mean Gaussian process with covariance function

∆h1,h2
= E

[
∇θτ(X1, θ0)W

−1/2(X1)W
−1/2(X2)Var [g(Z2, θ0)|X2]W

−1/2(X2)

W−1/2(X3)∇′θτ(X3, θ0)h
−q
1 K ((X1 −X2)/h1)h

−q
2 K ((X3 −X2)/h2)

]
.

6Condition (E) can be weakened to a uniform entropy condition, as in van der Vaart (1998, Theorem

19.28) or van der Vaart and Wellner (1996, Theorem 2.11.22).
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Sufficient mild conditions that guarantee Condition E are provided in Appendix A. In partic-

ular, it is sufficient that the functions belong to some Sobolev space, or are Hölder continuous

on their support.7 Let us finally define Vn,h = Hθ,θEMn,h(θ0) and

Vh = lim
n↑∞

Vn,h = E
[
∇θτ(X1, θ0)W

−1/2(X1)W
−1/2(X2)∇′θτ(X2, θ0)h

−qK ((X1 −X2)/h)
]
.

We assume that infn,h λmin(Vn,h) > 0. This holds as soon as P [a′∇θτ(X, θ0) = 0] < 1 for all

a 6= 0, as shown in our proofs. This is the natural extension to conditional moments of the

usual assumption of a full rank matrix ∇θEg(Z, θ0) for unconditional moments Eg(Z, θ0) = 0.

Theorem 2.2. Let h ∈ Hn =
{
h0 ≥ h > 0 : nh4q/α ≥ C

}
for arbitrary constants h0, C > 0,

and 0 < α < 1. For an i.i.d. sample, under Assumptions 1–6 and infn,h λmin(Vn,h) >

0,
√
n
(
θ̃n,h − θ0

)
= −V −1n,h Gnφn,h + op(1) uniformly in h ∈ Hn, and thus converges in

distribution to a tight random process indexed by h whose marginal distributions are zero-

mean normal with covariance function V −1h1
∆h1,h2

V −1h2
.

By contrast to existing results, we do not consider a deterministic sequence of bandwidths nor

do we assume away the bandwidth’s influence by assuming that it converges to zero. As shown

in our proofs, if one assumes differentiability of g (Z, θ), a similar result obtains uniformly

for h in
{
h0 ≥ h > 0 : nh2q/α ≥ C

}
. This lower bound on h is similar or weaker than the

one found in other work. For instance, Andrews (1994) studies a general class of estimators

depending on a preliminary kernel estimator and notes that the latter should converge faster

than n−1/4, which is equivalent to the requirement that nhq/2 diverges. The same restriction

is imposed by Donald, Imbens and Newey (2003) for GMM with an increasing number of

moments, and a stronger one is required for their EL estimator.

Our uniform-in-bandwidth theory sheds light on the bandwidth’s role on the estimator’s

distribution: it does not affect its first-order unbiasedness, nor its rate of convergence, but

it does affect its variance. The
√
n-asymptotic variance V −1h ∆h,hV

−1
h of θ̃n,h can be easily

estimated. When g (Z, θ) is differentiable, we can estimate Vh and ∆h,h respectively by

1

n(n− 1)

∑

1≤i 6=j≤n
∇θg(Zi, θ̃n,h)W

−1/2
n (Xi)W

−1/2
n (Xj)∇′θg(Zj, θ̃n,h)Kij ,

and
1

n(n− 1)(n− 2)

∑

1≤i 6=j 6=k≤n
∇θg(Zi, θ̃n,h)W

−1/2
n (Xi)W

−1/2
n (Xj)Ω̂n(Xj)

×W−1/2
n (Xj)W

−1/2
n (Xk)∇′θg(Zk, θ̃n,h)KijKjk .

7In estimation with an identity weighting matrix, the family of functions ∇θτ(·, θ0)f(·) do not depend on

n, so that the uniform part in Condition E can be discarded.
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Here Ω̂n(Xj) is a r × r matrix whose typical element “approximates” the covariance of dif-

ferents components of g(Zi, θ0) conditional on Xi, such as a nonparametric estimator of

Var[g(Zi, θ0) | Xi]. Alternatively, one can use the elements of g(Zi, θ̃n,h) to approximate

conditional covariances, in the spirit of the Eicker-White variance estimator. Consistency of

the above estimators is pretty straightforward to establish. If g(·, ·) is not differentiable, one
can use numerical methods similar to the ones in Pakes and Pollard (1989).

2.4 Study Under Misspecification

We study our estimator when there is no θ0 such that (1.1) holds. As previously argued, this

is useful at least as a “robustness” check. Denote the probability limit of θ̃n,h as θ̄n,h(Wn) =

θ̄n,h = argminΘ EMn,h(θ) and assume it is unique. Because θ̃n,h is not constant, we need

to extend our smoothness assumptions on the different function entering our analysis to any

value that it can take. We also need a mild strengthening of Condition E to account for

the non-constancy of θ̄n,h. We say that a sequence of real-valued functions ψn(·, ·) satisfies
Condition ME with kernel K(·) for an envelope Ψ(·) if for each n ≥ 1 the class of functions

{x 7→
∫
ψn(x− uh, θ)K(u)du : h ∈ [0, h0], θ ∈ Θ}

is uniformly Euclidean for the envelope Ψ(·). Let θ̄h = limn↑∞ θ̄n,h,

∆̄h1,h2
= E

[
∇θτ(X1, θ̄h1

)W−1/2(X1)W
−1/2(X2)E

[
g(Z2, θ̄h1

)g′(Z2, θ̄h2
)|X2

]
W−1/2(X2)

W−1/2(X3)∇′θτ(X3, θ̄h2
)h−q1 K ((X1 −X2)/h1)h

−q
2 K ((X3 −X2)/h2)

]
,

V̄n,h = Hθ,θEMn,h(θ̄h), and V̄h = lim
n↑∞

V̄n,h .

Theorem 2.3. For an i.i.d. sample and h ∈ Hn, under Assumptions 1-(i), 2, 3, 4-(i) to

(iii), M4, M5, and M6, if supn,h λmax(V̄n,h) < ∞ and infn,h λmin(V̄n,h) > 0,
√
n
(
θ̃n,h − θ̄n,h

)

converges in distribution to a tight random process whose marginal distributions are zero-mean

normal with covariance function V̄ −1h1
∆̄h1,h2

V̄ −1h2
.

2.5 Efficient SMD Estimation

We now turn to rendering our estimator semiparametrically efficient: this is desirable from

a theoretical viewpoint and indicates that our SMD estimator compares well to competitors.

10



Let θ̌n be a
√
n-consistent SMD estimate of θ0, computed for instance by choosing Wn(·) = I

and h = h0 fixed. Consider the nonparametric estimator of Var[g(Z, θ0) | X = x]f(x)

Ŵn(x, θ) =
1

nbq

∑

1≤k≤n
g(Zk, θ)g

′(Zk, θ)L((x−Xk)/b) , (2.7)

where L(x) is a kernel and b is a vanishing bandwidth. The efficient SMD is θ̂n,h,b =

argminΘ M̂n,h,b(θ), where

M̂n,h,b (θ) =
1

2n(n− 1)

∑

1≤i 6=j≤n
g′(Zi, θ)Ŵ

−1/2
n (Xi, θ̌n)Ŵ

−1/2
n (Xj, θ̌n)g(Zj, θ)Kij .

It is thus in general a two-step estimator, but a single quasi-Newton step around the prelim-

inary estimator can also be used when g(·) is differentiable. In non-differentiable cases, one
would numerically optimize the new objective function, in which case the inefficient estimator

would provide a natural starting value. For quantile regression, a leading non-differentiable

case where g(Z, θ) = I [Y − µ(X, θ) ≤ 0] − ρ, W (x) = ρ(1 − ρ)f(x), so that no preliminary

estimator is needed, and a one-step efficient estimator obtains, as the ones recently proposed

by Otsu (2008) and Komunjer and Vuong (2010).

We consider our estimator as a process indexed by h and b. It is easy to show that θ̂n,h,b is

consistent by adapting the proof of Theorem 2.1. As efficiency requires a vanishing bandwidth,

our following analysis assumes that h goes to zero, and in addition that the bandwidth b is in

the same range than h. No relationship between the two bandwidths is required, though in

practice they can be chosen to be equal. By convention, Ŵn(x, θ) = I when the right-hand side

of (2.7) is not positive definite. However, the probability of this event vanishes when n grows

if L(·) is a density with bounded support which is strictly positive around the origin. We use

a generalization of a result from Einmahl and Mason (2005) on kernel estimators to control

the behavior of the variance estimator. The main supplementary assumptions needed for our

next results are of a bounded support for X and some smoothness of E [g(Z, θ)g′(Z, θ)|X = x]

in x and in θ around θ0. Allowing for an unbounded support would involve introducing some

trimming into the objective function, as done by Kitamura et al. (2004), but this is outside the

scope of this paper. They also note that trimming does not affect their estimator in practice

and in view of our following simulations results we feel confident that the same would apply

here.

11



Theorem 2.4. For an i.i.d. sample, under Assumptions 1, 2, E2, E4, 5, E6, and E7,√
n
(
θ̂n,h,b − θ0

)
is asymptotically N(0,Σ−1) uniformly in h, b ∈ H′n with

Σ = E
[
∇θE [g(Z, θ0)|X] Var−1 [g(Z, θ0)|X]∇′θE [g(Z, θ0)|X]

]
.

The asymptotic variance Σ−1 is the semiparametric efficiency bound characterized by Cham-

berlain (1987).

3 SMD-Based Testing for Parameter Restrictions

The main message of our previous section is that the bandwidth influences the behavior of

the estimator. Hence this should be accounted for in inference. We now develop a testing

theory with that aim in mind. In what follows, we do not assume that one uses the efficient

version of SMD, though our following results also apply to this case.

3.1 Asymptotics

Suppose we want to test the parametric restriction in explicit form

H0 : θ0 = R(γ0) , (3.8)

where γ0 ∈ R
s with s ≤ p and R(·) is a function from Γ ⊂ R

s on Θ. We assume that R(·) is
twice continuously differentiable and that ∇γR(γ0) has rank r̄ = s ≥ 1 or r̄ = 0. The latter

case corresponds to the situation where all parameters values are completely determined under

H0. Under these regularity assumptions, explicit restrictions can be turned into equivalent

implicit ones of the form r(θ0) = 0, see e.g. White (1994, Section 8.1). The explicit form

considered here links the parameter θ to a parameter γ of smaller dimension. Such a restricted

parametrization is computationally attractive because it reduces the dimensionality of the

optimization problem. The constrained SMD estimator is θ̃Rn,h = argminθ∈Θ,θ=R(γ)Mn,h(θ). A

distance metric statistic for testing H0 is

DMn,h = 2n
[
Mn,h

(
θ̃Rn,h

)
−Mn,h(θ̃n,h)

]
.

One could alternatively consider tests of the Wald or Score type, but a theoretical advantage

of the distance metric test is that it is automatically invariant to the formulation of the null

hypothesis. For h ∈ [0, h0], let

Λn,h=
[
Ip − V

1/2
n,h ∇′γR(γ0)

[
∇γR(γ0)Vn,h∇′γR(γ0)

]−1∇γR(γ0)V
1/2
n,h

]
V
−1/2
n,h ∆n,h,hV

−1/2
n,h ,
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when r̄ = s and Λn,h = V
−1/2
n,h ∆n,hV

−1/2
n,h when r̄ = 0.

Theorem 3.1. Under the assumptions of Theorem 2.2, then uniformly in h ∈ Hn, (i) under

H0, DMn,h − (Gnφn,h)
′ Λn.h (Gnφn,h) = op(1) and (ii) P [n−1DMn,h > c] → 1 for some c > 0

if H0 does not hold.

