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Abstract

Principal-agent models of moral hazard have been developed under the as-
sumption that the principal knows the agent's risk-aversion. This paper
extends the moral hazard model to the case when the agent's risk-aversion
is his private information, so that the model also exhibits adverse selection.
We characterize the optimal menu of contracts; while its detailed proper-
ties depend on the setting, we show that some of them must hold for all
environments. In particular, the power of incentives always decreases with
risk-aversion. We also characterize the relationship between the outside op-
tion and the optimal contracts. We then apply our results to insurance,
managerial incentive pay, and corporate governance.



Introduction

The traditional literature on moral hazard emphasizes the trade-o� between
risk-sharing and the provision of incentives. It derives optimal contracts
whose shape depends closely on the agent's risk-aversion. One may then
wonder how the principal knows so precisely the agent's preferences; and it
seems likely that the agent will try to manipulate the principal's perception
of his risk-aversion. We here extend the moral hazard model to the case
when there is adverse selection on the agent's risk-aversion. While such an
extension is of theoretical interest, we argue that it may also help solve some
empirical puzzles that have been uncovered in recent years. Several papers
(e.g. Chiappori-Salani�e (2000)) indeed have shown that the standard models
of insurance under asymmetric information predict correlations that cannot
be found in the data. Thus it seems that we need a richer model to account
for the empirical evidence.

We analyze here a two-outcome/two-types model of moral hazard with
adverse selection on the agent's risk-aversion. We �rst show that when the
agent's risk-aversion is public information (the public risk-aversion model),
very little can be said on the link between risk-aversion and the optimal
contract. In particular, intuition suggests that more risk-averse agents should
face lower-powered incentives. In fact, we �nd that the power of incentives
may be a non-monotonic function of risk-aversion.

Surprisingly, this anomaly disappears when the agent's risk-aversion is his
private information (the private risk-aversion model). We indeed show that in
the contract space, the traditional Spence-Mirrlees condition is veri�ed under
weak regularity conditions. This implies that adverse selection imposes more
structure on the design of optimal contracts: more risk-averse agents must
opt for contracts with lower-powered incentives, as intuition suggests.

While the single-crossing property greatly simpli�es the analysis of the
private risk-aversion model, it still turns out to allow for a variety of con�g-
urations. In the \regular" case in which more risk-averse agents face lower-
powered incentives in the public risk-aversion model, the private risk-aversion
optimum always separates types. But while more risk averse agents always
face lower-powered incentives, they may well provide more e�ort since this
reduces the risk they face. Hence the relationship between the incentives
and the observed probability distribution of outcomes is ambiguous. As an-
nounced above, this important result allows for a better understanding of
the links between incentives, performance and risk, and may be of interest

1



in many economic activities (insurance, but also managerial pay, corporate
governance. . . ).

In the \non-responsive" case in which more risk-averse agents face higher-
powered incentives in the public risk-aversion model, the private risk-aversion
optimum may involve separation or bunching, depending on the parameters.

It also turns out that the power of the incentives implicit in the outside
option plays a crucial role in the analysis. In an insurance model, on the
one hand, the power of incentives is maximal for the outside option of no-
insurance. In labor economics models, on the other hand, the power of
incentives is typically minimal for the outside option. We �nd that whether
there is overprovision or underprovision of incentives relative to the public
risk-aversion model, and which type of agent bene�ts from an informational
rent, depends in a monotonic way on the characteristics of the outside option.
Moreover, a novel feature of the private risk-aversion model is that the power
of incentives increases (weakly) with that of the outside option, contrary to
the public risk-aversion model in which it is independent of that of the outside
option. This implies that observed probabilities of success should be higher
for agents who face more powerful incentives in their outside options.

We apply our analysis to three situations of interest: insurance, manage-
rial incentive pay, and the �nancing of a project. In an insurance context, our
results may explain the empirical �ndings by Chiappori and Salani�e (2000)
who �nd no correlation between risk and coverage for automobile insurance.
When applied to executive compensation, our results imply that there is
underprovision of incentives when risk-aversion is private and that less risk-
averse executives should have more performance-sensitive pay. Finally we
develop an example of corporate governance to show that our model predicts
that the economic performance of a project should be positively related to
the degree of self-�nancing, but not necessarily to the debt-equity ratio.

On a theoretical level, our paper's contribution is both to introduce het-
erogeneous risk-aversions and to solve a model with both moral hazard and
adverse selection (what Myerson (1982) calls a generalized agency model).
Heterogeneity in risk aversion by itself doesn't create in general acute prob-
lems for studying adverse selection, as shown by the papers of Salani�e (1990)
for vertical contracting, Landsberger and Meilijson (1994) for insurance and
La�ont-Rochet (1998) for the regulation of �rms. However, it creates new
diÆculties when there is moral hazard, as the degree of risk aversion a�ects
the agent's behavior and thus the principal's expected utility from a given
contract. The existing papers on the generalized agency model (La�ont and
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Tirole (1986), McAfee and McMillan (1987), Baron and Besanko (1987),
Faynzilberg and Kumar (1997, 2000)) have focussed on the case where the
agent's private characteristic a�ects the technology. In that case, e�ort is a
monotonic function of type under some regularity conditions. Our model is
much richer in that higher risk-aversion leads to higher e�ort (in the regular
case) but also to lower-powered incentives (and thus to lower e�ort), so that
the relationship between e�ort and type is fundamentally ambiguous1.

To the best of our knowledge, very little is known on optimal contracting
when the agent's risk-aversion is his private information. We should mention,
however, related work by de Meza and Webb (2000) and by Pauly (1974),
Villeneuve (2000) and Wambach (1997). Our paper is also related to the
work of Chassagnon and Chiappori (1997) and Stewart (1994) on insurance
with adverse selection and moral hazard.

Section 1 of the paper analyses the agent's choice of e�ort. We state
and prove the Spence-Mirrlees condition in Section 2. We then specialize
the model to CARA utility functions, and study the public (resp. private)
risk-aversion model in Section 3 (resp. Section 4). Finally, Section 5 applies
our results to the three situations listed above.

