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Abstract 
There is still much confusion about which discount rates should be used to evaluate actions having 
long-lasting impacts, as in the contexts of climate change, social security reforms or large public 
infrastructures for example. Contrary to the existing literature that focuses on the discount rate for 
safe projects, this paper characterizes the term structure of discount rates for investment projects 
and assets with a non-zero beta. We assume that the growth rate of aggregate consumption follows 
a Brownian motion with uncertain parameters. We show that the term structures of the risk free 
discount rate and of the aggregate risk premium are respectively decreasing and increasing. 
Overall, the slope of term structure to be used for a specific project depends upon whether its beta 
is smaller or larger than half the index of relative risk aversion. We also argue that the beta of 
actions to mitigate climate change is relatively large around 1.3, so that the term structure of the 
associated real discount rates is increasing, from 1.3% for short maturities to 4.6% for extra-long 
ones, given the current low growth of the economy. 
 
Keywords: asset prices, term structure, risk premium, decreasing discount rates, parametric 
uncertainty, CO2 beta.   
 
JEL Codes: G11, G12, E43, Q54. 
 
  

                                                            
1 The research leading to these results has received funding from the Chairs “Risk Markets and Value Creation” and 
“Sustainable Finance and Responsible Investments” at TSE, and from the European Research Council under the 
European Community's Seventh Framework Programme (FP7/2007-2013) Grant Agreement no. 230589.  



2 
 

 

1. Introduction 

Do we do enough for the distant future? This question is implicit in many policy debates, from 

the fight against climate change to the speed of reduction of public deficits, investments in 

research and education, or the protection of the environment and of natural resources for 

example.  The discount rate used to evaluate investments is the key determinant of our individual 

and collective efforts in favor of the future. Since Weitzman (1998), an intense debate has 

emerged among economists about whether one should use different discount rates for different 

time horizons t. It is however well-known that the term structure of efficient discount rates is flat 

if we assume that the representative agent has a constant relative risk aversion and that the 

growth rate of consumption is a random walk. In this benchmark specification, if a rate of 3% is 

efficient to discount cash flows occurring in 12 months, it is also efficient to use that rate of 3% 

to discount cash flows occurring in 200 years. This yields an exponentially decreasing present 

value of a given benefit as a function of its maturity. 

Compared to this benchmark, a decreasing term structure of discount rates would bias the 

economic evaluation of investments towards those with more distant positive impacts.  Weitzman 

(1998, 2001) and Newell and Pizer (2003) justified such a decreasing structure by assuming that 

the socially efficient discount factor should equal to the expected discount factor when the 

discount rate is uncertain. This is because the discount factor is an increasingly convex function 

of the discount rate, so that its certainty equivalent is decreasing. Gollier (2002, 2012) and 

Weitzman (2007) used standard consumption-based asset pricing theory to conclude that the 

large uncertainty associated to the distant future should induce the prudent representative agent to 

use lower rates to discount more distant cash flows. Under constant relative risk aversion 

(CRRA), the various dynamic processes that support this result include for example mean-

reversion, Markov regime-switches, and parametric uncertainty on the trend of a Brownian 

motion.   Gollier (2008) demonstrates that the positive serial correlation of the growth rate of 

consumption that is inherent to these stochastic processes is the driving force of the result, 

together with prudence. Prudence is a concept defined by Kimball (1990) to characterize the 

willingness to save more when the future becomes more uncertain. For growth processes with 

persistent shocks, aggregate uncertainty accumulates faster with respect to longer time horizons 
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than in a pure random walk with the same instantaneous volatility. Prudent people want to bias 

their investments towards those which yield more sure benefits for these horizons. Because the 

term structure of socially efficient discount rates is flat under a random walk, this bias is 

implemented by using a decreasing term structure. Persistent movements in expected growth 

rates of aggregate consumption are documented for the U.S. by Bansal and Yaron (2004) for 

example. 

With the notable exception of Weitzman (2012), this recent literature focuses on rates ftr  at 

which safe cash flows should be discounted. In reality, most investment projects yield uncertain 

future costs and benefits. For marginal projects, we know that idiosyncratic risks should not be 

priced, because they will be washed out in diversified portfolios. In public economics, this result 

is usually referred to as the Arrow-Lind Theorem (Arrow and Lind (1970)), but this is a well-

known feature of the consumption-based capital asset pricing model (CCAPM, Lucas (1978)). 

More generally, the discount rate t to be used to evaluate risky projects depends upon their beta 

which measures the elasticity of net cash flows to changes in aggregate consumption.  Under the 

benchmark specification described above, the risk premium ( ) ( )t t ftr      of a project is 

proportional to  . This implies that it is enough to estimate the aggregate risk premium, i.e., the 

risk premium associated to a project with a unit beta, to fully operationalize the evaluation 

procedure of risky projects. As is well-known in the CCAPM, in the benchmark specification 

with CRRA and a random walk for the growth rate of consumption, the term structures of the risk 

free rate and of the aggregate risk premium are flat. 

These two crucial properties of the benchmark specification are not robust to the introduction of 

persistent shocks to the growth rate of aggregate consumption. In particular, the project-specific 

risk premium is generally not proportional to the beta of the project. Second, the arguments listed 

above in favor of a decreasing term structure of safe discount rates are compatible with an 

increasing term structure of the risk premium associated to projects with a positive beta. If we 

assume that the stochastic process of the growth rate of consumption exhibits positive serial 

correlation, the annualized measure of aggregate risk will have an increasing term structure. 

Under risk aversion, the term structure of the risk premium will inherit this property.  
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With positively serially correlated growth rates, the project-specific discount rate 

( ) ( )t ft tr     for positive betas is thus the sum of a prudence-driven decreasing function ftr  

and of a risk-aversion-driven increasing function ( )t  of the time horizon t . Thus, this term 

structure will be decreasing if the project-specific beta is small enough, otherwise it will be 

increasing. The economic intuition of these results is based on the increasing accumulation of 

uncertainties with time. For projects with a low beta, long-termism should be favored because of 

prudence. For projects with a large beta, short-termism should be favored because of risk 

aversion.  