The process (Gnφn,h)
′ Λn.h (Gnφn,h) is asymptotically tight and for each h behaves asymp-

totically as a weighted sum of p − r̄ independent chi-squares, where the weights λh are the

positive eigenvalues of Λh = limn↑∞ Λn,h, see Johnson, Kotz, and Balakrishnan (1995). The

distribution of our distance-metric statistic is thus in general non-pivotal. The usual p − r̄

chi-square distribution reappears when we use an efficient estimator, that is for the optimal

weighting matrix and h tending to zero. However the result obtained without imposing this

restriction likely provides a more accurate approximation as it accounts for the bandwidth’s

influence. Determining critical values requires estimation of Λh, which rely on estimators of

Vh and ∆h,h such as the ones given in Section 2.3. In what follows, we shall propose another

route based on the bootstrap.

3.2 Bootstrapping SMD

Application of standard bootstrap methods here would require to generate resamples that

mimic the behavior of the data under the null hypothesis with the same values of X, but new

observations of Y . This can be done easily in specific cases such as regression models, but

may be difficult or infeasible, as for instance in a simultaneous nonlinear equations system

where a reduced form may not be available. We here propose a simple general method that

can circumvent these difficulties. Instead of resampling observations, we perturb the objective

function and recompute our test statistic using the perturbed objective function

M∗
n,h(θ) =

1

2n(n− 1)

∑

1≤i 6=j≤n
wiwjg

′(Zi, θ)W
−1/2
n (Xi)W

−1/2
n (Xj)g(Zj, θ)Kij ,

where wi, i = 1, . . . n, are n independent copies of a known positive random variable w with

E (w) = Var(w) = 1 and Ew4 <∞. To avoid repeated optimizations, one can use in practice

iteration(s) of a numerical algorithm, such as Newton-Raphson, with the initial estimator

θ̃n as a starting point. In case of a non-differentiable objective function, one can rely on

numerical approximations of derivatives.

Jin, Ying and Wei (2001), Bose and Chatterjee (2003), Chatterjee and Bose (2005), and

Chen and Pouzo (2009) have studied such a weighted bootstrap technique in different contexts.
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They do not investigate its use for testing and impose conditions that do not hold in our

context. In what follows, we show that this method consistently approximates the distribution

of θ̃n,h and Mn,h(θ̃n,h) uniformly in the bandwidth.

Theorem 3.2. Under the Assumptions of Theorem 2.2, then conditionally on the sample and

uniformly over h ∈ Hn

i.
√
n
(
θ̃∗n,h − θ̃n,h

)
has asymptotically the same distribution as

√
n
(
θ̃n,h − θ0

)
, that is

suph∈Hn
supu

∣∣∣P
[√

n
(
θ̃∗n,h − θ̃n,h

)
≤ u|Z1, . . . Zn

]
− P

[√
n
(
θ̃n,h − θ0

)
≤ u

]∣∣∣ = op(1).

ii. n
(
M∗

n,h(θ̃
∗
n,h)−M∗

n,h(θ̃n,h)
)
has asymptotically the same distribution as

n
(
Mn,h(θ̃n,h)−Mn,h(θ0)

)
.

An heuristic for this result is as follows. Since E
(
M∗

n,h(θ)|Z1, . . . Zn

)
=Mn,h(θ) is minimized at

θ̃n,h, θ̃
∗
n,h is expected to tend to θ̃n,h conditionally on the sample. Now, as shown in the proofs,

the perturbed and the original function have a similar quadratic expansion in θ. Therefore, the

distribution of n
(
M∗

n,h(θ̃
∗
n)−M∗

n,h(θ̃n,h)
)
is close to the one of n

(
Mn,h(θ̃n,h)−Mn,h(θ0)

)
, and

similarly for
√
n
(
θ̃∗n,h − θ̃n,h

)
and

√
n
(
θ̃n,h − θ0

)
. Our result allows the use of the weighted

bootstrap to approximate the distribution of θ̃n,h and to determine confidence intervals. It is

likely that a studentized version would yield more accurate results, but such an investigation

is beyond the scope of this paper. As confidence regions are sets of values that are not rejected

by a test, the following procedure can also be used to construct such regions.

The determination of bootstrap critical values for hypothesis testing is based on Theorem

3.2-(ii). Consider the decomposition

DMn,h = 2n
[
Mn,h

(
θ̃Rn,h

)
−Mn,h (R(γ0))−

(
Mn,h(θ̃n,h)−Mn,h(θ0)

)]

+ 2n [Mn,h (R(γ0))−Mn,h(θ0)] .

The distribution of DMn,h under H0 is determined by the first term, while consistency is

ensured because the last term diverges under the alternative. Hence to approximate the

behavior of the statistic under H0, we need to approximate the first term only. We thus

repeat estimation under the constraint (3.8), which yields θ̃R∗n,h = argminθ,θ=R(γ)M
∗
n,h(θ), and

we define the bootstrap test statistic as

DM∗
n,h = 2n

[
M∗

n,h(θ̃
R∗
n,h)−M∗

n,h(θ̃
R
n,h)−

(
M∗

n,h(θ̃
∗
n,h)−M∗

n,h(θ̃n,h)
)]

.
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Theorem 3.3. Under the Assumptions of Theorem 2.2, then conditionally on the sample and

uniformly over h ∈ Hn (i) DM∗
n,h has asymptotically the same distribution as DMn,h under

H0, and (ii) DM∗
n,h = op(n) when H0 does not hold,.

The last part suffices to obtain a consistent test, since DMn,h diverges at rate n. One could

also use Theorem 2.3 to show that DM∗
n is bounded in probability whether H0 holds or not,

and thus that the bootstrap test has local power similar to the asymptotic one.

4 Small sample study

We investigated the comparative small sample properties of our estimator in three different

setups. First, we consider the linear structural model

Y1 = α0 + Y2β0 + s(X)ε , (4.9)

Y2 = 2X + U ,

where Y2 is univariate and X follows a standard univariate normal distribution. We set

α0 = β0 = 0 and considered an homoscedastic and an heteroscedastic model with s(x) =√
(1 + x2)/2. In both cases, (s(Xi)εi, Ui) has mean zero, unit unconditional variances, and

unconditional correlation 0.5. We computed our estimator with normal K(·) and h = 1, and

its efficient version with h = c n−1/5 where c varies. Reported results consider c = 2/3, 1, 4/3

and are based on 5000 replications. We only report results for n = 100, since varying the

sample size did not affect our main findings. We compare them to the two-stage least squares

estimator using the intercept and X as instrument as well as the feasible efficient IV estimator

based on kernel estimation of optimal instruments with normal kernel and h = c n−1/5. Our

estimator performs similarly to TSLS in the homoscedastic case and is better than feasible

efficient IV in the heteroscedastic case. The latter is not well centered and much more variable.

The second set of experiments aimed at evaluating the small sample behavior of our

methods within the setup considered by Dominguez and Lobato (2004, hereafter DL), where

Y = θ20X + θ0X
2 + ε, (4.10)

with θ0 = 5/4, X ∼ N(µ, 1), and ε ∼ N(0, 1) independently of X. We considered SMD

with a Gaussian kernel and Wn = I and we made the bandwidth varying to investigate its

influence. As a benchmark, we computed the Nonlinear Least-Squares (NLS) estimator, which
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is efficient given that the error term is homoscedastic. We also somputed DL’s estimator,

which minimizes

1

n3

n∑

k=1

[
n∑

i=1

g(Zi, θ)I(Xi ≤ Xk)

]2

=
1

n2

n∑

i,j=1

g(Zi, θ)g(Zj, θ)

[
1

n

n∑

k=1

I(Xi ≤ Xk)I(Xj ≤ Xk)

]
,

with g(Z, θ) = Y − θ2X − θX2. All results are based on 5000 replications. Figures 1 and 2

compare the densities of the different estimators centered at θ0 = 5/4 and scaled by
√
n. They

illustrate that the asymptotic normal approximation is pretty accurate. Our SMD estimator

outperforms DL’s one for the range of considered bandwidths, though unreported simulations

show that this ranking may be reversed for a very large bandwidth. SMD also compares well

to NLS, though we made not attempt to adapt the bandwidth to the sample size.

To investigate the behavior of our bootstrap test, we used the two-point distribution

defined through Pr(w = 3−
√
5

2
) = 5+

√
5

10
and Pr(w = 3+

√
5

2
) = 5−

√
5

10
. We chose this simple

distribution with third central moment equal to one in the hope to better approximate the

distribution of the statistic, as is the case in simpler setups, see e.g. Mammen (1992). In

Table 1, we report empirical rejections for our test, where 199 bootstrap statistics were used for

each replication. Our Theorem 3.1 implies that, in this simple setup with only one parameter,

DMn,h/λh is asymptotically χ
2
1 where λh is a real number. Hence we estimated λh to derive

an asymptotic test. Our results indicate that the asymptotic test has empirical levels close

to the nominal ones, but often slightly overrejects. The bootstrap test has in most cases

empirical levels closer to the nominal ones. Figures 3 and 4 report the empirical rejection of

our bootstrap tests and the Wald-type tests based on NLS and DL’s estimators when testing

H0 : θ0 = θ00 for varying θ00. Our test’s power is a bit smaller than NLS but larger than DL,

as could be expected from the estimators’ densities.

The third set of experiments focuses on the efficient SMD in the setup of Cragg (1983),

Newey (1993), and Kitamura, Tripathi and Ahn (2004, herefater KTA), where

Y = β1 + β2X + ε, E(ε|X) = 0, Var(ε|X) = .1 + .2X + .3X2 , (4.11)

with β1 = β2 = 1, lnX ∼ N(0, 1), and ε is normally distributed. KTA concluded that in

this setup their Smoothed Empirical Likelihood (SEL) works best than the two-step optimal

GMM estimator, so we didn’t repeat this comparison. As a benchmark, we considered the

generalized least squares (GLS) estimator based on the true variance function and we also

computed the feasible GLS estimator based on the knowledge of the variance functional form.

We considered the efficient SMD and we adapt the bandwidth to the sample size as in KTA.
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At the request of a referee, we also investigated the influence of b, the bandwidth used in the

optimal weighting matrix estimation, on the final estimator. As an illustration, we report

results for the case where h = b, simply labelled SMD, and the case where b is fixed at

n−1/5/3, labelled SMDb. Results for SMD are based on 5000 replications, while results for

SEL are based on 500 replications as reported by KTA. For each estimator we computed

the ratios of root mean squared error (RMSE) and mean absolute deviation (MAE) with

respect to the ones of GLS. Since considering either made little difference, we focus on the

former. Figure 5 reports the RMSE as a function of the bandwidth on the grid n−1/5 × 1/3

through 8/3 for SMD and SEL.8 Both SEL and efficient SMD performs well compared to the

feasible GLS, though the latter relies on the parametric form of the variance. Both perform

better with increasing sample size, but their relative performances depend on the bandwidth

h. The shape of RMSE with respect to the bandwidth is strikingly different for the two

estimators. For SEL, RMSE of both parameters is smaller for pretty large bandwidths. For

instance, when n = 100, the RMSE minimizing bandwidth is 0.93, to be compared with the

interquartile range of X, which is 1.45. Moreover, the RMSE-minimizing bandwidth does not

seem to decrease with the sample size. For SMD, RMSE of the intercept is always minimum

at the smallest considered bandwidth, while for the slope the RMSE-minimizing bandwidth

is small, about 0.27 for n = 100, and decreases with the sample size. The choice of b has little

influence.

We also investigated the behavior of our bootstrap distance-metric statistic under the

null hypothesis. We focused on small to medium bandwidths, that is h = cn−1/5 with c =

1/3, 2/3, 4/3, h = b, and ran 5000 replications with 199 bootstrap samples each. Results are

reported in Table 2. Using asymptotic critical values from the chi-square distribution with

one degree of freedom for our test yields rejection percentages that are higher than nominal

values and our bootstrap corrects for overrejection. Tests based on FGLS (Wald and LR tests

yield identical results) are severely oversized and are then not reliable.