1 The Choice of E�ort

Consider a risk-averse agent facing a binomial risk: success is worthW , while
failure yields a lower revenue (W � �). The agent can exert a costly e�ort
e 2 [0; �e] to reduce the probability p(e) 2]0; 1[ of failure. We shall refer to
C = (W;�) as a contract, and with a slight abuse of interpretation to � as
the power of incentives. We shall also use the inverse function c(p) whenever
convenient; by de�nition, c(p(e)) = e. Assume decreasing returns, and the
usual Inada conditions:

Assumption 1 The function p(e) is decreasing convex on [0; �e], with p0(0) =
�1; p0(�e) = 0:

This section is devoted to the comparative statics governing the e�ort
choice. Keep in mind that we mainly want to discuss the e�ects of a change

1Hemenway (1990, 1992) identi�ed the �rst e�ect in the insurance context and called
it \propitious selection".
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in risk-aversion on e�ort. It is therefore important to ensure that what-
ever their risk-aversion, all types of agents have access to the same tech-
nology, as de�ned by the function p(e). In other words, the marginal rate
of substitution between e�ort and wealth should not depend on the agent's
risk-aversion. This is only possible with the so-called \monetary cost" for-
mulation of e�ort2. Consequently we assume that the agent has a concave
Von Neumann-Morgenstern utility function u, and that e�ort and wealth are
perfect substitutes. We de�ne the agent's problem as

U(W;�) � maxp (1� p)u(W � c(p)) + pu(W ��� c(p)) (1)

and we denote by p(W;�) a solution to this program.

It is well-known (see Ehrlich-Becker (1972), Dionne-Eeckhoudt (1985),
and Jullien-Salani�e-Salani�e (1999)) that this apparently simple problem dis-
plays complex properties. In particular, the e�ect of a change in risk-aversion
is ambiguous: even when the Arrow-Pratt index of risk-aversion is a constant
(the CARA case), the probability of failure p(W;�) may be non-monotonic
with respect to risk-aversion. Hence, and contrary to what intuition suggests,
more risk-averse agents do not necessarily exert more e�ort. The reason is
that e�ort reduces the income in case of failure, so that a more risk-averse
agent facing a high probability of failure may opt for increasing his worst-case
income instead of reducing the probability of failure3. As a consequence, note
that the e�ect of varying W also is ambiguous if wealth e�ects are present.

One may also wonder whether stronger incentives (a higher �) indeed
reduce the probability of failure. Once more, this is not generally true,
because of wealth e�ects. Conversely, in the absence of wealth e�ects we
prove in the Appendix that

Lemma 1 Under CARA utilities, the probability of failure p(W;�) is de-
creasing with respect to �, and is independent of W .

2Note that the usual \non-monetary cost" formulation de�nes the agent's payo� as
(u(R) � e). Therefore the MRS is u0(R). Such a formulation does not allow to properly
study the impact of risk-aversion, since modifying u into v more risk-averse than u also
modi�es the agent's preferences under certainty.

3Jullien-Salani�e-Salani�e (1999) shows that for a given incentive contract (W;�) and a
given technology c, the optimal probability of failure (locally) decreases in risk aversion if
and only if this probability is small enough.
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2 Regularity and single-crossing

As we have just seen, there are not many general results for the solution of
program (1). Nevertheless this section proves an important result that will
make tractable the analysis of contracts under adverse selection.

The value U(W;�) of the agent's program (1) de�nes some indi�erence
curves in the space (W , �) of contracts. The Spence-Mirrlees property then
says that more risk-averse agents should be compensated more for an increase
in incentives; or equivalently the slope

�
@W
@�

�
U
must be higher for a more

risk-averse agent. This single crossing property would imply that, ceteris
paribus, more risk-averse agents prefer lower-powered schedules. This is what
intuition suggests; but as shown by the fact that more risk-averse agents
may expend less e�ort, intuition may be a poor guide in these models. The
diÆculty, of course, is that p is endogenous, and varies when risk-aversion is
changed.

In this section we o�er two distinct sets of suÆcient conditions for the
single-crossing property to hold. Our �rst condition is the following:

Property (Q): consider two contracts C1 = (W1;�1) and C2 = (W2;�2)
such that �2 > �1. Suppose that an agent is indi�erent between both con-
tracts: U(W1;�1) = U(W2;�2). Denote ek an optimal choice of e�ort under
Ck: Then

W2 ��2 � e2 < W1 ��1 � e1 < W1 � e1 < W2 � e2:

This property is easily understood. Since �1 < �2 and the agent is
indi�erent between both contracts, then it must be that W1 < W2. But this
in turn implies that W1 � �1 > W2 � �2, because otherwise contract C2

would dominate contract C1. Summarizing:

W2 ��2 < W1 ��1 < W1 < W2:

In other words, the second contract is riskier in the sense that the range of
possible wealth levels is enlarged. Property (Q) requires that this ordering of
contracts remains valid in utility space, that is once the agent has adjusted
his choice of e�ort. Clearly (Q) holds if e�ort is set at the same level for
both contracts, and it also holds if e�ort does not vary too much with incen-
tives. It is fairly natural in an insurance context, for instance: if an agent is
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indi�erent between two contracts, then (Q) means that the contract with a
higher deductible should have more extreme outcomes in utility space.

We are now ready to state our �rst result, whose proof is in the Appendix:

Proposition 1 If (Q) holds, then the Spence-Mirrlees condition holds: more
risk-averse agents prefer lower-powered incentive contracts.

While (Q) seems fairly natural, it would be nice to have assumptions on
primitives that imply it. To do this, we now de�ne:

Property (P): pc0(p) is increasing in p.