In this paper, we consider a specific specification exhibiting positive serial correlation of the 

growth rate of aggregate consumption. Namely, we assume that the growth of log consumption 

follows a Brownian motion, but the trend and the volatility of this process are uncertain. Observe 

that the uncertainty on the trend of growth implies that the unconditional growth rates are 

positively correlated, thereby generating the phenomena described above. In the last section of 

the paper, we also examine growth processes that combine parametric uncertainty and mean-

reversion.  

Our paper provides important new insights about how public policies should be evaluated around 

the world. It is a common practice to use a single discount rate to evaluate public investments 

independent of their riskiness and time horizons. In the U.S. for example, the Office of 

Management and Budget (OMB) recommend to use a flat discount rate of 7% since 1992. It was 

argued that the “7% is an estimate of the average before-tax rate of return to private capital in 

the U.S. economy” (OMB (2003)). In 2003, the OMB also recommended the use of a discount 

rate of 3%, in addition to the 7% mentioned above as a sensitivity. This new rate of 3% was 

justified by the “social rate of time preference. This simply means the rate at which society 

discounts future consumption flows to their present value. If we take the rate that the average 

saver uses to discount future consumption as our measure of the social rate of time preference, 

then the real rate of return on long-term government debt may provide a fair approximation” 

(OMB, (2003)). The 3% corresponds to the average real rate of return of the relatively safe 10-

year Treasury notes between 1973 and 2003. Interestingly enough, the recommended use of 3% 

and 7% is not differentiated by the nature of the underlying risk, and is independent of the time 

horizon of the project. In the another field, guidelines established by the Government Accounting 



5 
 

Standards Board (GASB) recommend that state and local governments discount their pension 

liabilities at expected returns on their plan assets, which is usually estimated around 8%, 

independent of their maturities.2 The absence of risk-and-maturity-based price signals has 

potentially catastrophic consequences for the allocation of capital in the economy.3 This paper 

provides clear recommendations about the changes in evaluation tools that should be 

implemented. This reform is made at the cost of requiring evaluators to estimate the project-

specific beta. 

We agree that determining the beta of actions with long-lasting societal impacts is a complex 

matter. Let us illustrate this point in the context of climate change. It is well-known that the 

choice of the rate at which future damages are discounted is crucial to determine the so-called 

“social cost of carbon” (SCC). Sandsmark and Vennemo (2007) claim that the beta of mitigation 

investments is negative, so that the term structure of discount rates should be low and decreasing, 

thereby yielding a large SCC. They consider a simplified version of the standard integrated 

assessment model by Nordhaus’ DICE model (Nordhaus and Boyer (2000)). They assumed that 

the only source of aggregate fluctuations originates from climate change, with an uncertain 

climate sensitivity.4 Under this assumption, a large climate sensitivity yields at the same time a 

low consumption (due to the climate damages) and a large social benefit from early mitigation. 

This explains the negative beta of their model. But suppose alternatively that the climate 

sensitivity is known, but the growth rate of aggregate consumption is unknown.  Because 

emissions are increasing in consumption, a larger growth rate of consumption goes with a larger 

concentration of CO2. Because the damage function is assumed to be convex with the 

concentration of greenhouse gases, it also goes with larger damages, and with a larger societal 

benefit from early mitigation.  This justifies a positive beta. We show in this paper that any 

credible calibration of a model combining the two sources of aggregate fluctuation yields a 

positive and large beta of mitigation. From our discussion above, this is compatible with using 

increasing discount rates to measure SCC. 
                                                            
2 The European Union is currently debating about the new solvency regulation of insurance companies (Solvency 2). 
In the most recent consultation paper (European Insurance and Occupational Pensions Authority (2012)), it is 
proposed to discount safe liabilities using the yield curve up to 20-year maturities, and a real discount rate tending to 
2% (“Ultimate Forward Rate”) for longer maturities. 
3 In 2005, France has adopted a decreasing real discount rate from 4% to 2% for safe projects. This rule has been 
complemented in 2011 by an aggregate risk premium of 3% (Gollier (2011)). 
4 The climate sensitivity is a physical parameter that measures the relationship between the concentration of 
greenhouse gases in the atmosphere and the average temperature of the earth. 
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This paper is organized as follows. In section 2, we restate the classical pricing model with 

constant relative risk aversion and an arithmetic Brownian motion for the logarithm of aggregate 

consumption. The core of the paper is in section 3, in which we explore the term structure of 

discount rates for projects as a function of their beta when the parameters of the growth process 

are uncertain. In section 4, we show how these results allow us to evaluate a broad class of risky 

projects with non-constant betas. An application to climate change is presented in section 5.  

 

2. The benchmark CRRA-Normal model 

We evaluate a marginal investment project that reduces current consumption by some sure 

amount    and that generates a flow of benefits 1 2( , ,...)F F   in the future, which can be 

uncertain seen from today. In order to evaluate the social desirability of such a project, we 

measure its impact on the intertemporal social welfare 

 0
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

   (1.1) 

where u is the increasing and concave utility function of the representative agent,  is her rate of 

pure preference of the present, and tc  is the consumption level of the representative agent at date 

t, with domain in  . Because   is assumed to be small, implementing the project increases 

intertemporal social welfare if and only if 
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This can be rewritten as a standard NPV formula: 

 ( )

1

1 0,t tF t
t

t

e EF



    (3) 

where ( )t tF  is the rate at which the expected cash flow occurring in t years should be 

discounted. This discount rate is written as follows 
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It is traditional in the CCAPM to decompose the project-specific discount rate ( )t tF  into a risk 

free discount rate ftr and a project-specific risk premium ( )t tF . From (4), we define these two 

components of the discount rate as follows: 
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Observe that the risk premium ( )t F is zero when the project is safe or when its future cash flow 

is independent of future aggregate consumption. This implies that ftr  is indeed the rate at which 

safe projects should be discounted. The CCAPM also characterizes the project-specific risk 

premium ( )t tF . Throughout the paper, we assume that '( )u c c  and that 

 t t tF c  (7) 

where   1,2,...t t



 is a set of random variables independent of tc , and  is the CCAPM beta of the 

project.5 Because the idiosyncratic risk t  is not priced, we hereafter identify a project  tF  by 

its  .  Under this specification, asset pricing formulas (5) and (6) can be rewritten as follows: 