To sum up, our SMD estimator performs well in our simulation experiments: it is com-

petitive with alternative methods, while it exhibits a different behavior with respect to the

bandwidth than SEL. Our bootstrap technique yields reliable test levels for moderate sample

sizes.

8RMSE figures for SEL were kindly provided by Yuichi Kitamura.
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5 Assumptions

5.1 General Assumptions

Assumption 1. (i) The parameter space Θ is compact. (ii) θ0 is the unique value in Θ satisfying

(1.1), that is E [g(Z, θ)|X] = 0 a.s.⇒ θ = θ0. (iii) θ0 belongs to the interior of Θ.

Definition 1. An envelope for a class F of functions is any function F such that |f | ≤ F ∀f ∈ F .
A class F of functions is Euclidean for an envelope F if there exists positive constants A and V such

that for any 0 < ε ≤ 1 and any measure µ such that
∫
F dµ <∞, there are functions f1, . . . fk in F

such that (i) k ≤ Aε−V and (ii) for any f in F , there is an fi such that
∫
|f − fi| dµ ≤ ε

∫
F dµ.

We refer to Nolan and Pollard (1987), Pakes and Pollard (1989), and Sherman (1994) for more

details on Euclidean families.

Assumption 2. (i) K(·) is a symmetric, bounded function, with integral equal to one and strictly

positive Fourier transform on R
q. (ii) The class of all functions (x, x̄) 7→ K((x− x̄)/h), x, x̄ ∈ R

q,

h > 0, is Euclidean for a constant envelope.

Assumption 2-(i) implies that the Fourier transform of K(·) belongs to L1(Rq)∩L2(Rq). The Fourier

transform of K(·) is formally defined as

F [K] (t) = (2π)−q/2
∫

exp−it
′uK(u) du .

Assumption 2-(ii) is also needed when studying the uniform in bandwidth properties of kernel-type

estimators, see the definition of “regular kernels” in Einmahl and Mason (2005).

Assumption 3. For all n, Wn(·) is a r × r symmetric p.d. non-random matrix function with

0 < infn infu λmin(Wn(u)) ≤ supn supu λmax(Wn(u)) < ∞. There exists a symmetric p.d. matrix

function W (·) such that Wn(u)−W (u) = o(1) for all u in the interior of the support of X.

Assumption 3 ensures that W
−1/2
n (·) is well-defined and the spectral radius of W

−1/2
n (·) is uniformly

bounded. It implies that 0 < infu λmin(W (u)) ≤ supu λmax(W (u)) <∞.

Assumption 4. (i) The function supθ ‖E[g(Z, θ) | X = ·] ‖f(·) is in L1 ∩ L2. For all x, the map

θ 7→ E[g(Z, θ) | X = x] is continuous. (ii) The families Gk = {g(k)(·, θ) : θ ∈ Θ}, 1 ≤ k ≤ r, are

Euclidean for an envelope G with EG2 <∞. (iii) EG4 <∞. (iv) There exists a neighborhood of θ0

and a constant c > 0 such that for all θ in that neighborhood, E ‖g(Z, θ)− g(Z, θ0)‖2 ≤ c‖θ − θ0‖. (v)
The components of ∇θτ(·, θ0)f(·) are in L1 ∩ L2. (vi) The components of Var [g(Z, θ0)|X = ·] f(·)
are in L1 ∩ L2.
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Assumption 4 as a whole does not require the continuity of the functions θ 7→ g(z, θ). Assumption

4-(i) ensures that EMn,h(θ) is continuous as a function of θ and h. Assumptions 2-(ii), 4-(ii), and

the good behavior of the spectral radius of W
−1/2
n (·) guarantee that the family of functions

{(z, z̄) 7→ g′(z, θ)W−1/2
n (x)W−1/2

n (x̄)g(z̄, θ)K((x− x̄)/h) : θ ∈ Θ, h > 0}

is uniformly Euclidean for a squared integrable envelope from Pakes and Pollard (1989, Lemma

2.14-(ii)).

Assumption 5. (i) For any x, all second partial derivatives of τ(x, ·) = E [g(Z, ·)|X = x] exist on a

neighborhood N of θ0 independent on x. (ii) There exists a real-valued function H(·) with EH4 <∞
and some a ∈ (0, 1) such that

‖Hθ,θτ
(k)(X, θ)−Hθ,θτ

(k)(X, θ0)‖ ≤ H(X)‖θ − θ0‖a ∀ θ ∈ N k = 1, . . . r .

Assumption 5 is implied by the following Condition 2.

Condition 2. (i) For all z, all second partial derivatives of g(z, ·) exist on a neighborhood N of θ0

independent on z. (ii) There exists a real-valued function H̃(·) with EH̃4 < ∞ and a ∈ (0, 1] such

that

‖Hθ,θg
(k)(Z, θ)−Hθ,θg

(k)(Z, θ0)‖ ≤ H̃(Z)‖θ − θ0‖a ∀θ ∈ N k = 1, . . . r .

Under Condition 2, E ‖g(Z, θ)− g(Z, θ0)‖2 = O(‖θ − θ0‖2), so Assumption 4-(iv) is not restrictive.

For our general results, we do not require differentiability of g(x, θ) and we impose only 4-(iv), which

is precisely what is needed in conditional quantile restriction models where Condition 2 fails, see

e.g. Zheng (1998, Equation A.11). By Assumption 3, gn(Z, θ) = W
−1/2
n (X)g(Z, θ) also satisfies

Assumption 4-(iv), and τn(X, θ) =W
−1/2
n (X)τ(X, θ) inherits the smoothness properties of τ(X, θ).

Assumption 6. (i) The components of ∇θτn(·, θ0)f(·) satisfy Condition E with kernel K(·) for an

envelope Φ1 with EΦa
1 < ∞ for some a ≥ 4. (ii) The components of Hθ,θτ

(k)
n (·, θ0)f(·), 1 ≤ k ≤ r

and H(·)f(·) satisfy Condition E with kernel |K(·)| for an envelope Φ2 with EΦa
2 < ∞ for some

a ≥ 4/3.

5.2 Assumptions for Theorem 2.3

Each of the above Assumptions M4 to M6 replaces or completes Assumptions 4 to 6.

Assumption M4. (i) Each θ̄n,h is unique and there exists a subset ΘM of the interior of Θ such

that for each n, h there is a ball B(θ̄n,h, r) in ΘM with r independent of n and h. (ii) There

exists a constant c > 0 such that for all θ ∈ ΘM , E ‖g(Z, θ1)− g(Z, θ2)‖2 ≤ c‖θ1 − θ2‖. (iii)
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The components of ∇θτ(·, θ1)f(·) and of E [g(Z, θ1)g
′(Z, θ2)|X = ·] f(·), θ1, θ2 ∈ ΘM , are uniformly

bounded in L1∩L2. (iv) The components of E [g(Z, θ1)g
′(Z, θ2)|X = ·] are continuous in θ1, θ2 ∈ ΘM .

Assumption M5. (i) For any x, all second partial derivatives of τ(x, ·) = E [g(Z, ·)|X = x] exist

on ΘM . (ii) There exists a real-valued function H(·) with EH4 <∞ and some a ∈ (0, 1] such that

‖Hθ,θτ
(k)(X, θ1)−Hθ,θτ

(k)(X, θ2)‖ ≤ H(X)‖θ1 − θ2‖a ∀ θ1, θ2 ∈ ΘM k = 1, . . . r .

Assumption M6. (i) The components of ∇θτn(·, ·)f(·) satisfy Condition ME with kernel K(·) for
an envelope Φ1 with EΦa

1 <∞ for some a ≥ 4. (ii) The components of Hθ,θτ
(k)
n (·, ·)f(·), 1 ≤ k ≤ r,

and H(·)f(·) satisfy Condition ME with kernel |K(·)| for an envelope Φ2 with EΦa
2 < ∞ for some

a ≥ 4/3.

5.3 Assumptions for Theorem 2.4

Each of the above Assumptions E2, E4, and E6 replaces or completes Assumptions 2, 4, and 6.

Assumption E2. (i) L(·) is a density of bounded variation with bounded support and is strictly

positive around the origin. (ii) Assumption 2-(ii) holds for L(·).

Assumption E4. Assumption 4 holds with supx∈Rq E[G8(Z) | X = x] <∞.

Assumption E7. (i) f(·) is bounded away from zero and infinity with bounded support D that

can be written as finite unions and/or intersections of sets {x : p(x) ≥ 0}, where p(·) is a polyno-

mial function. (ii) W (·) = E[g(Z, θ0)g
′(Z, θ0) | X = ·]f(·) is such that 0 < infu λmin (W (u)) ≤

supu λmax (W (u)) <∞. (iii) W (·) is Hölder continuous on D. (iv) Let ω2(·, θ) = E[g(Z, θ)g′(Z, θ) |
X = ·]. For θ in a neighborhood of θ0, some ν > 2/3, and c > 0, ‖ω2(x, θ)−ω2(x, θ0)‖ ≤ c‖θ− θ0‖ν
for all x.

Parts (ii) and (iii) ensure that Assumption 3 holds in probability for Wn(·) = E

[
Ŵn(·, θ0)

]
and that

its entries as indexed by b are Euclidean for a constant envelope. Part (iv) allows to control the bias

of Ŵn(·, θ̌).

Assumption E6. Each of the entries of ∇θτ(·, θ0)f(·), Hθ,θτ
(k)(·, θ0)f(·), 1 ≤ k ≤ r and H(·)f(·)

is Hölder continuous on D, with possibly different exponents.
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Appendix A

Lemmas A.1 and A.2 provide different sets of general sufficient conditions that guarantee Condition (E) and

are followed by some discussion. We note that since
∫
φn(x − uh)K(u)du is the expectation of a kernel

estimator, those conditions are of independent interest.

Lemma A.1. Assume that K(·) is integrable and its Fourier transform F [K](·) is Hölder continuous with

exponent a. If the sequence of functions φn : Rq → R, n ≥ 1 have integrable envelope Φ(·), they satisfy

Condition (E) with kernel K(·) for an envelope Φ(·) + C, C > 0, whenever

sup
n

∫
‖t‖a |F [φn](t)| dt <∞. (A.1)

Proof. For any φn, write
∫
φn(x− hu)K(u)du = (2π)

−q/2
∫ ∫

φn(v) exp(it
′(x− v))F [K](ht)dvdt

=

∫
F [φn](t) exp(it′x)F [K](ht)dt ,
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for almost any x, and note that the equality holds trivially for h = 0. Hence for any h1, h2 ∈ [0, h0], using

|F [K](t1)−F [K](t2)| ≤ c‖t1 − t2‖a,
∣∣∣∣
∫
φn(x− h1u)K(u)du−

∫
φn(x− h2u)K(u)du

∣∣∣∣ ≤
∫
|F [φn](t)| |F [K](h1t)−F [K](h2t)| dt

≤ c|h1 − h2|a
∫
‖t‖a |F [φn](t)| dt .

Use Lemma 2.13 of Pakes and Pollard (1989) to conclude.

As most common kernels have bounded moment of order 1, the Hölder continuity of F [K](·) is satisfied with

a = 1, so we assume this from now on without much loss of generality. Condition (A.1) is fulfilled when φn(·)
belongs to Wm,1, the subspace of functions of L1 such that their weak partial derivatives belongs to L1 up to

integer order m ≥ 3, see e.g. Malliavin (1995, Section III.3). Another possible space is the Sobolev space of

functions Hs. Indeed,
∫
‖t‖ |F [φn](t)| dt ≤

∫

‖t‖≤1

|F [φn](t)| dt+
∫

‖t‖>1

‖t‖ |F [φn](t)| dt ≤
∫

Φ(x)dx+ I2 .