Property (P) is satis�ed by several simple classes of technologies, for
instance

p(e) =
p0

(1 + ke)a
for all positive a and k:

It is also easy to see that it is a natural condition to guarantee the quasi-
concavity of the agent's program (1), under the CARA assumption. More-
over, consider the expected wealth of the agent ER = W � p�. For a
risk-neutral agent, p minimizes (p�+ c(p)) and thus � = �c0(p). Property
(P) then is equivalent to ER being an increasing function of p and thus a
decreasing function of �. To rephrase this, property (P) must hold if an
increase in � reduces expected wealth for a risk-neutral agent, which seems
natural.

It turns out that with CARA utility functions, property (P) implies prop-
erty (Q). Thus the justi�cations for (P) extend to (Q).

Lemma 2 Suppose that the utility function is CARA and that property (P)
holds. Then property (Q) also holds.

One can also get rid of the CARA assumption by assuming that agents
can be ordered in the Ross (1981) sense4. Then the Spence-Mirrlees property
holds under a slightly weaker version of property (P):

Property (WP): pc0(p) is non-decreasing in p.

In particular, (WP) (but not (P)) holds for p(e) = exp(��e). We prove
in the Appendix that:

4That is, v is Ross-more risk-averse than u if and only if for all x and y, �v00(x)=v0(x) �
�u00(y)=u0(y). See also Gollier(2001).
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Proposition 2 Suppose that agent H is more risk-averse than agent L, in
the sense of Ross. Then (WP) implies that the single-crossing condition
holds: agent H prefers lower-powered incentives than agent L.

3 The Optimal Contract with Public Risk-

aversion

Let us now introduce a risk-neutral principal, in charge of selecting an incen-
tive contract (W , �). Denote S the wealth created in case of success, and
(S � D) the wealth created in case of failure. Assume that the agent has a
reservation option given by an incentive scheme (W0;�0). In an insurance
model, this option would be the no-insurance situation: an agent of initial
wealth W0 = S faces a potential damage �0 = D. In a labor context, the
reservation option is unemployment, with �0 = 0 and wealth W0.

Because wealth e�ects make the analysis extremely cumbersome, we shall
focus from now on on the case of CARA utility functions:

Assumption 2 The agent's utility function is CARA: u�(x) = �exp(��x),
where � is the risk-aversion index; and (WP) holds.

The assumption on (WP) is here only to ensure that (by Proposition 2)
the Spence-Mirrlees single crossing condition holds.

In the CARA case, the level of e�ort only depends on the power of in-
centives � and not on the level of W: We thus denote it p�(�): It is more
convenient to work with certainty equivalents than with expected utility. For
a given contract (W;�) and utility function u�; the certainty equivalent of
the agent is given by

CE�(W;�) =W � c(p�(�))�
1

�
log(1� p�(�) + p�(�)e��):

Given that the agent would exert no e�ort under a sure wealth, it can
be interpreted as the level of sure wealth that the agent would exchange for
the contract (W;�): An important feature of this utility function is that it
is additively separable in W . This is also the case for the principal's pro�t,
which writes

��(W;�) = (1� p�(�))(S �W ) + p�(�)(S �D �W +�)

= S �W � p�(�)(D ��):
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Assume that S is high enough:

Assumption 3 ��(W0;�0) � 0 for all relevant �.

This ensures that, without loss of generality, we can restrict attention
(both in the cases without and with adverse selection) to situations where
the principal contracts with all types (see Jullien (2000)). In the case of
insurance, ��(W0;�0) � 0: contracting on (W0;�0) is formally equivalent
to no trade. In the case of a labor contract the assumption means that the
�rm makes no loss, even if the agent is not paid and exerts no e�ort.

We can �nally de�ne the total surplus as B�(�) = ��(W;�)+CE�(W;�)
or

B�(�) = S � p�(�)(D ��)� c(p�(�))�
1

�
log(1� p�(�) + p�(�)e��):

Let us analyze the optimal contract when the principal knows the agent's
risk-aversion. The situation thus only involves moral hazard. Maximizing
��(W;�) under

CE�(W;�) � CE�(W0;�0)

boils down, since both objective functions are linear in W , to maximizing
over � the total surplus B�(�) and adjusting W to bring the agent on his
reservation utility curve.

We will denote (W 1

� ;�
1

�) the resulting contract for agent �. Note that
unlike W 1

� , �
1

� does not depend on the reservation option (W0;�0). The
following result is proved in the Appendix:

Lemma 3 Under Assumptions 1 and 2, one has 0 < �1

� < D. Moreover,
�1

� increases with respect to D.

Thus, the increase in surplus from failure to success is shared between
the principal and the agent.

One would expect that �1

� decreases in �, since more risk-averse agents
prefer lower-powered incentive schedules. However, the derivative of �1

� in �
depends inter alia on the cross derivative of p�(�) in (�;�), on which little
is known in general. It is in fact possible to �nd examples in which �1

� is
non-monotonic in �.

Example 1: Assume that the utility function is CARA(�) and that the
technology is given by

p(e) = p0exp(��e)
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where � is a positive constant. Equivalently,

c(p) = �
1

�
log

p

p0

This technology satis�es (WP) (pc0(p) is constant). Then easy calculations
show that the optimum of the agent's program is equal to p0 if � > � and to

min
�
p0;

�

�� �

1

e�� � 1

�
(2)

otherwise. As we have a closed form for p�(�), it is easy to maximize B�

numerically and to see how its maximizer �1

� depends on �. We ran such a
simulation forD = � = 10 and p0 = 0:1. We found that while �1

� decreases in
� for � < 8:4, it starts increasing afterwards. The behavior of p1� is even more
complicated, as it increases with � until we reach � = 0:3, then decreases,
and starts increasing again after � = 8. This counterintuitive behavior takes
place without the constraint p � p0 becoming binding in this region.

It is possible to strengthen our assumptions so as to �nd a set of suÆcient
conditions on the technology that ensure that the problem is well-behaved5.
These assumptions hold in Example 1; however, they are not very illuminat-
ing and we shall not pursue the matter further. To simplify the exposition,
we assume from now on:

Assumption 4 B�(�) is strictly quasi-concave.

This is all the information we shall need about total surplus.