 0ln /1
ln ,tc c

ftr Ee
t

    (8) 

                                                            
5 The beta of a project is defined in the CCAPM as the coefficient of regression of the return of the project on the 
growth of aggregate consumption. Using (7), the continuously-compounded return of the project between t=0 and 

t=1 is equal to 
1 1 0

ln ln( / )F a c c    , with 
0

lna c and 
1

ln  . Because 
1 0

ln( / )c c  is the continuously-

compounded growth rate of aggregate consumption, our definition of the beta of a project is thus consistent with the 
CCAPM. More generally, it is easy to check in the standard CCAPM framework that an asset yielding a flow of 

dividends 
1 2

( , , ...)F F characterized by (7) will have an equilibrium price of the form 
t t

P kc , so that the 

continuously compounded return 
t

R  of such an asset will be such that 
t t t

R g     , with 
1

ln /
t t t

g c c


 being 

the growth rate of aggregate consumption. 
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In the remainder of this paper, we calibrate these equations for different specifications of the 

stochastic process of 0ln /tc c . The benchmark process is such that log consumption follows an 

arithmetic Brownian motion with trend   and volatility  . This implies that 0ln /tc c is normally 

distributed with mean t and variance 2t . In this benchmark case, one can compute the 

different expectations in the above equations by using the following well-known property:  

 
22 ( 0.5 )( , ) .xx N and Ee e           (10) 

The reader can then easily check that equations (8) and (9) implies that 

 2 20.5 ,ftr        (11) 

and 

 2( ) ,t m      (12) 

Equation (11), which is often referred to as the extended Ramsey rule, holds independent of the 

maturity of the cash flow. In other words, the term structure of the safe discount rate is flat in that 

case. Its level is determined by three elements: impatience, a wealth effect and a precautionary 

effect. The wealth effect comes from the observation that investing for the future in a growing 

economy does increase intertemporal inequality. Because of inequality aversion (which is 

equivalent to risk aversion under the veil of ignorance), this is desirable only if the return of the 

project is large enough to compensate for this adverse effect on welfare. From (11), this wealth 

effect is equal to the product of the expected growth of log consumption by the degree  of 

concavity of the utility function which measures inequality aversion. The precautionary effect 

comes from the observation that consumers want to invest more for the future when this future is 

more uncertain (Drèze and Modigliani (1972), Kimball (1990)). This tends to reduce the discount 

rate. The precautionary effect is proportional to the volatility of the growth of consumption.  

Equation (12) tells us that the project-specific risk premium ( )t  is just equal to the product of 

the project-specific beta by the CCAPM aggregate risk premium 2
m  . Under this standard 
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specification, the risk premium associated to benefit tF  is independent of its maturity t. The 

standard calibration of these two equations yields a too large risk free rate (risk free rate puzzle 

(Weil (1989))) and a too small risk premium (equity premium puzzle (Mehra and Prescott 

(1985))) compared to historical market data. Barro (2006) showed that these two puzzles can be 

solved by introducing a small probability of economic catastrophes in the stochastic growth 

process. 

Because both the risk free rate and the risk premium of the project are independent of the 

maturity in this benchmark specification, their sum ( ) ( )t ft tr      is also independent of t. 

The term structure of risky discount rates is flat in this case. The risky discount rate equals 

 2( ) ( 0.5 ) .t            (13) 

Notice that the risky discount rate can be either increasing or decreasing in the aggregate 

uncertainty measured by 2  depending upon whether the   of the project is larger or smaller 

than / 2 .  Two competing effects are at play here. First, a large aggregate risk induces the 

representative agent to save more for the future (precautionary saving motive). That reduces the 

risk free discount rate. Second, ceteris paribus, a larger aggregate risk increases the project-

specific risk and the associated risk premium. This risk aversion effect is proportional to the beta 

of the project. The two effects counterbalance each other perfectly when / 2  . When   is 

smaller than / 2 , the risk aversion effect (which is increasing in  ) is dominated by the 

precautionary effect (which is increasing in   ). 

 

3. The CRRA-Normal model with parametric uncertainty 

Following Weitzman (2007) and Gollier (2008), we now characterize the term structure of the 

risk free rate and the risk premium when there is some uncertainty about the true value of some 

of the parameters of the model. We assume that 0ln( / )tc c  conditional to   is normally 

distributed with parameters 2( , )t t   , where the mean and the variance can depend upon a 

parameter   that is uncertain. This uncertainty is characterized by the distribution function G of 

the random variable  . Using property (10) in equations (8) and (9), we can write that 
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We apply these pricing formulas to different structures of uncertainty about the trend and the 

volatility of the growth of the economy.  

 

3.1. The trend of growth is uncertain 

Suppose first that 0ln( / )tc c follows a Brownian motion with a known constant volatility   and an 

unknown constant trend  . Equation (14) can then be rewritten as follows: 

 2 2 1
0.5 ln ( ),t

ftr e dG
t

        (16) 

Fully differentiating equation (16) with respect to t implies that 
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 (17) 

where functional tH  is defined on the set of random variables such that for any t  , we have 
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The following lemma gives us a useful tool to determine the slope of the term structures under 

scrutiny in the case in which the uncertainty is limited. 
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Lemma 1: Consider the family of random variables 0kx x ky  where 2
0( , )x k  and y is a 

zero-mean random variable with finite variance 2
y . We have that 

 2 2 21
( ) ln 0.5 ( ),kx t

t k yH x Ee k o k
t t

       
 (19) 

with 2 2
0lim ( ) / 0k o k k  . 

Proof: See the Appendix.   