By Cauchy-Schwarz inequality, for any b > 1

I2 ≤
[∫ (

1 + ‖t‖2
)1+b/2

|F [φn](t)|2 dt
]1/2 [∫

‖t‖>1

‖t‖−b
dt

]1/2

.

Condition (A.1) then holds for a sequence φn(·) from the Sobolev space of functions Hs with s > 3/2 endowed

with the norm

‖φ‖2Hs =

∫

Rd

(
1 + ‖t‖2

)s

|F [φ](t)|2 dt.

For any integer s ≥ 1, Hs is isomorph to W s,2 endowed with the norm ‖φ‖2W s,2 =
∑

0≤|α|≤s ‖Dαφ‖2L2 , where

for a multi-index α = (α1, ..., αq) of degree |α| = α1 + ... + αq, D
αφ denotes the weak partial derivative of

φ, see Malliavin (1995, Section III.3) or Adams and Fournier (2003, Chapter 3). Finally, note that if two

sequences of functions belongs to Wm,2 with m ≥ 3, their product belongs to Wm,1 and thus also fulfills

Condition (E).

Lemma A.2. For K(·) integrable, any of the following conditions ensures that Condition (E) holds for a

constant envelope.

i. φn(x) = ψn(p(x)), where p(x) is a polynomial in q variables and ψn(·) is a uniformly bounded sequence

of functions of bounded variation on R.

ii. The φn(·) are uniformly bounded and Hölder continuous with exponent a, and
∫
‖u‖a |K(u)|du <∞.

iii. The functions φn are finite addition, multiplication, min, or max of functions satisfying one of (i) or

(ii) (for finite multiplication under (ii), assume that K(·) has enough finite moments).

Proof. The proof follows by showing in each case that {(x, u) 7→ φn(x − hu) : h ∈ [0, 1]} is Euclidean for a

constant envelope and using that the Euclidean property is preserved by integration with respect to a finite

measure, see Nolan and Pollard (1987, Lemma 20).
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(i) For each n, the class of subgraphs {(x, u) 7→ subgraph (φn(x− uh)) : h ∈ [0, 1]} is a VC class of sets by

the arguments of Lemma 22 of Nolan and Pollard (1987). A careful inspection of their proof shows that the

index of this class of subgraphs is independent on n provided the functions φn are uniformly bounded, and

the class of functions is thus Euclidean.

(ii) As for all n, |φn(x1)−φn(x2)| ≤ c‖x1−x2‖a for some c > 0, |φn(x− uh1)− φn(x− uh2)| ≤ c‖u‖a|h1−h2|a.
Lemma 2.13 of Pakes and Pollard (1989) thus implies that the class of φn(x − hu) as functions of (x, u) is

Euclidean for an envelope C1 + C2‖u‖a for some C1, C2 > 0.

(iii) From the above proofs, each of the class of functions φn(x, u;h) = φn(x − hu) as functions of (x, u) is

Euclidean for a constant envelope in Case (i), for an integrable envelope in Case (ii). From Lemma 2.14 of

Pakes and Pollard (1989), finite additions, multiplications, maximum, and minimum, of functions in such

families are Euclidean with an envelope deduced by similar operations on the envelopes of each family.

Since the indicator function I (u ≥ 0) is of bounded variation on R, Lemma A.2-(i) implies that Condition

(E) is satisfied when φn(·) = φ(·) = I (p(x) ≥ 0) for any polynomial p(x). Hence, φ(·) can be the indicator

function of a half space, a ball, a rectangle, or finite unions and intersections of such subsets of Rq. Now,

if the φn(·) have a common fixed bounded support (and vanish outside this set) and the Hölder continuity

condition in Lemma A.2-(ii) holds on this support, then φn(·) can always be written as the product of the

indicator function of the support and a Hölder continuous extension of φn(·) to the whole space R
q, which

exists by the McShane-Whitney theorem, see McShane (1934). Lemma A.2-(iii) then ensures that the φn(·)
satisfy Condition (E).

Appendix B

The following lemmas allow to show that our Assumption E7-(ii) and (iii) implies that E

[
Ŵn(x, θ0

]
is Eu-

clidean for a constant envelope.

Lemma B.1. Let ω(x; b), b ∈ [0, h0], be positive definite r× r matrix-valued functions on R
q with eigenvalues

uniformly bounded away from zero and infinity. If {(x, u) 7→ ω(x− uh; b) : h, b ∈ [0, h0]} is Euclidean for a

constant envelope, then so is {(x, u) 7→ ω−s(x− uh; b) : h, b ∈ [0, h0]}, s = 1/2 or 1.

Proof. We treat the case s = 1/2, the other case similarly follows. For any p.d. A and B, and the spectral

matrix norm ‖ · ‖2,
∥∥∥A1/2 −B1/2

∥∥∥
2
≤ 1

2

{
max

(∥∥A−1
∥∥
2
,
∥∥B−1

∥∥
2

)}1/2 ‖A−B‖2 ,

see Horn and Johnson (1991, page 557). Since A−1 −B−1 = A−1(B −A)B−1,

‖A−1 −B−1‖2 ≤ ‖A−1‖2‖B −A‖2‖B−1‖2
and

∥∥∥A−1/2 −B−1/2
∥∥∥
2
≤ 1

2
{max (‖A‖2 , ‖B‖2)}

1/2 ‖A−1‖2‖B−1‖2 ‖A−B‖2 . (A.2)

From the upper and lower bounds of the eigenvalues of ω(x; b) and the equivalence between the Euclidean

norm ‖ · ‖ and the spectral norm ‖ · ‖2, deduce that for any hi, bi, i = 1, 2,

‖ω−1/2(x− uh1; b1)− ω−1/2(x− uh2; b2)‖ ≤ C‖ω(x− uh1; b1)− ω(x− uh2; b2)‖.

25



for some constant C. Finally, apply the definition of the Euclidean property.

In what follows, ω̄(x; b) =
∫
Rq ω(x− bv)L(v) dv, D is a domain that can be written as {x : p(x) ≥ 0} for some

real polynomial p(x), or finite unions and/or intersections of such sets.

Lemma B.2. If ω(x) has eigenvalues uniformly bounded away from zero and infinity on D and is Hölder

continuous on D (i) ω̄(x; b) has eigenvalues uniformly bounded away from zero and infinity on D if L(·)
is strictly positive in a neighborhood of the origin; (ii) {(x, u) 7→ ω̄(x− hu; b) : h, b ∈ [0, h0]} is Euclidean

entrywise for a constant envelope.

Proof. Part (i) is straightforward, Part (ii) is shown as follows. Since ω(x) is positive definite, there exists

a unique lower triangular matrix T (x) with positive diagonal entries such that ω(x) = T (x)T ′(x). The

eigenvalues of ω(·) are uniformly bounded away from zero and infinity iff the same holds for the eigenvalues of

T (·), that is its diagonal entries. Moreover, the entries of T (·) are Hölder continuous functions with exponent

a since they obtain recursively from the entries of ω(·) through the equations

T 2
i,i(x) = ωi,i(x)−

i−1∑

k=1

T 2
i,k(x), Ti,j(x) = T−1

j,j (x)

(
ωi,j(x)−

j−1∑

k=1

Ti,k(x)Tj,k(x)

)
, 1 ≤ i ≤ r, i > j .

By Theorem 3.3 and Remark 3.4 of Le Gruyer and Archer (1998), each entry Ti,j(x) can be extended to R
q

such that its extension is Hölder continuous with the same exponent and remains between infx∈D Ti,j(x) and

supx∈D Ti,j(x). The lower triangular matrix extension T̃ (·) yields an extension ω̃(·) = T̃ (·)T̃ ′(·) of ω(·) on R
q

which is positive definite with eigenvalues uniformly bounded away from zero and infinity and Hölder contin-

uous. By Lemma 2.13 of Pakes and Pollard (1989) and the fact that multiplication preserves Euclideanity, de-

duce that the class of functions {(x, u, v) 7→ ω̃(x− uh− vb)I(x− hu− vb ∈ D) = ω(x− uh− vb) , x, u, v ∈ R
q,

h, b ∈ [0, h0]}, is Euclidean for a constant envelope. The result follows since Euclideanity is preserved by in-

tegration.

The two above lemma can be combined to yield a result on ω̄−1/2(x− uh; b).

Lemma B.3. {(x, u) 7→ ω̄−s(x− hu; b)I (x− hu ∈ D) : h, b ∈ [0, h0]}, s = 1/2 or 1, is Euclidean for a con-

stant envelope under the assumptions of Lemma B.2.

Proof. Lemma A.2 and the fact that Euclideanity is preserved by addition yield that the class of functions{
(x, u) 7→ ˜̄ω(x− uh; b) = I(x− hu ∈ Dc)I+ ω̄(x− hu; b) : h, b ∈ [0, h0]

}
is Euclidean for a constant envelope.

By definition, the eigenvalues of ˜̄ω(x−uh; b) stay away from zero and infinity and ˜̄ω(x−uh; b) = ω̄(x−uh; b)
whenever x− uh ∈ D.

By Lemma B.1, the class
{
(x, u) 7→ ˜̄ω−1/2

(x− uh; b) : h, b ∈ [0, h0]
}
is then Euclidean for a constant envelope,

and so is
{
(x, u) 7→ ˜̄ω−1/2

(x− uh; b)I(x− hu ∈ D) : h, b ∈ [0, h0]
}

by Lemma A.2-(i). A similar reasoning

applies when s = 1.
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Proofs

In what follows we adopt the notations of Sherman (1993, 1994) concerning U -statistics. Following his use,

we say that for a sequence θn,h, Hn(θ) = op(1), respectively Op(1), uniformly over op(1) neighborhoods

of θn,h and uniformly in h ∈ Hn if for any sequence of random variables rn = op(1), there exist a sequence

bn = op(1), respectively Op(1), such that supn,h∈Hn
sup‖θ−θn,h‖≤rn |Hn(θ)| ≤ bn. The following is an extension

of Corollary 8 of Sherman (1994).

Lemma 1. Let Fn = {fn(·, θ, h) : θ ∈ Θ, h > 0} be a class of degenerate functions on R
k, k ≥ 1, where

fn(·, θn,h, ·) ≡ 0. If

i. Fn is Euclidean for an envelope F satisfying EF 4 <∞ uniformly in n,

ii. There is a ball B(θn,h, r) and positive constants a and c, with r, a, and c independent on n and h, such

that Ef2n(·, θ, h) ≤ c‖θ − θn,h‖a for all θ ∈ B(θn,h, r), all h > 0, and all n,

then uniformly over B(θ̄n,h, r) and h > 0, and for any 0 < α < 1

nk/2Uk
nfn(·, θ, h) = ‖θ − θn,h‖aα/2Op (1) +Op

(
n−α/4

)
.

If we assume further that f2n(·, θn,h, h) ≤ Φ(·)‖θ − θn,h‖a with EΦ < ∞, then then uniformly over B(θ̄n,h, r)

and h > 0, nk/2Uk
nf(·, θ, h) = ‖θ − θn,h‖aα/2Op (1) for any 0 < α < 1.

Proof. For simplicity, write N for B(θn,h, rn). Following the proof of Sherman (1994, Corollary 8),

E sup
θ∈N ,h>0

∣∣∣nk/2Uk
nfn(·, θ, h)

∣∣∣ ≤
[
E sup

θ∈N ,h>0
Uk
2nf

2
n(·, θ, h)

]α/2

for any 0 < α < 1. Under the last condition, one readily obtains the desired result. Under Conditions i and

ii only,

E sup
θ∈N ,h>0

Uk
2nf

2
n(·, θ, h) ≤ sup

θ∈N ,h>0
Ef2n(·, θ, h) +

k∑

i=1

E sup
θ∈N ,h>0

U i
2nfn,i(·, θ, h)

where the class of functions {fn,i : θ ∈ N , h > 0} is degenerate on R
i. Deduce that these classes are uni-

formly Euclidean for squared-integrable envelopes Fi from Lemma 2.14 of Pakes and Pollard (1989), and that

E supθ∈N ,h>0 U
i
2nfn,i(·, θ, h) = O(n−i/2) from Corollary 4 of Sherman (1994).