4 The Optimal Contract with Private Risk-

aversion

We now introduce adverse selection on the agent's risk-aversion. We assume
that there are two types of agents, the high risk-aversion type H and the low
risk-aversion type L. As the properties of the optimal contract with adverse

5If pc0(p) is concave, then B�(�) is strictly quasi-concave. Under a slightly stronger
assumption, �1

�
cannot increase in � in regions where, as one normally expects, p�(�) is

decreasing in �.
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selection depend on the comparison between �1

H and �1

L; we shall distinguish
between the \regular" case when �1

H < �1

L and the \non-responsive"6 case
when �1

H > �1

L:
The prior probability of the high risk-aversion type H is denoted �.

The principal's problem then is to choose a pair of contracts (WH ;�H) and
(WL;�L) to maximize his expected pro�t

��H(WH ;�H) + (1� �)�L(WL;�L)

or, using ��(W;�) = B�(�)� CE�(W;�),

�(BH(�H)� CEH(WH ;�H)) + (1� �)(BL(�L)� CEL(WL;�L))

given the two incentive constraints

(
CEL(WL;�L) � CEL(WH ;�H)
CEH(WH ;�H) � CEH(WL;�L)

and the two participation constraints

(
CEL(WL;�L) � CEL(W0;�0)
CEH(WH ;�H) � CEH(W0;�0)

This problem is best studied on �gures. We consider from now on the
(�;W ) plane, and we denote O the point that corresponds to the reservation
contract (�0;W0). From the single-crossing condition, indi�erence curves
for the H type are steeper than for the L type wherever they cross. As a
consequence, any incentive compatible contract must verify:

�H � �L:

4.1 The Regular Case

In the regular case with �1

H < �1

L, the optimal contract still depends on
where the reservation incentives �0 lie. We �rst prove that if �1

H < �0 < �1

L,
then private information on risk-aversions does not matter. Then we look at
two quite di�erent cases:

6We borrow the term \non-responsive" from Guesnerie-La�ont (1984) and the survey
by Caillaud-Guesnerie-Rey-Tirole (1988).
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W

O

∆

H

L

∆0∆1
H ∆

1
L

Figure 1: When Private Risk-aversion Does Not Matter

� for �1

H < �1

L < �0, we have the \insurance case", which includes in
particular the standard insurance model for which �0 = D (recall that
Lemma 3 has shown that �1

� < D for all �);

� for �0 < �1

H < �1

L, we study the \labor economics case", with a low-
powered outside option (for example unemployment) (Lemma 3 has
shown that �1

� > 0 for all �).
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4.1.1 When Private Risk-aversion Does Not Matter

Assume that �1
H � �0 � �1

L. Then the pair of contracts depicted on Figure 1
is incentive compatible and it coincides with the public risk-aversion pair of
contracts. This gives us a �rst result:

Theorem 1 Assume Assumptions 1 to 4. When �1

H � �0 � �1

L, it does
not matter whether risk-aversion is publicly observed or not: the incentive
constraints do not bind and no agent gets an informational rent.

It is easy to check by playing with the �gures that it is only in this case
that the public risk-aversion pair of contracts is incentive compatible. Note
also that this eÆciency result does not extend to more than two types.

4.1.2 The Insurance Model

Let us now assume that �1

L < �0, as in the insurance model. Then all action
takes place below point O, as we will see. To simplify the exposition, we start
from the relaxed maximization program obtained by neglecting the incentive
constraint for type L. We will show later that the solution to the relaxed
program satis�es this constraint.

Note that given CARA utility functions, (CEL(W;�)� CEH(W;�)) is
a function of �L only, that we denote �(�). Moreover, the Spence-Mirrlees
condition exactly says that

@CEL

@�
�

@CEH

@�

and therefore that the function � is increasing. Now the three constraints to
be considered are 8><

>:
CEH(WH ;�H) � CEH(WL;�L)
CEH(WH ;�H) � CEH(W0;�0)
CEL(WL;�L) � CEL(W0;�0)

First note that the third constraint (the participation constraint for type L)
must be binding, as it is always possible to reduce WL without a�ecting the
other two constraints, and this increases pro�ts.

Secondly, assume that �L > �0 at the optimum. Now replace the con-
tract for type L with the no-trade contract O. Clearly, all three constraints
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are still satis�ed. Moreover, BL(�) is strictly quasi-concave and is highest
below O (as �1

L < �0), so that bringing the contract for L on O on the same
indi�erence curve increases BL and therefore pro�ts �L. Thus we are led to
a contradiction, and we get that �L � �0.

Then using the function �, our constraints imply:

8>>><
>>>:
CEH(WH ;�H) � CEL(W0;�0)� �(�L)
CEH(WH ;�H) � CEL(W0;�0)� �(�0)

CEL(WL;�L) = CEL(W0;�0)
�L � �0

Since � is increasing, the second constraint disappears. Then it is optimal
to reduce WH so as to make the �rst constraint bind. Finally the relaxed
program reduces to maximizing

�BH(�H) + (1� �)BL(�L) + ��(�L)

under the constraint �L � �0:
Obviously, the principal's pro�t on type H is maximal when the power

of the incentive scheme is exactly at its �rst-best value �1

H . Concerning �L,
let us de�ne

De�nition 1 �2
L is a solution of max���0

�
BL(�) + �

1��
�(�)

�

Note that it is possible that this maximum be reached at �2

L = �0: Given
that (BL(�)+ �

1��
�(�)) is independent of �0 and � is increasing, this occurs

for values of �0 close to �
1

L and/or for � close to one. In this case the less risk
averse agent receives the contract (W0;�0) while the high type also receives
his reservation utility. In any case, since � is increasing, it must be the case
that �2

L > �1

L: the L type faces higher-powered incentives than in the public
risk-aversion model. As we are in the regular case �1

H < �1

L, it follows that
�1

H < �2

L.
This pair of contracts is depicted on Figure 2 for �2

L < �0. As appears
clearly from the �gure, it satis�es the incentive constraint for type L, so that
it is the optimal menu of contracts.