This means that function tH is zero when its argument is risk free, and is approximately 

proportional to its variance. To illustrate, suppose that the uncertainty on the trend of growth is 

small in the sense that 0 ky    with k small and 2
0( )Var y  . Applying the lemma to 

equation (17) implies that 

 2 20.5 ( ) ( ).ftr
Var o k

t  


  


 (20) 

The slope of the term structure of the risk free discount rate is negative and approximately 

proportional to the parametric uncertainty measured by the variance of the trend of growth.  

A similar exercise with equation (15) implies that  
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Using Lemma 1 yields 
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We summarize these findings in the following proposition. 
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Proposition 1: Suppose that 0ln /tc c  follows an arithmetic Brownian motion with a known 

volatility   and with a trend    that entails some small uncertainty. It implies that the term 

structures of the risk free discount rate and of the aggregate risk premium are respectively 

decreasing and increasing. Moreover, the term structure of the discount rates ( )t   is 

decreasing, flat or increasing depending upon  is smaller, equal or larger than 0.5 .  

In the small, the uncertainty about the trend of growth makes the term structure of the risk free 

discount rate decreasing. The sensitivity of this rate to the maturity is approximately proportional 

to the product of 2 / 2 by the variance of the trend of the economy. On the contrary, the risk 

premium has an increasing term structure if the   of the project is positive. The sensitivity of the 

risk premium to the maturity is proportional to the product of  by the variance of the trend of 

the economy. Combining these results, we also see that the risky discount rate is decreasing or 

increasing depending upon whether the beta of the project is smaller or larger than / 2 . It is flat 

for 0.5  . The intuition of this result combines the observation that the parametric uncertainty 

magnifies long term risks, and the observation made in the previous section that risk decreases or 

increases the discount rate depending upon whether   is smaller or larger than / 2 . 

Assuming a Gaussian distribution for the trend of growth yields an analytical solution to the 

pricing equations. Suppose that the current uncertainty about the expected change in log 

consumption is normally distributed with mean 0  and variance 2
0 . It implies that 0ln( / )tc c  is 

2 2
0 0( , ( ) )N t t t   . Using property (10) once again in equations (16) and (21), we obtain that 

 2 2 2
0 00.5 ( ),ftr t         (24) 

and 

 2 2
0( ) ( ).t t       (25) 

Under this specification, the risky discount rate ( )t   can thus be written as 

 2 2
0( ) ( 0.5 )( ).t t              (26) 
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The term structure of the risk free discount rate is linearly decreasing, whereas the term structure 

of the risk premium is linearly increasing when the beta is positive. The intuition of these two 

results is based on the observation that the uncertainty related to the growth trend of the economy 

magnifies the long term macroeconomic uncertainty, and the corresponding uncertainty about the 

benefits of the project. Equation (26) shows that the term structure of risky discount rate is 

linearly decreasing or increasing if the project’s   is smaller or larger than 0.5 , as is the case 

for small risk on   (Proposition 1).  

We hereafter relax the above specification by allowing for any distribution of the trend  . When 

the uncertainty on the trend is not small or normally distributed, an additional complexity arises 

in the evaluation strategy. Indeed, a striking observation that can be made from equations (15) 

and (21) is that the risk premium of a project is in general not proportional to its beta: 

( ) (1)t t   .  It implies that computing the aggregate risk premium for 1   will not be 

helpful to determine the risk premium for another project with 1  . 

The next proposition describes the shape of the term structure of the risky discount rates for 

different betas. It relies on the following equation which combines equations (16) and (21) :

 

  
( )( )

2

( )

( )1
( ) / 2 ln ,

( )

t

t t

e dG

t e dG





   

  


      



 


     


 (27) 

with E   .There are two simple cases that are worthy to examine. When  =0, 

( 0)t ftr     is obviously decreasing in t, since 1( ) ln exp( )t E t   is the certainty 

equivalent of  for a concave exponential utility function with degree of concavity t. Similarly, 

when   , ( )t    is obviously increasing in t, since 1( ) ln exp( )t E t  is the certainty 

equivalent of  for a convex exponential utility function with degree of convexity t. The other 

cases are described in Proposition 2. It relies on the full differentiation of equation (27) with 

respect to t, which yields 

 
( )

( ( )) (( )( )).t
t tH H

t  
        

    


 (28) 
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Proposition 2: Suppose that 0ln /tc c  follows an arithmetic Brownian motion with a known 

volatility   and with an unknown trend   with support  min max,  . When the distribution 

of  is symmetric, the term structure of the discount rate ( 0.5 )t   is flat at .  It is 

increasing when   is smaller than 0.5 , and it is decreasing when  is in 0.5 ,  . 

Proof: See the Appendix.   

Thus, we recover essentially the same characterization for the slope of the term structure if we 

replace the assumption of a small degree of uncertainty contained in Proposition 1 by the 

assumption that this uncertainty is just symmetric around the mean. In the next proposition, we 

characterize the asymptotic properties of the term structure of discount rates. 

Proposition 3: Suppose that 0ln /tc c  follows an arithmetic Brownian motion with a known 

volatility   and with an unknown trend   with support  min max,  . The efficient discount 

rates ( )t  have the following properties: 

 For short horizons, the discount rate tends to 2
0 ( ) ( 0.5 )          . 

 For long horizons, the discount rate tends to 

 

2
min

2
min max

2
max

( 0.5 )                        0

( ) ( 0.5 ) ( ) 0

( 0.5 )                       

if

if

if

     
           

      


    
       
    

 (29) 

Proof: See the Appendix.   

This proposition provides some interesting insights about the risky discount rates. For short 

horizons, the ambiguity affecting the trend of the economy has no effect on the risky discount 

rate. Only the expected trend   of the economy matters to measure the wealth effect in the short 

term. On the contrary, for distant futures, the ambiguity affecting the trend is crucial for the 

determination of the discount rate. The long term wealth effect is equal to the product of   by a 

growth rate of consumption belonging to its support  min max,  . Its selection depends here upon 

the beta of the project. When   is negative, the wealth effect should be computed on the basis of 
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the smallest possible growth rate min  of the economy. On the contrary, when   is larger than  , 

the wealth effect should be computed on the basis of the largest possible rate max .  When the 

beta of the project is positive but smaller than  , the selected growth rate is a weighted average 

of min  and max , with weights ( ) /   and /  respectively. 