The following lemmas are extensions of Theorems 1 and 2 of Sherman (1993) and Theorems 1 and 2 of

Sherman (1994b). The proofs proceed by straightforward modifications of his.

Lemma 2. Let θn,h be the minimizer of Mn,h(θ) depending on a bandwidth h, Hn a set of bandwidths, and

let θ̄n,h be a minimizer of a function M̄n,h(θ) that may also depend on h. If

i. θn,h − θ̄n,h = op(1) uniformly in h ∈ Hn,

ii. there is a ball B(θ̄n,h, r) and a constant κ > 0, with r and κ independent on n and h, such that

uniformly in h ∈ Hn

M̄n,h(θ)− M̄n,h(θ̄n,h) ≥ (κ+ o(1)) ‖θ − θ̄n,h‖2 ∀θ ∈ B(θ̄n,h, r) ,
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iii. for some εn = o(1) and uniformly over op(1) neighborhood of θ̄n,h and h ∈ Hn,

Mn,h(θ) = M̄n,h(θ) + ‖θ − θ̄n,h‖Op(1/
√
n) + ‖θ − θ̄n,h‖2op(1) +Op(εn) ,

then ‖θn,h − θ̄n,h‖ = Op

[
max

(
ε
1/2
n , n−1/2

)]
uniformly in h ∈ Hn.

Lemma 3. Let θn,h be as in Lemma 2. Suppose θn,h − θ̄n,h = Op(1/
√
n) uniformly in h ∈ Hn, that the limit

points of the sequence θ̄n,h are in the interior of Θ, and that uniformly over Op(1/
√
n) neighborhoods of θ̄n,h,

Mn,h(θ) =Mn,h(θ̄n,h) +
1

2

(
θ − θ̄n,h

)′
Vn,h

(
θ − θ̄n,h

)
+

1√
n
A′n,h

(
θ − θ̄n,h

)
+ op(1/n)

where Vn,h is a sequence of positive definite matrices such that 0 < cmin ≤ λmin(Vn,h) ≤ λmax(Vn,h) ≤
cmax < ∞ for some cmin and cmax independent on n and h, and An,h = Op(1) uniformly in h ∈ Hn. Then√
n
(
θn,h − θ̄n,h

)
+ V −1

n,hAn,h = op(1) uniformly in h ∈ Hn.

Lemma 4. Under Assumptions 3 and 4(v), supn,h λmax(Vn,h) <∞.

Lemma 5. Under Assumptions 3 and 4(v), lim infn infh λmin(Vn,h) > 0 if F [K] (ht) ≥ F [K] (h0t) ∀ t ∈ R
q,

∀h ∈ [0, h0] and Pr [a′∇θτ(X, θ0) = 0] ≤ 1 for all a 6= 0.

The assumption on the kernel is fulfilled for instance by products of normal, logistic, Laplace, and Student

densities.

Proof of Lemmas 4 and 5. For any n, h, and a ∈ R
p,

a′Vn,ha = E

[
a′∇θτn(X1, θ0)∇′θτn(X2, θ0)a h

−qK

(
X1 −X2

h

)]

= (2π)
q/2

{∫

Rq

r∑

k=1

∣∣∣F
[
a′∇θτ

(k)
n (·, θ0)f(·)

]
(t)

∣∣∣
2

F [K] (ht) dt

}
, (1)

Since F [K] (ht) ≤ (2π)
−q/2

for all h, t, and by Assumptions 3 and 4-(v),

sup
n,h

λmax(Vn,h) = sup
n
λmax(Vn,0) ≤ λmax (E [∇θτ(X, θ0)∇′θτ(X, θ0)f(X)]) sup

n,u
λ−1
min(Wn(u)) <∞ .

If F [K] (ht) ≥ F [K] (h0t) for all t, h ∈ [0, h0], lim infn infh λmin(Vn,h) = lim infn λmin(Vn,h0
) from (1).

Moreover, lim infn λmin(Vn,h0) ≥ λmin(Vh0)−lim supn ‖Ṽn,h0‖2, where Ṽn,h0 = Vn,h0−Vh0 and ‖·‖2 denotes the
spectral norm. From Assumption 3 and since the map W 7→W−1/2 is continuous, see Equation (A.2) below,

supu λmax(W
−1/2(u)) and supn,u λmax(W

−1/2
n (u)) are bounded, andW

−1/2
n (u)−W−1/2(u) = o(1) for any u. It

follows from the Lebesgue dominated convergence theorem and Assumption 4(v) that lim supn ‖Ṽn,h0
‖2 = o(1).

Therefore lim infn λmin(Vn,h0
) ≥ (1/2)λmin(Vh0

). Using (1) and the unicity of the Fourier transform,

λmin(Vh0
) = 0 ⇔ ∃ a 6= 0 : a′∇θτ(X, θ0)W

−1/2(X)f(X) = 0 a.s.

⇔ ∃ a 6= 0 : a′∇θτ(X, θ0) = 0 a.s.

Thus λmin(Vh0) > 0.
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Main proofs

In the main proofs, we use a single index n in place of the double indices n and h, e.g. we write Mn instead

of Mn,h.

Proof of Theorem 2.1. Replacing g(Z, θ) by gn(Z, θ) =W
−1/2
n (X)g(Z, θ) in (2.6) yields

EMn(θ) = (1/2)

∫ ∣∣∣F
[
E

[
g
(k)
n (Z, θ)|X = ·

]
f(·)

]
(t)

∣∣∣
2

dµ(ht) = 0

⇔ F
[
E

[
g
(k)
n (Z, θ)|X = ·

]
f(·)

]
(t) = 0 ∀ t ∈ R

q, k = 1, . . . r

⇔ W−1/2
n (X)E [g(Z, θ)|X] = 0 a.s.⇔ θ = θ0 ,

as Wn(X) is positive definite and µ is a measure with support R
q. If µ is zero at isolated points, then the

second implication still holds by continuity of the Fourier transform. Since EMn(θ) is continuous in θ from

Assumptions 4-(ii) and 3 as well as in h, we have that ∀ε > 0, ∃µ > 0 such that inf‖θ−θ0‖≥ε,0≤h≤h0
EMn(θ) ≥ µ

for n large enough. The family of functions {g′(Z1, θ)W
−1/2
n (X1)W

−1/2
n (X2)g(Z2, θ)K ((X1 −X2)/h) : θ ∈

Θ, h > 0} is Euclidean for a square-integrable envelope by Assumptions 2 and 4, Lemma 22(ii) of Nolan

and Pollard (1987) and Lemma 2.14(ii) of Pakes and Pollard (1989). Thus by Corollary 7 of Sherman (1994),

supθ∈Θ,h>0 |hqMn(θ)−EhqMn (θ) | = OP(n
−1/2). Let H̄n the set of bandwidths from the theorem and consider

a set on which supθ∈Θ,h∈H̄n
|hqMn(θ)−EhqMn (θ) | ≤ Cn−1/2 ln ln(n+2), whose probability tends to one for

any constant C > 0. On this set,

inf
‖θ−θ0‖≥ε

inf
h∈H̄n

[Mn(θ)−Mn(θ0)] ≥ inf
‖θ−θ0‖≥ε

inf
h∈H̄n

EMn(θ)−
[
2C ln ln(n+ 2)/ (ln(n+ 1))

−1/2
]

so that inf‖θ−θ0‖≥ε suph∈H̄n
[Mn(θ)−Mn(θ0)] ≥ µ/2 for n large enough. Since Mn(θ̃n) ≤ Mn(θ0), it follows

that suph∈H̄n
‖θ̃n − θ0‖ < ε with probability tending to one.

Proof of Theorem 2.2. The proof follows from Parts (ii) to (iv) of Theorem 2.3’s proof, setting θ̄n = θ0 and

accounting for (1.1).

Proof of Theorem 2.3. When studying our estimator under misspecification, we define F̄n = {φ̄n,h(·) : h ∈
[0, h0]}, where

φ̄n,h(z) = E

[
∇θτ(X, θ̄n,h)W

−1/2
n (X)h−qK ((x−X)/h)

]
W−1/2

n (x)g(z, θ̄n,h),

and φ̄n,0(z) = ∇θτ(x, θ̄n,0)f(x)W
−1
n (x)g

(
z, θ̄n,0

)
. Let {Gnφ̄n,h : h ∈ [0, h0]} be the sequence of centered

empirical processes indexed by the families F̄n,

V̄n,h = Hθ,θEMn(θ̄n,h) = E
[
∇θτn(X1, θ̄n,h)∇′θτn(X2, θ̄n,h)h

−qK ((X1 −X2)/h)
]

+

r∑

k=1

E

[
Hθ,θτ

(k)
n (X1, θ̄n,h)g

(k)
n (X2, θ̄n,h)h

−qK ((X1 −X2)/h)
]
,

and V̄n,0 = limh↓0 V̄n,h = Hθ,θEMn(θ̄n,0).

(i) Consistency: Since θ̄n is the unique minimizer of EMn(θ), reason as in Theorem 2.1’s proof to show that

suph∈H̄n
‖θ̃n − θ̄n‖ = op(1).
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(ii)
√
n-consistency: Since ∇θEMn(θ̄n) = 0 and infn,h λmin(Vn,h) > 0, we have uniformly in h ∈ Hn

EMn(θ)− EMn(θ̄n)

=
(
θ − θ̄n

)′∇θEMn(θ̄n) +
1

2

(
θ − θ̄n

)′
Hθ,θEMn(θ̄n)

(
θ − θ̄n

)
+ o(‖θ − θ̄n‖2)

=
1

2

(
θ − θ̄n

)′
V̄n,h

(
θ − θ̄n

)
+ o(‖θ − θ̄n‖2) ≥

1

2

(
inf
n,h

λmin(V̄n,h) + o(1)

)
‖θ − θ̄n‖2 .

Now apply Hoeffding’s decomposition to Mn (θ)−Mn(θ̄n) and consider the first-order empirical process Pn l̃θ,

where l̃θ(Zi) = E[lθ(Zi, Zj) | Zi] + E[lθ(Zi, Zj) | Zj ]− 2E[lθ(Zi, Zj)],

lθ(Zi, Zj) = (1/2)
(
g′n(Zi, θ)gn(Zj , θ)− g′n(Zi, θ̄n)gn(Zj , θ̄n)

)
h−qK ((Xi −Xj) /h)

= (1/2)g′n(Zi, θ̄n)
(
gn(Zj , θ)− gn(Zj , θ̄n)

)
h−qK ((Xi −Xj) /h)

+ (1/2)
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′
gn(Zj , θ̄n)h

−qK ((Xi −Xj) /h)

+ (1/2)
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′ (
gn(Zj , θ)− gn(Zj , θ̄n)

)
h−qK ((Xi −Xj) /h)

= l1θ(Zi, Zj) + l2θ(Zi, Zj) + l3θ(Zi, Zj) ,

and l1θ(Zi, Zj) = l2θ(Zj , Zi) by the symmetry of K(·). Now E[l1θ(Zi, Zj) | Zj ] and from Assumption M5,

2E[l1θ(Zi, Zj) | Zi] = g′n(Zi, θ̄n)E
[(
gn(Z, θ)− gn(Z, θ̄n)

)
h−qK ((Xi −X) /h) |Zi

]

= g′n(Zi, θ̄n)

[∫

Rq

∇′θτn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx
] (

θ − θ̄n
)

(2)

+
1

2
g′n(Zi, θ̄n)

p∑

k,l=1

(
θ(k) − θ̄(k)n

)(
θ(l) − θ̄(l)n

)