We summarize here the results:

Proposition 3 Assume Assumptions 1 to 4. Assume that �1

H � �1

L < �0;
then the optimal contract is such that �H = �1

H and �L = �2

L: Type L
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W

O

∆

H

L

∆0∆
1

H

H

∆
2

L

Figure 2: The Private Risk-aversion Optimum for the Insurance Model in
the Regular Case
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receives his reservation utility and faces higher-powered incentives than in
the public risk-aversion model, while type H bene�ts from an informational
rent (�(�0)� �(�2

L)):

While the characterization of the optimal menu of contracts is more in-
volved here than in the usual adverse selection model, the intuition is quite
simple. In an insurance model, the more risk-averse type has a higher will-
ingness to pay for insurance and therefore he is more valuable to the insurer.
Thus he can be identi�ed to the \good type". Proposition 2 then restates
the standard analysis in terms of our model: the good type gets the eÆcient
contract, his incentive constraint is binding, and he gets an informational
rent; while the bad type gets an ineÆcient contract and no informational
rent.

4.1.3 The Labor Economics Case

The analysis of the case where �0 < �1

H is exactly symmetric to that of the
insurance model, so that we will be more sketchy here. We now de�ne the
relaxed program by neglecting the incentive constraint for type H. It is easy
to see that the participation constraint for type H is binding, so that the
three constraints of the relaxed program become

8><
>:

CEL(WL;�L) � CEH(W0;�0) + �(�0)
CEL(WL;�L) � CEH(W0;�0) + �(�H)

CEH(WH ;�H) = CEH(W0;�0)

Then we prove �H � �0 by a similar argument to the one we used to prove
�L � �0 for the insurance case, so that the second constraint is binding and
the �rst one can be replaced by �0 � �H .

Now the objective for the relaxed program can be reduced to maximizing

�BH(�H) + (1� �)BL(�L)� (1� �)�(�H)

subject to �0 � �H :
Let us de�ne �2

H < �1

H as

De�nition 2 �2
H is a solution of max���0

�
BH(�)� 1��

�
�(�)

�
:

The very same reasoning then shows that
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Figure 3: The Private Risk-aversion Optimum for the Labor Economics
Model in the Regular Case
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Proposition 4 Assume Assumptions 1 to 4. Assume that �0 < �1

H � �1

L;
then the optimal contract is such that �H = �2

H and �L = �1

L: Type H
receives his reservation utility and faces lower-powered incentives than in the
public risk-aversion model, while type L bene�ts from an informational rent
(�(�2

H)� �(�0)):

Here again it is possible that both types receive their reservation utility,
which occurs when � is small enough and/or �1

H is close to �0, so that
�2

H = �0. Then the contract for the H type is in O. Figure 3 graphs the
optimal contracts when �2

H > �0. Once again, the incentive constraint for
L is clearly satis�ed, so that the solution of the relaxed program indeed is
the private risk-aversion optimum.

Note that the intuition here is that the low risk-aversion individual is
more valuable to the employer, as the employer himself is risk-neutral and
he wants to align the agent's incentives on his own. Thus here the good type
is type L, and all results are reversed with respect to the insurance case.

4.1.4 A Summary for the Regular Case

We summarize the results on Figure 4, which plots the power of incentives
as a function of �0: As �0 increases from very small to very large, we start
from the labor economics model, for which the incentives are (�1

L;�
2

H � �0).
When �0 is small enough for that model, �2

H is higher than �0; then it
becomes equal to it. When �0 increases again, we reach the range �1

H <
�0 < �1

L, for which we know that the optimal contract is (�1

L;�
1

H). Then
when �0 overtakes �

1

L, we enter the realm of the insurance model, where the
optimal contract is (�2

L � �0;�
1

H). For that model, �2

L coincides with �0

when the latter is small enough. Also note that the only regions where one
type of agent gets a positive informational rent are when �0 is very small
(and L gets a rent) and when �0 is very large (and H gets a rent).

Thus as we move from the labor economics model to the insurance model,
the downward distortion on the type H is reduced (weakly) while the upward
distortion on the type L increases. The rent of type L decreases and the rent
of type H increases. Moreover, the power of incentives increases for each
type as �0 increases, a feature not present in the public risk-aversion case:

Proposition 5 Assume Assumptions 1 to 4. When �0 increases in the
regular case, the incentives �H and �L faced by each type increase (weakly).
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As a consequence, the probabilities of success also (weakly) increase with �0.
Finally, these probabilities also increase with D.

The last part of the Proposition is a straightforward consequence of
Lemma 3, which shows that �1

� increases with D. From De�nitions 1 and
2, this property extends to �2

�. Hence the result obtained under pure moral
hazard that incentives are more powerful when the stake D is higher is ro-
bust to the introduction of adverse selection. In particular, it applies in the
insurance model, for which �0 = D.

4.2 The Non-responsive Case

Now assume that �1

H > �1

L: The key di�erence with the regular case is that
it is now possible that �2

L < �1

H ; or that �
2

H > �1

L; which would violate
incentive compatibility7.

If the parameters of the problem are such that in the insurance model,
�2

L > �1

H , then nothing in the argument is changed and Proposition 3 imme-
diately applies. If in the labor economics model the parameters imply that
�2

H < �1

L, then Proposition 4 remains true. The intuition is fairly simple.
Take for instance the insurance model. In the regular case, type H gets a
(possibly zero) informational rent. The inequality �2

L > �1

H holds when �
(the prior probability of type H) is high enough. In that case it becomes
important for the principal to reduce informational rents, which can only be
done by distorting the incentives for type L away from �1

L, so much indeed
that the inequality �2

L > �1

H holds even though �1

L < �1

H . The symmetric
intuition holds for the labor economics model.

Thus for some parameter ranges, we obtain in the non-responsive case
exactly the same separating contracts as in the regular case. However, the
optimal contract may be bunching in other parameter ranges. To see this,
take for instance the insurance model and assume that � is small. Then �2

L

is close to �1

L and is therefore smaller than �1

H , so that the pair of con-
tracts (�1

H ;�
2

L) is not incentive compatible. Now assume that the optimum
(�H ;�L) still is separating. Then one of the incentive constraints cannot
be binding (otherwise we would have �H = �L, as is easily seen by adding
both constraints).