In Figure 1, we illustrate some of the above findings through the following numerical example. 

We assume that 2  , 4%   and   is uniformly distributed on interval  0%,3% . The term 

structure is flat for / 2 1   . The discrimination of the discount rate for different betas is 

increasing in the maturity of the cash flows. This numerical example also illustrates the property 

that project-specific risk premia are in general not proportional to the project-specific beta. For 

example, consider a time horizon of 200 years. For this maturity, the risk premia associated to 

1   and 0.5   are respectively equal to 200 (1) 2.08%   and 200 200(0.5) 0.94% 0.5 (1)   .  

Proposition 3 also tells us that the condition of a symmetric distribution for   in Proposition 2 

cannot be relaxed. Indeed, Proposition 3 implies that 0 ( / 2)    and ( / 2)     are equal 

only if   and min max( ) / 2   coincide. Most asymmetric distributions will not satisfy this 

condition, which implies that the constancy of ( / 2)t   with respect to t will be violated.  
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Figure 1: Term structure of the risky discount rate (in %) for different betas. We assume that 

2  , 4%   and   is uniformly distributed on interval 0%,3% . 

 

3.2. The volatility of growth is uncertain 

Let us now turn to the case in which the trend is known, but the volatility is ambiguous. 

Weitzman (2007) examined this question by assuming that the 2
  has an inverted Gamma 

distribution. This implies that 0ln( / )tc c is a Student’s t-distribution rather than a normal, yielding 

fat tails, a safe discount rate of  and a market risk premium of  . Let us reexamine this 

question without specifying the distribution of  2
 , apart from assuming that its variance 

2 2 ky     is such that k  is small. Equation (14) implies that 

 
2 20.51

ln ( ).t
ftr e dG

t
        (30) 

Lemma 1 implies that 

 
4

2 2 2 2(0.5 ) ( ) ( ).
8

ftr
H Var o k

t  
  


    


 (31) 

Similarly, equation (15) implies that 

 

2 2

2 2 2 2

0.5( )

0.5 0.5

( )1
( ) ln .

( ) ( )

t

t t t

e dG

t e dG e dG



 

  

   


 

 



  
 

 (32) 

Lemma 1 implies in turn that 

 

2 2 2 2 2 2

4 4 4 2 2

2 2 2 2

( )
(0.5 ) (0.5 ) (0.5( ) )

1
( ) ( ) ( )

8
3

( ) ( ).
2 2

t H H H
t

Var o k

Var o k

  





        

    

    


   



      

      

 (33) 

The bracketed term in the right-hand side of this equation is positive, which implies that the term 

structure of the risk premium is upward-sloping for all 0   if the uncertainty on the volatility 
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of growth is small enough. Finally, combining these two results implies that the discount rate 

( )t   to be used for this project is such that 

  

4 4 2 2

2 2

2 2

( ) 1
( ) ( ) ( )

8

(2 ) ( )
( ) ( ).

8

t Var o k
t

Var o k





     

     


      
  

 

 (34) 

Thus, when the uncertainty on the volatility is small enough, the term structure of the discount 

rate to be used for risky projects is downward-sloping if and only if  is smaller than / 2 . This 

result is identical to what we obtained earlier in this section when the uncertainty is about the 

trend of the economy.  The following proposition summarizes the findings of this section. 

Proposition 4: Suppose that 0ln /tc c  follows an arithmetic Brownian motion with a known trend  

  and with a variance 2
  that entails some small uncertainty. It implies that the term structures 

of the risk free discount rate and of the risk premium for 0   are respectively decreasing and 

increasing. Moreover, the term structure of the discount rates ( )t   is decreasing, flat or 

increasing depending upon  is smaller, equal or larger than 0.5 .  

In other words, when the parametric uncertainty is small enough, the qualitative properties of the 

term structures of discount rates are independent of whether the uncertainty is about the trend of 

growth or about its volatility. 

 

3.3. The trend and the volatility of growth are uncertain 

The above propositions suggest that that the term structure of ( )t  is decreasing under small 

parametric uncertainty if and only if  is smaller than / 2 . This is not true in general, as shown 

in this section. To do this, let us suppose that  and 2
  be statistically dependent. From (14) and 

(15), we obtain that 

 2 2( )
( ( 0.5 )) (( )( 0.5( ) )).t

t tH H
t    

          
     


 (35) 

Using Lemma 1, this implies that 
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2 2

2 2 4 4 2

3 3 2

( )
2 ( ( 0.5 )) (( )( 0.5( ) ))

( ) ( ) 0.25 ( ) ( )

( ) cov( , ).

t Var Var
t

Var Var

   

 

 

          

       

    


    


           
    



 (36) 

In the special case with / 2  , this implies in turn that 

 
3

2( )
cov( , ).

8
t

t  
    


  (37) 

Thus, when / 2  , the signs of the slope of the term structure of the discount rate and of 
2cov( , )    coincide. To illustrate this result, let us consider the following simple numerical 

example. Suppose that 0  , 2   and that there are two possible states of nature. In the first 

state, 1 0%  and 1 1%  . In the second state, 2 3%   and 2 7%  , so that the trend and the 

volatility of growth are positively correlated. Under this calibration of the model, the discount 

rate for short-term cash flows with 1 / 2    is 0 (1) 3%  , and the discount rate for distant 

cash flows is 0(1) 3.24% (1).     

 

4. Term structures with parametric uncertainty and mean-reversion 

In the benchmark specification with a CRRA utility function and a random walk for the growth 

rate of consumption, the term structures of discount rates are flat and constant through time. In 

the specification examined in Section 3 with some parametric uncertainty on the underlying 

random walk of the growth rate, they are monotone and move smoothly through time due to the 

revision of beliefs about the true values of the uncertain parameters. But these processes ignore 

the cyclicality of the economic activity. The introduction of predictable changes in the trend of 

growth introduces a new ingredient to the evaluation of investments. When expectations are 

diminishing, the discount rate associated to short horizons should be reduced to bias investment 

decisions toward projects that dampen the forthcoming recession. Long termism is a luxury that 

should be favored only in periods of economic prosperity with low expectations for the future. 