[∫

Rq

Hθ(k)θ(l)τn(x, θ̄n)f(x)h
−qK ((Xi − x) /h) dx

]
+R1n(Zi, θ) (3)

where ‖Rn(Zi, θ)‖ ≤ G(Zi)‖θ − θ̄n‖2+a

[
r∑

k=1

(∫

Rq

H(k)
n (Xi − hu)f(Xi − hu)|K(u)| du

)2
]1/2

and Hn(·) = W
−1/2
n (·)H(·). By Assumption M6-(i), the functions ∇θτ

(k)
n (·, θ̄n)f(·), n ≥ 1 satisfy Condition

(ME) for an envelope Φ with EΦa(X) < ∞ for some a ≥ 4. Use Assumption M4 and Lemma 2.14-(ii) in

Pakes and Pollard (1989) to conclude that the family of functions φ̃′n,h(z) indexed by h in (2) is uniformly

Euclidean for a squared-integrable envelope. Hence A′n = Ḡnφ̃
′
n,h = Op(1) uniformly in θ and h ∈ [0, h0]

by Corollary 4 of Sherman (1994). Similarly, the family of functions in (3) is uniformly Euclidean for an

integrable envelope. By a version of the Glivenko-Cantelli for families changing with n, see e.g. van de

Geer (2000, p.44), the centered empirical sum based on this family of functions is then an op(1) uniformly in

h ∈ [0, h0]. Finally,
{
G(z)

∫
Rq H

(k)
n (x− hu)f(x− hu)|K(u)| du : h ∈ [0, h0]

}
are also uniformly Euclidean for

an integrable envelope, so that the (uncentered) empirical sum based on this family of functions is a Op(1)
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uniformly in h ∈ [0, h0]. A similar expansion for l3θ yields

2E[l3θ(Zi, Zj) | Zi] =
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′
E
[(
gn(Z, θ)− gn(Z, θ̄n)

)
h−qK ((Xi −X) /h) |Zi

]

=
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′
[∫

Rq

∇′θτn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx
] (

θ − θ̄n
)

(4)

+
1

2

(
gn(Zi, θ)− gn(Zi, θ̄n)

)′ p∑

k,l=1

(
θ(k) − θ̄(k)n

)(
θ(l) − θ̄(l)n

)

[∫

Rq

Hθ(k)θ(l)τn(x, θ̄n)f(x)h
−qK ((Xi − x) /h) dx

]
+R3n(Zi, θ) .

Since the function in (4) is such that

E

∣∣∣∣
(
gn(Zi, θ)− gn(Zi, θ̄n)

)′
[∫

Rq

∇′θτn(x, θ̄n)f(x)h−qK ((Xi − x) /h) dx
]∣∣∣∣→ 0

as θ− θ̄n → 0, the centered process based on these functions is an op(1/
√
n) uniformly in θ and h by Corollary

8 of Sherman (1994). The remaining terms can be dealt with similarly. Hence

Pn l̃θ =
1√
n
A′n

(
θ − θ̄n

)
+ ‖θ − θ̄n‖2op(1) , (5)

uniformly over op(1) neighborhoods of θ̄n and h ∈ [0, h0].

Consider the second order U -process Unlθ in the decomposition ofMn(θ)−Mn(θ̄n). For θ ∈ N , Eh2ql2θ(Zi, Zj) =

E
[(
g′n(Zi, θ)gn(Zj , θ)− g′n(Zi, θ̄n)gn(Zj , θ̄n)

)
K ((Xi −Xj) /h)

]2
. Since K(·) is bounded, the Zi are indepen-

dent, and for any a1, ..., ar ∈ R, (a1 + ...+ ar)
2 ≤ r(a21 + ...+ a2r), deduce that Eh2ql2θ(Zi, Zj) = O(‖θ − θ̄n‖).

From Assumption M4–(iii), hqlθ(Zi, Zj) is Euclidean for an integrable envelope with fourth moment. Use

Lemma 1 to deduce that for any 0 < α < 1

sup
h>0

|Unh
qlθ| = ‖θ − θ̄n‖α/2Op(n

−1) +Op(n
−1−α/4)

uniformly over op(1) neighborhoods of θ̄n, which yields

sup
h∈Hn

|Unlθ| = ‖θ − θ̄n‖α/2Op( sup
h∈Hn

n−1h−q) +Op( sup
h∈Hn

n−1−α/4h−q) . (6)

Choose α < 1 such that nh4q/α ≥ C for all h ∈ Hn from our assumption to deduce that the second term is a

Op(n
−1). For θ in a op(1) neighborhood of θ̄n, the first term is Op(ε0,n) with ε0,n = o(suph∈Hn

n−1h−q). Use

Equations (5) and (6) in conjunction with Lemma 2 to obtain ‖θ̃n − θ̄n‖ = Op(ε
1/2
0n ). Plug in this result in

(6), so that the first term is a Op(ε1,n) with ε1,n = ε
1+α/4
0,n . Apply repeatedly m times to get εm,n = εαm

0,n with

αm =
∑m−1

j=0 (α/4)
j
. When m increases, εm,n decreases and αm tends to 4/(4− α). Since ε4/(4−α)

0,n = o(n−1),

after m iterations with m finite large enough, the first term in Equation (6) is a Op(n
−1). Apply then again

Lemma 2 to conclude that ‖θ̃n − θ̄n‖ = Op(n
−1/2).

Remark that under Condition 2, Equation (6) becomes suph |Unlθ| = ‖θ − θ̄n‖αOp(suph n
−1h−q). Choose

any α < 1 such that nh
2q
α ≥ C for all h and reason as above to obtain that suph |Unlθ| = Op(n

−1) and

‖θ̃n − θ̄n‖ = Op(n
−1/2).
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(iii) Asymptotic representation: Equation (7.16) and Part (ii) imply that for any α ≤ α′ < 1, where α comes

from our assumptions, suph |Unlθ| = Op(suph n
−1−α′/4h−q). Conclude that suph |Unlθ| = op(n

−1), and use

(5) to obtain

Mn(θ) =Mn(θ̄n) +
1

2

(
θ − θ̄n

)′
V̄n

(
θ − θ̄n

)
+

1√
n
A′n

(
θ − θ̄n

)
+ op(1/n) ,

uniformly over Op(1/
√
n) neighborhoods of θ̄n and in h ∈ Hn. Conclude from Lemma 3 that

√
n
(
θ̃n − θ̄n

)
+

V̄ −1
n An = op(1).

(iv) Behavior of Gnφ̄n,h: We consider the case r = 1, the multivariate case follows similarly at the cost of

more cumbersome algebra. We apply Theorem 19.28 of van der Vaart (1998), where the Lindeberg condition

follows from our Assumption M4 and M6. We first consider that θ̄n,h = θ0, i.e. a correct model. We

have to show his Condition (19.27), that is sup|h1−h2|<δ E ‖φn,h1
(Z)− φn,h2

(Z)‖2 → 0 whenever δ → 0. Let

ω2
n(X, θ0) = E

[
g2n(Z, θ0)|X

]
. Proceed as in the consistency proof to show that

E
[
φ′n,h1

(Z)φn,h2(Z)
]

= (2π)
q/2

∫

Rq

∫

Rq

F [∇′θτn(·, θ0))f(·)] (−t)F
[
ω2
n(·, θ0)f(·)

]
(t− u)

F [∇θτn(·, θ0))f(·)] (u)F [K] (h1t)F [K] (h2u) dt du .

Hence, E ‖φn,h1(Z)− φn,h2(Z)‖2

= (2π)
q/2

∫

Rq

∫

Rq

F [∇′θτn(·, θ0))f(·)] (−t)F
[
ω2
n(·, θ0)f(·)

]
(t− u)F [∇θτn(·, θ0)f(·)] (u)

[F [K] (h1t)F [K] (h1u)− 2F [K] (h1t)F [K] (h2u) + F [K] (h2t)F [K] (h2u)] dt du .

Use the uniform continuity of F [K] (·), Assumption 4(v)-(vi), the properties of the convolution of Fourier

transforms, and the Lebesgue dominated convergence theorem to conclude. The case where h2 = 0 can be

treated similarly.

We now turn to the general case of a misspecified model, so we make explicit θ as an argument of φ̄n,h. The

result similarly follows if we show sup|h1−h2|<δ,‖θ1−θ2‖<δ E
∥∥φ̄n,h1(Z, θ1)− φ̄n,h2(Z, θ2)

∥∥2 → 0 whenever δ → 0.

When only h varies in this expression, we can apply our previous reasoning, provided we use ω2
n(X, θ1, θ2) =

E [gn(Z, θ1)gn(Z, θ2)|X] together with Assumption M4. We are left to deal with the case where only θ varies.

The result follows from continuity arguments, i.e. Assumptions M4(iv), M5, and M6, and the Lebesgue

dominated convergence theorem.

Proof of Theorem 2.4. The proof rely on the three intermediary results.

Corollary 6. Under the Assumptions of Theorem 2.2, if W (X) = Var [g(Z, θ0)|X] f(X), then uniformly

over h ∈ H′n =
{
1/ ln(n+ 1) ≥ h > 0 : nh4q/α ≥ C

}
, C > 0 and 0 < α < 1 arbitrary,

√
n
(
θ̃n,h − θ0

)
is

asymptotically N(0,Σ−1) with

Σ = E
[
∇θE [g(Z, θ0)|X] Var−1 [g(Z, θ0)|X]∇′θE [g(Z, θ0)|X]

]
.

Theorem 7. For an i.i.d. sample, under Assumptions 1, 2, E2, E4, 5, and E7,

sup
h,b∈H′n

∣∣∣M̂n,h,b (θ)−Mn,h,b (θ)
∣∣∣ = op

(
n−1 + ‖θ − θ0‖/

√
n+ ‖θ − θ0‖2

)
(7)

uniformly over θ in o(1) neighborhoods of θ0, whereMn,h,b(θ) is defined as in (2.2) withWn(x) = E

[
Ŵn(x, θ0)

]
.
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This result ensures the equivalence of the two-step θ̂n,h,b and θ̃n,h with weighting matrix E

[
Ŵn(·, θ0)

]
. We

can then apply Theorem 2.2 accounting for its dependence on b. Note that the SMD estimator is not affected

by boundary effects in the estimation of the optimal weighting matrix, since only pointwise convergence in

the interior of the support of X is necessary.

Corollary 8. Under the assumptions of Theorem 7 and E6,
√
n
(
θ̂n,h,b − θ0

)
is asymptotically N(0,Σ−1)

uniformly in h, b ∈ H′n.

Proof of Corollary 6. Under our assumptions, θ̃n,h is asymptotically N(0, V −1
0 ∆0,0V

−1
0 ) uniformly over h ∈

H′n where

V0 = E
[
∇θE [g(Z, θ0)|X]W−1(X)∇′θE [g(Z, θ0)|X] f(X)

]
and

∆0,0 = E
[
∇θE [g(Z, θ0)|X]W−1(X)Var [g(Z, θ0)|X]W−1(X)∇′θE [g(Z, θ0)|X] f2(X)

]
.

Plug W (X) = Var [g(Z, θ0)|X] f(X) to obtain the result.

Proof of Theorem 7. Step 1 is to obtain the uniform rate of convergence of Ŵn(·, θ)−Wn(·, θ), whereWn(·, θ) =
E

[
Ŵn(·, θ)

]
. A useful result can be derived along the lines of Proposition 2 of Einmahl and Mason (2005). A

careful inspection of their proof shows that the result holds not only on a compact subset, but on the whole

space R
q provided their Condition (1.7) on the continuity of the density f(·) is replaced by the assumption

of a bounded density.

Lemma 9. Let Φ denote a class of measurable functions on R
d+q, where d, q ≥ 1, with a finite-valued

measurable envelope function F. Further assume that the kernel L(·) is a density of bounded variation with

bounded support, the density f(·) is bounded and

sup
x∈Rq

E[F 4(Z) | X = x] <∞.