7In such cases one may want to slightly modify de�nitions 1 and 2: simply select the
highest solution for �2

L
, and the lowest for �2

H
.
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� assume the incentive constraint for L does not bind. Then we can go
through the analysis of the relaxed program in Section 4.1.2: (�H ;�L)
must be a solution of that program, that is a maximizer of

�BH(�H) + (1� �)BL(�L) + ��(�L)

under the constraint �L � �0: But if we take � small enough, that
objective is strictly quasi-concave, and its unique maximizer is close to
(�1

H ;�
2

L), which we know is not incentive compatible. Thus we are led
to a contradiction.

� now assume that the incentive constraint for H does not bind. Then
we can go through the analysis of the relaxed program in Section 4.1.3:
(�H ;�L) must be a solution of that program, that is a maximizer of

�BH(�H) + (1� �)BL(�L)� (1� �)�(�H)

under the constraint �H � �0: If � again is small enough, the solution
must be close to (�2

H ;�
1

L); but this is not incentive compatible and we
have a contradiction.

Therefore we have proved that for � small enough in the insurance model,
the optimum must be bunching. Symmetrically, one can prove that when �
is large enough, there is bunching in the labor economics model. In both
cases the optimal bunching contract (W;�) is obtained by maximizing

�(BH(�)� CEH(W;�)) + (1� �)(BL(�)� CEL(W;�))

given the two participation constraints(
CEH(W;�) � CEH(W0;�0)
CEL(W;�) � CEL(W0;�0)

Which constraint is binding depends on �0:

5 Applications

5.1 Insurance

The standard insurance model considers a monetary loss D, which is insured
with a deductible F against a premium P . It �ts within our general model,
with
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8><
>:

�0 = D
W =W0 � P

� = F

In this case the optimal menu of contracts is (�1

H ;�
2

L) when it is sepa-
rating, which corresponds to decreasing levels of deductible. Thus low risk-
aversion insurees have a lower coverage. As we saw, the optimal contract can
also be bunching in the non-responsive case.

Chiappori-Salani�e (2000) have recently given evidence of an empirical
puzzle. In the Rothschild-Stiglitz (1976) model of competitive insurance
markets, equilibrium, when it exists, has higher-risk insurees getting better
coverage. Thus their model predicts a positive correlation between risk and
coverage. Using data on the French car insurance market, Chiappori-Salani�e
�nd that the correlation of risk and coverage is in fact close to zero8. They
suggest that combining moral hazard and screening on risk-aversions may
explain this �nding: if more risk-averse insurees both buy better coverage
and drive more cautiously, then taking the correlation of risk and coverage
without controlling for risk-aversion will yield a negative correlation. This is
indeed one of the motivations behind our paper.

In a recent paper, de Meza-Webb (2000) investigate the competitive equi-
librium in a model with moral hazard and screening on risk-aversions, with
a di�erent focus (on public policy). Their model has some simplifying as-
sumptions: the L type is risk-neutral, he does not make any e�ort, and more
risk-averse agents make more e�ort. Moreover, they introduce an adminis-
trative cost of insurance which underlies the bene�ts of public intervention.
Finally, it is in a competitive setting, while we consider only one principal
and thus a model of the insurer as a monopoly9. Both their work and ours
show the possibility of bunching. Empirically, this may be interpreted as
no correlation between risk and coverage. However, in their model it is due
to an explicit assumption that the single-crossing condition does not hold10,
whereas it does in our model.

8Cawley-Philipson (2000) also �nd no evidence for asymmetric information, using
health insurance data.

9Thus our model is closer to that of Stiglitz (1977). It should be noted that Stiglitz's
model, like Rothschild-Stiglitz's, implies a positive correlation between risk and coverage.

10This is due to their non-monetary cost formulation of e�ort (see footnote 2).
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It turns out that our model is rich enough that depending on the param-
eters, it may imply positive, negative, or (approximately) zero correlation
between risk and coverage, even under separation. The point is that while
less risk averse agents choose higher deductible levels, they could take less
precautions, so that they may well end up with a higher probability of acci-
dent. Indeed this is just what basic intuition suggests.

To see this, consider the most plausible scenario: the regular case where
�1

H > �1

L. Denote
p1� = p�(�

1

�)

the risk of agent � without adverse selection and

p2� = p�(�
2

�)

his risk with adverse selection. We already know that �2

L > �1

H ; therefore
positive correlation between risk and coverage is equivalent to p1H = p2H > p2L.
Now let � be close to one. Then �2

L is close to �0 = D and pL
2
is close

to pL(D). But the latter can be larger or smaller than pH1 , depending on
the primitives of the model. Therefore even in the most regular case, the
correlation of risk and coverage can take either sign, or even be close to zero
as found by Chiappori-Salani�e11.

We should emphasize two points here. First, this explanation assumes
that one cannot control fully for risk-aversion, which seems reasonable enough.
Second, it requires the existence of some market power. It is indeed possible
to show that incentive-compatibility and the zero-pro�t conditions (in the
absence of transaction costs or loading factors) are suÆcient to get a positive
correlation12. However actuarial pricing is problematic in our context, even
under free entry (see Chassagnon-Chiappori (1997)).

If the correlation between risk and coverage doesn't provide a good test
for adverse selection when it is driven by risk aversion, there may be ways out.
One alternative would be to exploit the fact that risk-aversion is a fundamen-
tal characteristic of the individuals. This means that more risk-averse agents
should choose lower deductibles on all their insurance contracts, which would
not occur if private information bears on risk as in the Rothschild-Stiglitz
model, or if there is only pure moral hazard as there is no reason to think
that there is a positive correlation between the levels of di�erent risks (say

11While we have illustrated this with � close to one, it is easily seen that since p2
L

decreases in �, the correlation must be negative for � small enough.
12This is proved in Chiappori et al (2000).
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housing, health and car insurance). Combining data on insurance purchases
and portfolio choices would also help, as in Guiso-Jappelli (1996).