More generally, when expectations are cyclical, it is important to frequently adapt the price 

signals contained in the term structure of discount rates to the moving macroeconomic 

expectations. From this theoretical result, it is clearly inefficient to maintain the U.S. official 

discount rate unchanged since 1992.  
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In this section, we propose a simple model in which the economic growth is cyclical, with some 

uncertainty about the parameter governing this process. Following Bansal and Yaron (2004) for 

example, the change in log consumption follows an auto-regressive process: 

 
1

1 ,

ln /

,
t t t

t t xt

t t yt

c c x

x y

y y
 

 






  
 

 (38) 

for some initial (potentially ambiguous) state characterized by 1y  , where  and xt yt  are 

independent and serially independent with mean zero and variance 2
x  and 2 ,y respectively. 

Parameter  , which is between 0 and 1, represents the degree of persistence in the expected 

growth rate process. When   is zero, then the model returns to a pure random walk as in Section 

3. We hereafter allow the trend of growth   to be uncertain.6 By forward induction of  (38), it 

follows that: 

 
1 1

0 1
0 0

1 1
ln / .

1 1

t tt t

t y xc c t y


   
 

    
 

 


 

 
   

    (39) 

It implies that, conditional to  , 0ln lntc c  is normally distributed with annualized variance 

 
2 2

1 2 2
0 2 2

1 1
(ln / ) 1 2 .

(1 ) ( 1) ( 1)

t t
y

t xt Var c c
t t

    
  

   
       

 (40) 

We consider as before an investment project  tF  with a constant  , so that equation (7) holds. 

The pricing formula (4) can therefore be rewritten as: 
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

 (41) 

                                                            
6 A more general model entails a time-varying volatility of growth as in Bansal and Yaron (2004). Mean-reversion in 
volatility is useful to explain the cyclicality of the market risk premium.  
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Bansal and Yaron (2004) consider the following calibration of the model, using annual growth 

data for the United States over the period 1929-1998. Taking the month as the time unit, they 

obtained, 0.0015  , 0.0078x  , 0.00034y  , and 0.979  . Using this   yields a half-life 

for macroeconomic shocks of 32 months. Let us assume that 0  , and let us introduce some 

uncertainty about the historical trend of growth from the sure 0.0015  to the uncertain context 

with two equally likely trends 1 0.0005   and 2 0.0025  . In figures 2 to 4, we draw the term 

structures of discount rates for three different positions 1y  in the business cycle.  In Figure 2, the 

expected annual growth rate of the economy is 0.6% per year, well below its unconditional 

expectation of 1.8%. In this recession phase, the short term discount rate is a low 1%, but the 

expectation of a recovery makes the term structure steeply increasing for low maturities. For 

betas below unity, the term structure is non-monotone because of the fact that for very distant 

maturities, the effect of parametric uncertainty eventually dominates. 

 

Figure 2: The discount rate (in % per year) as a function of the maturity (in years) in recession for 

different betas. Equation (41) is calibrated with 0  , 2  , 0.0078x  , 0.00034y  , 

0.979  , two equally likely trends 1 0.0005   and 2 0.0025  , and 1 0.001y   . 
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Figure 3: The discount rate (in % per year) as a function of the maturity (in years) in mid-cycle 

for different betas. Equation (41) is calibrated as in Figure 2, except for 1 0y  . 

In Figure 3, the expected instantaneous growth rate is at its unconditional expectation of 1.8%. It 

should be noticed that the term structure is flat for 0.5 1    in this case with a symmetric 

distribution for  , as can be inferred from equation (41). Finally, in Figure 4, the expected 

instantaneous growth rate is 1.2% per year above its unconditional expectation. In this 

expansionary phase of the cycle, the short term discount rate is large at around 6%, but is steeply 

decreasing for short maturities because of the diminishing expectations. 
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Figure 4: The discount rate (in % per year) as a function of the maturity (in years) in expansion 

for different betas. Equation (41) is calibrated as in Figure 2, except for 1 0.001y  . 

 

One can also examine a model in which the current state variable 1y  is uncertain. It is easy to 

generalize equation (41) to examine this ambiguous context. We obtain the following pricing 

formula:  
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

 (42) 

Observe again that when 0.5  , the term structure of discount rates is flat if both   and 1y   

have a symmetric distribution function. We also observe that the ambiguity on 1y   plays a role 

similar to the ambiguity on   to shape the term structure. Our numerical simulations (available 

upon request) show that the hidden nature of the state variable does not modify the general 

characteristics of the term structures described above.  

 

5. Pricing projects with a non-constant beta 

Specification (7) is critical for our results. When  is positive, implementing the project raises 

the risk on aggregate consumption. When  is negative, the project has an insurance component 

since it pays more on average in the worse macroeconomic scenarios. Although specification  (7)

is restrictive, examining the pricing of a project satisfying it opens the path to examining the 

pricing of a much larger class of projects of the form 

 
1

,   with  ,i
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t it it it it t
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F F F c 
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   (43) 
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where random variables it are independent of tc . This project can be interpreted as a portfolio of 

n  different projects, project i  having a constant i  , 1,..., .i n  Of course, the resulting 

“portfolio project” has a non-constant beta. By a standard arbitrage argument, the value of this 

portfolio is the sum of the values of its   -specific components. We can thus rely on our results 

in this paper for the evaluation of projects with a non-constant beta. If ( )t i  is the efficient 

discount rate to evaluate the i  component of the project, the global value of the project will be 

equal to 

 ( )

1

,t i

n
t

it it
i

e EF  


  (44) 

where we assumed without loss of generality that 1itE  . In other words, the discount factors – 

rather than the discount rates – must be averaged to determine the discount factor to be used to 

evaluate the cash flows of the global portfolio. Weitzman (2012) examines the case in which the 

project under scrutiny is a portfolio of a risk free asset ( 1 0  ) and of a risky project with a unit 

beta ( 2 1  ). 