Let ηϕ,n,b(x) = (nbq)−1
∑

1≤i≤n ϕ(Zi)L((x−Xi)/b), ϕ ∈ Φ and ‖·‖∞ be the supremum norm. There exists

c > 0 such that, with probability 1

lim sup
n→∞

sup
b∈Hn

√
nbq

supϕ∈Φ ‖ηϕ,n,b − Eηϕ,n,b‖∞√
ln(1/bq) ∨ ln lnn

= c .

Step 2 consists in establishing an expansion of the power −1/2 of a positive definite matrix. By the integral

representation of the square root of a matrix, see e.g. Higham (2008), for any positive definite q× q matrix A

A−1/2 =
2

π

∫ ∞

0

(
t2A+ I

)−1
dt.
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Moreover, for any conformable square matrices B and D and any t > 0,

(A+B)
−1

= A−1 −A−1
(
I +BA−1

)−1
BA−1 , (8)

and
[
I + t2D

(
t2A+ I

)−1
]−1

= I − t2D
(
t2A+ I

)−1
+R ,

with ‖R‖ ≤ √q ‖R‖2 ≤
√
q
∥∥∥t2D

(
t2A+ I

)−1
∥∥∥
2

2

1−
∥∥∥t2D (t2A+ I)

−1
∥∥∥
2

≤ √
q ‖D‖22

[
t2

1 + t2λmin(A)

]2 [
1− t2 ‖D‖2

1 + t2λmin(A)

]−1

≤ k(c) ‖D‖22 ≤ k(c) ‖D‖2 .

Here and in what follows, ‖·‖2 denotes the spectral matrix norm, λmin(A) is as before the smallest eigenvalue

of A, and k(c) depends on c, λmin(A), and
√
q, where c is assumed to be such that

‖D‖2 /λmin(A) ≤ ‖D‖ /λmin(A) ≤ c < 1 .

Use the integral representation for (A+D)
−1/2

and A−1/2 and apply (8) with A replaced by t2A + I and

B = t2D to deduce that

(A+D)
−1/2 −A−1/2 = − 2

π

∫ ∞

0

t2
(
t2A+ I

)−1
D

(
t2A+ I

)−1
dt

+
2

π

∫ ∞

0

t4
(
t2A+ I

)−1
D

(
t2A+ I

)−1
D

(
t2A+ I

)−1
dt

− 2

π

∫ ∞

0

t2
(
t2A+ I

)−1
RD

(
t2A+ I

)−1
dt , (9)

where
∥∥∥
(
t2A+ I

)−1
RD

(
t2A+ I

)−1
∥∥∥ ≤

[
1

1 + t2λmin(A)

]2
k(c) ‖D‖3 .

This implies that for some constant C the last integral in (9) is bounded by

2

π
k(c) ‖D‖3

∫ ∞

0

t2
[
1 + t2λmin(A)

]−2
dt ≤ C ‖D‖3 .

Step 3 consists in applying Identity (9) to our problem, with D = Dn,i(θ2) = Ŵn(Xi, θ2) −Wn(Xi, θ0) and

A = Wn(Xi, θ0) = Wn(Xi). Let M̂n(θ, θ2) and Mn(θ) be the objective functions with weighting matrix

Ŵn(·, θ2) and Wn(·), respectively. Let also 0 < λ ≤ infx,n λmin(Wn(x)) for some fixed λ > 0, which exists by

our Assumption E7. For any θ ∈ Θ and θ2 in a O(n−1/2) neighborhood of θ0,

M̂n(θ, θ2) = Mn(θ)−
2

π

∫ ∞

0

t2
[
1 + t2λ

]−2
[M1n (t) +M ′

1n (t)] dt

+
2

π

∫ ∞

0

t4
[
1 + t2λ

]−3
[M2n (t) +M ′

2n (t)] dt

+
4

π2

∫ ∞

0

∫ ∞

0

t2
[
1 + t2λ

]−2
s2

[
1 + s2λ

]−2
M3n (t, s) dt ds

+Op

(
sup
x∈Rq

sup
‖θ2−θ0‖≤Cn−1/2

sup
b∈H′n

∥∥∥Ŵn(x, θ2)− Ŵn(x)
∥∥∥
3
)
.
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The last term is an op(n
−1) uniformly in b ∈ H′n by Step 1 and noticing that from Assumption E7, for some

C > 0 and ν > 2/3, ‖E
[(
ω2(X, θ2)− ω2(X, θ0)

)
b−qL((X − x)/b)

]
‖ ≤ c‖θ2 − θ0‖ν‖E [b−qL((X − x)/b)] ‖ ≤

C‖θ2 − θ0‖ν = o(n−1/3) uniformly in θ2 in a O(n−1/2) neighborhood of θ0. In the last display,

M1n(t) = M1n(t, θ, θ2, h, b)

=
t−4

(
1 + t2λ

)2

2n(n−1)

∑

i 6=j

g′(Zi, θ)[Wn(Xi)+t
−2I]−1Dn,i(θ2)

×[Wn(Xi)+t
−2I]−1W−1/2

n (Xj)g(Zj , θ)Kij ,

M2n (t) = M2n (t, θ, θ2, h, b)

=
t−6

(
1 + t2λ

)3

2n(n−1)

∑

i 6=j

g′(Zi, θ)[Wn(Xi)+t
−2I]−1Dn,i(θ2)[Wn(Xi)+t

−2I]−1

×Dn,i(θ2)[Wn(Xi)+t
−2I]−1W−1/2

n (Xj)g(Zj , θ)Kij ,

M3n (t, s) =M3n (t, s, θ, θ2, h, b)

=
(1+t2λ)2(1+s2λ)2

t4s42n(n−1)

∑

i 6=j

g′(Zi, θ)[Wn(Xi)+t
−2I]−1Dn,i(θ2)[Wn(Xi)+t

−2I]−1

× [Wn(Xj)+s
−2I]−1Dn,j(θ2)[Wn(Xj)+s

−2I]−1g(Zj , θ)Kij .

Strictly speaking, we should separate the integrals on [0, 1) and [1,∞) in the following. Specifically, for

t ∈ [0, 1), the terms
[
Wn(·) + t−2I

]−1
should be replaced by

[
t2Wn(·) + I

]−1
, with adequate changes in the

other arguments under the integral. The following arguments adapt easily.

Step 4 is to show that uniformly over θ in a o(1) neighborhood of θ0 and θ2 in a O(n−1/2) neighborhoods of

θ0

sup
t,s≥1

sup
b,h∈Hn

{‖M1n‖+ ‖M2n‖+ ‖M3n‖} = op
(
n−1 + ‖θ − θ0‖/

√
n+ ‖θ − θ0‖2

)
, (10)

which implies (7). The terms M1n, M2n and M3n involve the family of matrix-valued functions
{[
Wn(·) + t−2I

]−1
: b ∈ H′n, t ≥ 1

}
and

{
W−1/2

n (·) : b ∈ H′n
}
.

For t ∈ [0, 1), the first family has to be replaced by
{[
t2Wn(·) + I

]−1
: b ∈ H′n, t ∈ [0, 1)

}
. We here focus on

the case t ≥ 1, the arguments for the other case being similar. Lemma B.2 in Appendix B shows that under

our assumptions these families of functions are Euclidean entrywise for a constant envelope. For the sake

of simplicity, we show (10) only for r = 1, since the same arguments apply componentwise for r > 1 at the

expense of much more cumbersome algebra. Also we focus on M1n(t), since a similar reasoning applies to

M2n(t) and M3n(t). Let

dθ2 (x, Zk) = g2 (Zk, θ2)L ((x−Xk) /b)− E
[
ω2(X, θ2)L ((x−X) /b)

]
,

δθ2 (x) = E
[
ω2(X, θ2)L ((x−X) /b)

]
− E

[
ω2(X, θ0)L ((x−X) /b)

]
,

so that Dn,i(θ2) =
1

nbq

∑
1≤k≤n [dθ2 (Xi, Zk) + δθ2 (Xi)]. We accordingly separate M1n(t) into two terms and

we study each of them in turn.
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Note that E [dθ2 (Xi, Zk) |Xi] = 0 for i 6= k and consider the decomposition

1

nbq
1

(n)2

∑

1≤k≤n

∑

i 6=j

g(Zi, θ)

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zk)W

−1/2
n (Xj)g(Zj , θ)Kij

=
(n−2)

nbq
1

(n)3

∑

i 6=j 6=k

g(Zi, θ)

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zk)W

−1/2
n (Xj)g(Zj , θ)Kij

+
1

nbq
1

(n)2

∑

i 6=j

g(Zi, θ)

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zi)W

−1/2
n (Xj)g(Zj , θ)Kij

+
1

nbq
1

(n)2

∑

i 6=j

g(Zi, θ)

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zj)W

−1/2
n (Xj)g(Zj , θ)Kij

=
(n−2)

nbqhq
1

(n)3

∑

i 6=j 6=k

m11 (Zi, Zj , Zk) +
1

nbqhq
1

(n)2

∑

i 6=j

m12 (Zi, Zj)

+
1

nbqhq
1

(n)2

∑

i 6=j

m13 (Zi, Zj)

=
(n− 2)

nbqhq
M11n +

1

nbqhq
M12n +

1

nbqhq
M13n ,

where (n)k = n!/(n− k)!. For the first and dominant term, write

m11 = m11 (Zi, Zj , Zk) =
g(Zi, θ0)

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zk)W

−1/2
n (Xj)g(Zj , θ0)h

qKij

+
g(Zi, θ0)

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zk)W

−1/2
n (Xj) {g(Zj , θ)− g(Zj , θ0)}hqKij

+
{g(Zi, θ)− g(Zi, θ0)}

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zk)W

−1/2
n (Xj)g(Zj , θ0)h

qKij

+
{g(Zi, θ)− g(Zi, θ0)}

[Wn(Xi)+t−2]
2 dθ2 (Xi, Zk)W

−1/2
n (Xj) {g(Zj , θ)− g(Zj , θ0)}hqKij

= m110 +m111 +m112 +m113.

We note that our assumptions ensure that all functions entering the above terms, as indexed by θ, θ2, h, and

b, are Euclidean. In particular Appendix B shows that the class of functions x 7→ W
−1/2
n (x) is Euclidean as

indexed by b for a constant envelope by Assumption E7-(iii).

By convention, for j = 0, . . . 3, we denote by M11jn the U -process based on m11j . The term M110n is a

third-order degenerate U -process independent of θ and is a Op(n
−3/2) uniformly in θ2, h, b, and t. Consider

the Hoeffding’s decomposition of M111n and note that E[m111 | Zi, Zj ] = E[m111 | Zj , Zk] = 0. The third

order degenerate U -process in that decomposition is a uniform op(n
−3/2) by Corollary 8 of Sherman (1994).

The remaining term to be studied is the degenerate second order U -process defined by the family of functions

g(Zi, θ0)dθ2 (Xi, Zk)

[Wn(Xi)+t−2]
2 E

[
W−1/2

n (Xj) {g(Zj , θ)− g(Zj , θ0)}hqKij | Xi

]
.

By a Taylor expansion of E [g(Zj , θ0)|Xj ] around θ0 and Assumption E7, deduce that the uniform rate of

convergence of this U -process is Op(n
−1‖θ − θ0‖). Similar arguments apply to hqM112n. For M113n, the
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different terms in Hoeffding’s decomposition are the third order degenerate U -process, the two degenerate

second order U -processes based on E[m113 | Zj , Zk] − E[m113 | Zk] and E[m113 | Zi, Zk] − E[m113 | Zk], and

the empirical process based on E[m113 | Zk]. For the third and second order U -processes we proceed as above.