5.2 Executive Compensation

One of the best-known applications of the labor economics model is on how
�rms should pay their workers, and in particular their managers. Here the
reservation contract is typically taken to be the null contract.13 Our results
then show that the �rm should o�er a menu of wages W and bonuses �,
with again higher risk-aversion employees choosing lower bonuses. This time
the employees who get an informational rent are those who have low risk-
aversion. Notice that we don't make the claim here that productivity doesn't
matter. The key question in determining the most relevant adverse selection
variable is to identify the dimension that is the most likely to be private
information of the agent. Indeed productivity may vary across individuals
but (in particular in the case of a top executive) the �rm may have access
to substantial information on productivity based on past records.14 The key
dimension may then be moral hazard and risk aversion.

With moral hazard, managers' pay should be sensitive to their �rms' per-
formance. The \pay-performance sensitivity" has been estimated by many
papers (see Murphy (1999)). The seminal contribution is that of Jensen-
Murphy (1990); using data on CEOs of US �rms from 1969 to 1983, they
obtained what seemed to be very low estimates of the elasticity of exec-
utive compensation to �rm performance. More recent estimates (such as
Hall-Liebman (1998)) point to much higher elasticities. In this empirical lit-
erature, the pay-performance sensitivity corresponds to the � in our model.
A �rst prediction of our model thus is that the pay-performance sensitivity
should be lower than what is implied by the standard moral hazard model.
Second, we saw that for the insurance model, our model predicts that the
correlation between risk and coverage may take either sign. It is easy to see

13The outside option depends on the nature and the tightness of the labor market. In
our model what really matters is �(�0), which is the di�erence between the utility levels
obtained by the two types when not employed by the �rm. Assuming �0 = 0 or low seems
reasonable for instance when considering the process of hiring a CEO whose best other
available alternative is a top executive position at a lower rung, as there is a large di�erence
between the incentives provided to CEOs and those provided at lower hierarchical levels.

14On the other side, at lower levels, employees may have few information on their true
productivity for the job.
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that in the �eld of managerial incentives, the analog result is that the cor-
relation between �rm performance and managerial incentives may go either
way. Thus consider a regression of the form

Pi = � + ��i + ui

of a performance measure Pi for �rm i on, say, the bonus rate of the CEO of
�rm i. Then if one does not control adequately for the CEO's risk-aversion in
this regression, the estimated � may take either sign and in any case it will be
a biased estimate of the e�ect of incentive-based pay on �rm performance.
This seems to raise a diÆculty for papers such as Abowd (1990), which
estimates such a regression to �nd evidence that higher bonus rates improve
performance.

One interesting extension in the context of labor contracts would be to
allow for di�erent positions within the �rm. If higher level positions cor-
respond also to positions where moral hazard considerations are the most
acute, our analysis suggests that (at equal individual productivity levels) the
�rm should select less risk-averse agents at the higher position and induce
highly risk averse agents to stay in lower positions. This means that we
should �nd less and less risk-averse individuals as we move upward in the
internal hierarchy. This may provide a rationale for the use of an internal
tournament because since a tournament is risky, less risk averse agents will be
more willing to engage in the tournament generating thus more self-selection.

5.3 An Application to Corporate Finance

Investment funds are typically involved in �nancing activities that are both
risky and subject to moral hazard problems. Indeed the whole design of the
�nancial contract is shaped by the problem of providing correct incentives
(see Tirole (2000)). To draw the implications of the analysis for such a case,
consider the following example.

An entrepreneur can invest up to I = I1 in a project. The project succeeds
with probability p(e), in which case the return is RI: In case of failure the
return is rI, with r < R. We assume that the entrepreneur has personal
resources I0 < I1; but must borrow (I1 � I0) from a monopoly lender to
invest more. Moreover we assume that it is always eÆcient to invest the full
amount I1: The contract consists of the entrepreneur borrowing (I1 � I0),
repaying d and giving the lender a share � of pro�ts. The no-trade contract
has no borrowing and d = � = 0. In this context we have
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8>>>>>>>><
>>>>>>>>:

S = RI1
D = (R� r)I1
W0 = RI0
�0 = (R� r)I0
W = (RI1 � d)(1� �)
� = (R� r)I1(1� �)

The contract can be seen as a combination of debt and equity. The
share � of the �rm owned by the external �nancier is (1� �

D
) while the face

value of the debt d is (RI1 �
WD
�
): Our model then predicts that more risk

averse entrepreneurs should have lower-powered incentives, which here can
be interpreted as the lender receiving more equity and less debt. This is due
to optimal risk-sharing, and this holds also under public risk-aversion.

Notice that high levels of �0 correspond to cases where the entrepreneur
already has a high capital. As the power of optimal incentives increases
with �0, this means that the entrepreneur should give away less equity and
the �rm should perform better when the internal capital I0 is high. As a
consequence the model predicts a positive correlation between the degree of
self-�nancing and the performance, at equal investment levels. On the other
hand, as for the analysis of the correlation between risk and coverage in the
insurance case, we cannot infer an a priori correlation between the perfor-
mance and the level of the debt, or the composition of the external �nancing.
These two points are reminiscent of the �ndings of Leland-Pyle (1977), even
though the underlying mechanism in their paper is quite di�erent, as it relies
on the fact that more self-�nancing signals a more pro�table project, while
it signals lower risk-aversion in our model.
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Appendix: proofs.

Proof of Lemma 1: In the CARA case u(x) = �exp(��x), with � > 0.
The agent's program (1) thus is

maxp (�pexp(��(W ��� c(p))� (1� p)exp(��(W � c(p))) :

Denote 
 = exp(��)� 1 > 0. Then the program becomes

min
p

(�c(p) + log(1 + 
p)� �W ) : (3)

The derivative with respect to p is

�c0(p) +



1 + 
p
(4)

which is an increasing function of 
 and thus of �. Therefore by the implicit
function theorem, the optimal p is a decreasing function of �.