 

6. The beta of mitigation projects 

The purpose of this section is to heuristically derive a crude numerical estimate for term structure 

of discount rates to be used for the evaluation of climatic policies. To do this, we need to answer 

the following often overlooked question: What is the beta of investments whose main objective is 

to abate emissions of greenhouse gases? Let us consider a simple two-date version of the DICE 

model of Nordhaus (2008) and Nordhaus and Boyer (2000): 

 1T E  (45) 

 2 0E Y I   (46) 

 2
1D T   (47) 

 DQ e Y  (48) 

 C Q  (49) 
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All parameters of the model are assumed to be nonnegative. T  is the increase in temperature and 

E  is the emission of greenhouse gases from date 0 to date 1. It is assumed in equation (45) that 

the increase in temperature is proportional to the emission of these gases.  By equation (46), 

emissions are proportional to the pre-damage production level Y , but they can be reduced by 

investing 0I  in a green technology at date 0.  In equation (47), we assume that the damage D  is 

an increasing power function of the increase in temperature. Equation (48) defines damage D  as 

the logarithm of the ratio /Y Q  of pre-damage and post-damage production levels.7 We hereafter 

refer to D  as the relative damage. Finally, consumption C is proportional to the post-damage 

production Q . This model yields the following reduced form: 

   2

1 1 2 0exp ( ) .C Y Y I
         (50) 

We consider the beta of a green investment 0I . Such an investment has the benefit to raise 

consumption in the future by 

   22 2 1
1 2 2 0 1 1 2 0

0

( ) exp ( ) .
C

Y Y I Y I
I

              
 (51) 

This is the future cash flow F  of the investment. We assume that this investment is marginal, so 

that our model can be rewritten as: 

 

2

2 2

*
1

*
*1 2
1

2

exp

exp ,

C Y Y

F Y Y



 

 

   


    


    


 (52) 

where 2 2*
1 1 1 2

     can be interpreted as a synthetic climate-sensitivity parameter.  

A critical parameter for this model is 2 . When 2  is equal to unity, the relative damage is just 

proportional to the change in temperature and in concentration of greenhouse gases. The absolute 

damage Y Q  is thus convex in Y  in that case. When 2 is larger than unity, the relative damage 

                                                            
7 Equation (48) is traditionally expressed as 

1 1 1(1 )Q D Y  .  However, for high temperatures, this specification 

could lead to a negative after-damage production.  
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is itself convex, thereby bringing even more convexity to the absolute damage as a function of Y . 

Let us first assume that 2 1  . In that case, we can derive from system (52) that 

 1 1 .F C   (53) 

Let us further assume that the only source of uncertainty is about the growth of pre-damage 

production. This implies that 1 1   is a constant. We can thus conclude in this case that the green 

investment project under scrutiny in this section satisfies condition (7) with 1  . This proves 

the following proposition. 

Proposition 5:  Consider the simplified integrated assessment model (45)-(49) with 2 1   and 

without uncertainty about the climatic parameter 1 1   .Under this specification, any project 

whose benefits are to reduce emissions of greenhouse gases has a constant beta equaling unity. 

 The intuition of a positive beta in this model is as follows. When economic growth is high, more 

greenhouse gases are emitted in the atmosphere and the benefits of mitigation are large. 

Consumption and benefits covary positively in this model.  However, this simple result raises two 

difficulties. First, although all experts in the field recognize the scarcity of evidence to infer 2 , 

most of them agree that the relation ( )D f T  should be convex, yielding 2 1  . Nordhaus and 

Boyer (2000) used 2 2  ,8 whereas Cline (1992) used 2 1.3  . The Monte-Carlo simulations of 

the PAGE model used in the Stern (2007) Review draw 2  from an asymmetric triangular 

probability density function with support in [1,3] , giving a mean of about 1.8 (See Dietz, Hope 

and Patmore, 2007). Although there is no consensus on the value of this parameter, this suggests 

a more consensual beta somewhere between 1 and 2. Compared to the result in Proposition 5, a 

larger 2 tends to increase the benefits of reducing emissions in good states (large Y ), and to 

reduce them in bad states (low Y ). Intuitively, this should raise the beta of green projects above 

unity. To see this observe that a local estimation of the beta from (7) can be obtained by fully 

differentiating system (52) with respect to Y . We obtained 

                                                            
8 Nordhaus (2007) used a quadratic function, yielding a similar degree of convexity of the damage function in the 
relevant domain of increases in concentration.  
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2*

1
2 *

1

1ln /

ln / 1

Yd F dY

d C dY Y

 



 


 (54) 

which is close to 2  when 2  is close to unity. Observe that the beta of the project is not constant 

when 2  is not equal to unity. In other words, the expected benefit function conditional to C  is 

not a power function of C . 

Second, when 1 1    is random, it will in general be correlated to C , as shown by the first 

equation in system (52). In that case, equation (53) cannot anymore be interpreted as describing a 

project with a unit beta. To illustrate this point, consider the extreme case where economic 

growth Y is certain, together with 1,  2  and 2 , but the climate sensitivity parameter 1 is 

uncertain. In that case, eliminating 1 from system (52) yields 

 2

2

ln .
C Y

F
Y C

 


  (55) 

In this case, cash flow F is a deterministic function of C . Because it is not a power function, the 

beta of green projects is not constant in this specification. We can approximate it through the 

following formula: 

 1

1

ln / 1
1 ,

ln /

d F d

d C d D




    (56) 

with 2*
1 .D Y   This typically yields a negative beta, which is large in absolute value. Indeed, if 

we assume a range of damages between 5% and 20% of the aggregate production, we obtain a 

beta in the range between -4 and -19. In this story based on the uncertain climate sensitivity,  a 

large sensitivity yields at the same time large damages, low consumption, and large benefits of 

mitigation. This explains the negative beta obtained under this specification. This story is similar 

to the one proposed by Sandsmark and Vennemo (2007) who claim that the beta of mitigation 

investments should be negative.9 Their argument is based on the climate variability as being the 

only source of fluctuation in the economy. 