For the remaining (centered) empirical process, rely again on Taylor expansions around θ to deduce that its

uniform rate of convergence is Op(n
−1/2‖θ − θ0‖2). Gathering these facts and using n−1{infH′n}−4q = op(1)

show that

sup
t≥1

sup
h,b∈H′n

∣∣b−qh−qM11n

∣∣ = op

(
‖θ − θ0‖n−1/2 + ‖θ − θ0‖2 + n−1

)

uniformly over θ and θ2 in o(1) neighborhoods of θ0. For n−1b−qM12n and n−1b−qM13n, follow a similar

(shorter) reasoning to obtain the same order.

Recall that ‖δθ2 (Xi) ‖ ≤ c‖θ2 − θ0‖ν for some ν > 2/3 and c > 0 uniformly in b and θ2 − θ0 = Op(n
−1/2),

and note that

1

bq
1

(n)2

∑

1≤k≤n

∑

i 6=j

g(Zi, θ)

[Wn(Xi)+t−2]
2 δθ2 (Xi)W

−1/2
n (Xj)g(Zj , θ)Kij

=
1

bq
1

(n)2

∑

i 6=j

g(Zi, θ0)

[Wn(Xi)+t−2]
2 δθ2 (Xi)W

−1/2
n (Xj)g(Zj , θ0)Kij

+
1

bq
1

(n)2

∑

i 6=j

g(Zi, θ0)

[Wn(Xi)+t−2]
2 δθ2 (Xi)W

−1/2
n (Xj) {g(Zj , θ)− g(Zj , θ0)}Kij

+
1

bq
1

(n)2

∑

i 6=j

{g(Zi, θ)− g(Zi, θ0)}
[Wn(Xi)+t−2]

2 δθ2 (Xi)W
−1/2
n (Xj)g(Zj , θ0)Kij

+
1

bq
1

(n)2

∑

i 6=j

{g(Zi, θ)− g(Zi, θ0)}
[Wn(Xi)+t−2]

2 δθ2 (Xi)W
−1/2
n (Xj) {g(Zj , θ)− g(Zj , θ0)}Kij

= b−qh−q
(
M̃10n + M̃11n + M̃12n + M̃13n

)
.

Use Hoeffding’s decomposition and the last statement of Lemma 1 to deduce that M̃10n is a uniformOp(n
−1−2α/3)

for any α < 1. Use a Taylor expansion around θ0, Hoeffding’s decomposition, and Lemma 1 to show that

each of M̃1jn, j = 1, 2, is a Op

(
‖θ − θ0‖n−1/2−2α/3

)
for any α < 1. Use similar arguments to show that

M̃13n = Op

(
‖θ − θ0‖2n−2α/3

)
for any α < 1. Gathering these facts and using n−1{infH′n}−4q/α = op(1) for

some α < 1,

sup
t≥1

sup
h,b∈H′n

∣∣b−qM1n

∣∣ = op

(
‖θ − θ0‖n−1/2 + ‖θ − θ0‖2 + n−1

)

uniformly over θ in a o(1) neighborhoods of θ0 and θ2 in a Op(n
−1/2) neighborhood of θ0.

Proof of Corollary 8. Assumption E6, Lemma A.2 of Appendix A, and Lemma B.2 of Appendix B ensure

that the class of functions (x, u) 7→ W
−1/2
n (x − hu)∇θτ(x − hu, θ0)f(x − hu) is Euclidean entrywise for a

constant envelope, so that

{x 7→
∫
W−1/2

n (x− hu)∇θτ(x− hu, θ0)f(x− hu)K(u)du : h, b ∈ [0, h0]}

is uniformly Euclidean for a constant envelope by Nolan and Pollard (1987, Lemma 20). Reason similarly for

the functions W
−1/2
n (·)Hθ,θτ

(k)
n (·, θ0)f(·), 1 ≤ k ≤ r and W

−1/2
n (·)H(·)f(·). Use Lemmas 2 and 3 in Section

5.1 and Equation (7) to obtain an asymptotic representation similar to the one of Theorem 2.2.
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Proof of Theorem 3.1. Under H0, θ̃
R
n = R(γ̃n) where γ̃n = argminγ Mn(R(γ)). Let D = ∇′γR(γ0). From

Theorem 2.2’s proof,
√
n (γ̃n − γ0) = −

(
V R
n

)−1
Bn + op(1), where V

R
n = D′VnD and Bn = D′An, and

Mn(θ̃n)−Mn(θ0) =
1

2

(
θ̃n − θ0

)′
Vn

(
θ̃n − θ0

)
+

1√
n
A′n

(
θ̃n − θ0

)
+ op(1/n)

= − 1

2n
A′nV

−1
n An + op(1/n) ,

Mn(R(γ̃n))−Mn(R(γ0)) =
1

2
(γ̃n − γ0)′ V R

n (γ̃n − γ0) +
1√
n
B′n (γ̃n − γ0) + op(1/n) ,

= − 1

2n
A′nD (D′VnD)

−1
D′An + op(1/n)

so that DMn = A′nV
−1/2
n

[
Ip − V 1/2

n D (D′VnD)
−1
D′V 1/2

n

]
V −1/2
n An + op(1)

uniformly in h ∈ Hn under H0. Our conclusion follows form the extended continuous mapping theorem, see

van der Vaart and Wellner (1996, Theorem 1.11.1).

When H0 does not hold, it follows from the arguments of Theorem 2.1’s proof that Mn(R(γ̃n)) −Mn(θ̃n)

converges in probability to a positive constant.

Proof of Theorem 3.2. Consider {(Zi, wi)} as the sample and reason as in the proofs of Theorem 2.1 and 2.2,

using Ew4 <∞, to obtain that uniformly in h ∈ Hn and over Op(1/
√
n) neighborhoods of θ0,

M∗
n(θ)−M∗

n(θ0) =
1

2
(θ − θ0)′ Vn (θ − θ0) +

1√
n
A∗

′

n (θ − θ0) + op(1/n) ,

where Vn = Hθ,θEM
∗
n(θ0) = Hθ,θEMn(θ0) and A

∗
n is the centered empirical process based on

wg′n(Z, θ0)

[∫

Rq

∇′θτn(x, θ0)f(x)h−qK ((X − x) /h) dx
]
.

Hence
√
n
(
θ̃∗n − θ0

)
+ V −1

n A∗n = op(1) and P

[
suph∈Hn

∣∣∣√n
(
θ̃∗n − θ0

)
+ V −1

n A∗n

∣∣∣ ≥ ε|Z1, . . . Zn

]
= op(1) by

Markov inequality.

Now,
√
n
(
θ̃∗n − θ̃n

)
= −V −1

n (A∗n −An) + op(1), where A
∗
n −An is the centered empirical process based on

(w − 1) g′n(Z, θ0)

[∫

Rq

∇′θτn(x, θ0)f(x)h−qK ((X − x) /h) dx
]
.

It is then clear that the process A∗n − An has asymptotically and conditionally upon the initial sample the

same distribution as An uniformly in h, see e.g. Zhang (2001), so that
√
n
(
θ̃∗n − θ̃n

)
has asymptotically

and conditionally upon the initial sample the same distribution as
√
n
(
θ̃n − θ0

)
uniformly in h.9 Therefore,

9Zhang (2001) assumes that w has an exponential distribution, but uses only moment conditions. It is

easily seen that our assumptions on w are sufficient.
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uniformly in h ∈ Hn,

M∗
n(θ̃

∗
n)−M∗

n(θ0) = −1

2

(
θ̃∗n − θ0

)′
Vn

(
θ̃∗n − θ0

)
+ op(1/n) ,

M∗
n(θ̃n)−M∗

n(θ0) =
1

2

(
θ̃n − θ0

)′
Vn

(
θ̃n − θ0

)
−

(
θ̃∗n − θ0

)′
Vn

(
θ̃n − θ0

)
+ op(1/n) ,

and n
[
M∗

n(θ̃
∗
n)−M∗

n(θ̃n)
]

= −1

2

√
n
(
θ̃∗n − θ̃n

)′
Vn
√
n
(
θ̃∗n − θ̃n

)
+ op(1)

= −1

2
(A∗n −An)

′
V −1
n (A∗n −An) + op(1) .

As before, this expansion also holds conditionally. Therefore, the latter process has asymptotically and

conditionally upon the initial sample the same distribution as n
[
Mn(θ̃n)−Mn(θ0)

]
.

Proof of Theorem 3.3. Theorem 3.2’s proof deals with the unconstrained problem. A similar reasoning applies

to the constrained problem. Proceed as in Theorem 3.1’s proof to conclude that DM∗
n has asymptotically and

conditionally upon the initial sample the same distribution as DMn under H0 uniformly in h ∈ Hn.

When H0 does not hold, it follows from Theorem 2.1’s proof that M∗
n(θ̃

∗
n) −M∗

n(θ̃n) = op(1) and similarly

M∗
n (R(γ̃∗n))−M∗

n (R(γ̃n)) = op(1), so that DM∗
n = op(n) uniformly in h ∈ Hn.
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Table 1: Descriptive statistics in Setup (4.9) n = 100

Homoscedastic case Heteroscedastic case

h Mean Median St. dev. Mean Median St. dev.

Intercept estimator

TSLS 0.000 -0.001 0.101 0.000 -0.000 0.100

SMD 1 0.000 0.000 0.104 0.000 -0.001 0.090

Eff. IV .2654 -0.000 0.000 2.186 -0.034 -0.004 2.877

.4220 -0.003 0.000 0.541 0.076 -0.000 5.845

.5308 0.041 0.001 3.382 -0.225 0.001 13.97

Eff. SMD .2654 0.002 -0.001 0.103 -0.000 -0.001 0.090

.4220 -0.000 -0.001 0.102 -0.000 -0.001 0.090

.5308 -0.000 -0.001 0.102 -0.000 -0.001 0.090

Slope estimator

TSLS -0.001 0.001 0.051 -0.001 0.001 0.071

SMD 1 -0.007 -0.005 0.057 -0.007 -0.004 0.063

Eff. IV .2654 -0.189 0.005 9.065 0.064 0.007 4.530

.4220 0.043 0.003 2.296 0.014 0.003 16.75

.5308 -0.041 0.003 14.14 -0.046 0.005 36.75

Eff. SMD .2654 -0.004 -0.002 0.055 -0.006 -0.003 0.066

.5308 -0.004 -0.002 0.054 -0.005 -0.002 0.064

.5308 -0.004 -0.002 0.053 -0.005 -0.002 0.063

Table 2: Empirical levels in Setup (4.10) n = 100

Case µ = 0 Case µ = 1

h 5% level 10% level 5% level 10% level

Wald NLS 7.00 13.00 6.18 11.72

Wald DL 5.48 10.72 4.92 10.08

SMD 2 4.32 10.18 4.70 9.24

(6.16) (12.20) (5.12) (10.10)

1 5.98 11.42 5.46 11.08

(6.32) (12.26) (5.38) (10.76)

0.3 5.96 10.82 5.30 10.64

(7.00) (12.66) (6.02) (11.44)

Percentages using asymptotic χ2 critical values into parentheses.

Table 3: Empirical levels in Setup (4.11) for H0 : β2 = 1

n = 50 n = 100

h 5% level 10% level h 5% level 10% level

FGLS 29.2 35.6 20.7 27.6

Eff. SMD .1524 4.8 10.8 .1327 4.6 8.4

(0.0) (0.0) (0.0) (0.0)

.3049 6.8 12.6 .2654 4.6 9.2

(0.0) (0.0) (0.0) (0.0)

.6097 9.4 14.0 .5308 5.8 9.8

(0.0) (0.0) (0.0) (1.0)

Percentages using asymptotic χ2 critical values into parentheses.



Figure 1: Estimators’ densities: X ∼ N(0, 1), n = 100
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Figure 3: Empirical rejection of tests: X ∼ N(0, 1), n =
100
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Figure 2: Estimators’ densities: X ∼ N(1, 1), n = 100
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Figure 4: Empirical rejection of tests: X ∼ N(0, 1), n =
100
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Figure 5: RMSE and bandwidth
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