Proof of Proposition 1: Assume that agents are ordered in increasing
risk-aversion: if � > t, then u� is more risk-averse than ut. Suppose that
agent t is indi�erent between contract C1 with optimal e�ort e1 and contract
C2 with optimal e�ort e2. Assume that �1 < �2: For an agent type � > t,
let e�

2
be an optimal e�ort level for agent � under C2. Let � approach t from

above. As e�ort is upper hemi-continuous in risk-aversion, e�
2
must approach

some e�ort level that is optimal for t under C2; choose e2 to be that e�ort
level. Property (Q) applied at (C1; e1) and (C2; e2) implies that for � close
enough to t,

W2 ��2 � e�
2
< W1 ��1 � e1 < W1 � e1 < W2 � e�

2
:

Now let F1 (resp. F2) be the cumulative distribution function of outcomes
under (C1; e1) (resp. under (C2; e

�
2)):

� for R < W2 ��2 � e�2, F1(R) = F2(R) = 0;

� on [W2 ��2 � e�
2
;W1 ��1 � e1), F1 = 0 and F2 = p(e�

2
);

� on [W1 ��1 � e1;W1 � e1), F1 = p(e1) and F2 = p(e�
2
);
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� on [W1 � e1;W2 � e�
2
), F1 = 1 and F2 = p(e�

2
);

� for R � W2 � e�
2
, F1 = F2 = 1.

Hence (F2�F1) is positive then negative. A result of Jewitt (1989) (see also
Jullien-Salani�e-Salani�e(1999)) then implies that the more risk-averse agent
� must prefer (C1; e1) to (C2; e

�
2). A fortiori, � must prefer C1 to C2. Since

�1 < �2 and t is indi�erent between C1 and C2, this completes the proof.

Proof of lemma 2: we know that W2 � �2 < W1 � �1 < W1 < W2.
Given that e1 < e2 with CARA utility functions, we get W2 � �2 � e2 <
W1 ��1 � e1.

The proof of W1 � e1 < W2 � e2 requires some computations. Under
CARA, (4) can be used to get

1 + 
p =
1

1 + �pc0(p)
> 0

so that from (3) the utility for agent � of contract (W;�) is equal to

�(c(p)�W )� log(1 + �pc0(p)):

Besides the agent is indi�erent between C1 and C2; therefore

�(c(p1)�W1)� log(1 + �p1c
0(p1)) = �(c(p2)�W2)� log(1 + �p2c

0(p2)):

Finally e1 < e2, or equivalently p1 > p2. The strict version of (P) then yields
the result.

Proof of Proposition 2: Denote pH (resp. pL) the optimal choice of
agent H (resp. L) for a given contract (W;�). We have 

@W

@�

!
U

=
pu0(W ��� c(p))

pu0(W ��� c(p)) + (1� p)u0(W � c(p))

and therefore we want to prove that

AL �
1� pL
pL

u0L(W � c(pL))

u0L(W ��� c(pL))
� AH �

1� pH
pH

u0H(W � c(pH))

u0H(W ��� c(pH))
:
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Suppose �rst that pH � pL. Then

1� pL
pL

�
1� pH
pH

Now note that under the Ross ordering, the function

wH(x) = uH(x� c(pH))

is more concave than the function

wL(x) = uL(x� c(pL))

In particular, the ratio
w0
H(x)

w0
L(x)

must be decreasing in x. By comparing the values of this ratio in x0 = W
and x1 = W ��, it follows that

u0L(W � c(pL))

u0L(W ��� c(pL))
�

u0H(W � c(pH))

u0H(W ��� c(pH))

which allows us to conclude.
Suppose now that 0 < pH < pL. Then pH must be an interior solution to

(1), so that
uH(W ��� c(pH))� uH(W � c(pH))

= c0(pH) (pHu
0
H(W ��� c(pH)) + (1� pH)u

0
H(W � c(pH)))

This yields

AH = �
1

pHc0(pH)

wH(x0)� wH(x1)

w0
H(x1)

� 1

Similarly for agent L, for whom we only know that the derivative at pL is
non-negative (as pL may equal p0):

uL(W ��� c(pL))� uL(W � c(pL))

� c0(pL) (pLu
0
L(W ��� c(pL)) + (1� pL)u

0
L(W � c(pL)))

This yields

AL � �
1

pLc0(pL)

wL(x0)� wL(x1)

w0
L(x1)

� 1
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Therefore it is suÆcient to prove that

1

�pLc0(pL)

wL(x0)� wL(x1)

w0
L(x1)

is greater than
1

�pHc0(pH)

wH(x0)� wH(x1)

w0
H(x1)

Under Assumption 1 and pH < pL, we have pHc
0(pH) � pLc

0(pL). Besides,
de�ning a function k by wH = k Æ wL, we claim that

wH(x1) � wH(x0) + (wL(x1)� wL(x0))
w0
H(x0)

w0
L(x0)

This follows from the concavity of k (which is again a consequence of the
Ross ordering) and from k0(wL(x)) = w0

H(x)=w
0
L(x). This allows us to con-

clude.

Proof of Lemma 3: We have

B�(�) = [S � p�(�)(D ��)]�min
p

[c(p) +
1

�
log(1 + 
p)]:

For � � D, the �rst term is decreasing since p�(�) is decreasing with respect
to �, from Lemma 1. And the second term strictly decreases with 
, and
thus with �. This shows that �1

� < D.

For � small, (4) simpli�es to

c0(p�(�)) ' ��

and under Assumption 1, it implies @p

@�
< 0 in � = 0. Therefore

B0
�(0) = �D

@p

@�
+ p�

p(
 + 1)

1 + 
p
= �D

@p

@�
> 0

because 
 = exp(��)� 1 is zero at � = 0.

The second part of the Lemma follows directly from the fact that the
derivative of B with respect to D is �p�(�), which is increasing with respect
to �.
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