                                                            
9 They obtain , which is much closer to zero that what we obtain here. However, notice that these authors 
consider another definition of the beta, which is equal to the ratio of the covariance of  (C1,F1) to the variance of C1. 
In our model, the beta is equal to the ratio of the covariance of (lnC1,lnF1) to the variance of lnC1.  
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To sum up, the result presented in Proposition 5 suffers from two major deficiencies: The 

selected 2  is too small, and it does not recognize that there is still much uncertainty about the 

sensitivity of the climate to an increase in concentration of greenhouse gases in the atmosphere.  

The difficulty is that improving the model to allow for 2 1   or for an uncertain climate 

sensitivity implies that the benefit F  cannot be written anymore as a power function of C  as in 

equation (7), or as a sum of power functions of C  as in equation (43). 

We can conclude from this discussion that the beta of investments whose main benefits are a 

reduction of emissions of greenhouse gases is non-constant. Its average level is determined by the 

relative intensity of two sources of uncertainty, the one coming from the future economic 

prosperity, and the one due to the unknown intensity of the climatic problem. We believe that the 

economic source of variability has an order of magnitude larger than the climatic source of 

variability. When the annual growth rate of the economy varies between 0% and 3%, aggregate 

consumption in 100 years is between 0% and 1800% larger than today. This should be compared 

to climate damages for this time horizon which are usually estimated between 0% and 5% (see 

for example the Stern Review, 2007). To make this argument more concrete, let us consider the 

calibration of the simple above model as described in Table 1.  

Variable Value Remark 

t 50 years Time horizon between dates 0 and 1. 

1e
t

ii
x

Y   

2( , )

1.5%, 4%
ix iid N  
  


 0Y is normalized to unity. The growth rate of production 

follows a normal random walk.  

2  1 Normalization 

1  0.45 This implies that the expected increase in temperature in 
the next 50 years equals 1EY C   .  

2  1.5 Center of the “consensus interval” [1,2]. 

1  [0%,5%]U  This means that the damage at the average temperature 
increase of 1°C is uniformly distributed on [0%, 5%] of 
pre-damage production.  

  0.75 Consumption equals 75% of post-damage production. 

   

Table 1: Calibration of the two-date IAM model 



28 
 

Using the Monte-Carlo method, we generated 50 000 independent random selections of the pair 

1( , )Y   and the corresponding outcomes in terms of aggregate consumption C  and benefits of 

mitigation F , as defined by system (52). Using these data, we regressed ln F  on ln C . The OLS 

estimation of the beta equals ˆ 1.32   with a standard deviation of 0.016.10 

In Figure 5, we draw the term structures of discount rates prevailing for 1.32   in three 

different phases of the macroeconomic cycle under the calibration used in the previous section. 

The discount rate to be used for super-long maturities is around 4.6%, whereas the short-term 

discount rate fluctuates along the business cycle from around 1.3% when the expected 

instantaneous trend is 1.2% per annum below its historical mean, to around 6% when the 

expected instantaneous trend is 1.2% above its historical mean.   

 

Figure 5: The discount rate (in % per year) as a function of the maturity (in years) for 1.32   in 

different phases of the cycle. Equation (41) is calibrated with 0  , 2  , 0.0078x  , 

0.00034y  , 0.979  , and two equally likely trends 1 0.0005   and 2 0.0025  . 

 
                                                            
 
10  Increasing the degree of uncertainty affecting  has a sizeable impact on this estimation. For example, if we 
replace the assumption that the interval [0%, 5%] on which it is uniformly distributed by [0%, 10%], the OLS 
estimation of the beta goes down to 1.14%. However, it is hard to imagine damages amounting to 10% of the world 
production due to a 1°C increase in temperature.  
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7. Concluding remarks 

By focusing on the riskiness of future benefits and costs, this paper contributes to the debate on 

the discount rate for climate change in several directions. Following Weitzman (2007) and 

Gollier (2008), we examined a model with a Brownian motion for the growth of the economy, 

some of the parameters of this underlying stochastic process being uncertain. We then extended 

this model to include business cycles into the picture.  Our main messages in this framework are 

as follows. First, we showed that the shape of the term structure of discount rates for risky 

projects is determined by the relative intensity of a precautionary effect that pushes towards a 

decreasing term structure, and of a risk aversion effect that pushes towards an increasing term 

structure. Under some weak restrictions on the distribution of the uncertain parameters, the term 

structure is decreasing or increasing depending upon whether the beta of the project is 

respectively smaller or larger than half the relative risk aversion of the representative agent.  

Second, we showed that the risk premium associated to a project is generally not proportional to 

its beta, which implies that knowing the aggregate risk premium and the project’s beta is not 

enough to compute the project-specific risk premium. We derived simple formulas to compute 

the project-specific risk premium as a function of the project’s beta. Third, when shocks on the 

growth rate of the economy are persistent, short-term and medium-term discount rates should be 

frequently revised as a function of changes in the state variable. The term structures of discount 

rates are generally not monotone in that context.  

Finally, we have shown that there are reasons to believe that the beta of projects whose main 

benefits are to reduce emissions of greenhouse gases is relatively large, around 1.3. This allows 

us to conclude that the discount rates to be used to evaluate public policies to fight climate 

change should be increasing with respect to maturities. Given the current global economic crisis 

in the western world, following Figure 5, we are in favor of using a real discount rate for climate 

change around 1.3% for short horizons, up to 4.6% for maturities exceeding 100 years. 

A word of caution should be added to this conclusion. The use of price signals like discount rates 

and risk premia is possible only for investment projects that are marginal, i.e., for actions that do 

not affect expectations about the growth of the economy.  The reader should be aware that this 

assumption does not hold when considering the global strategy to fight climate change. When 

thinking globally, one needs to take into account the general equilibrium effects that the chosen 
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strategy will have on the stochastic growth process, hence on the discount rates that are used to 

evaluate this strategy. The right evaluation approach for global projects relies on the direct 

measure of the impact of the global action on the intergenerational social welfare function, as 

done for example in Stern (2007) and Nordhaus (2008).  

 

  



31 
 

Appendix A: Proof of Lemma 1 

Define function th such that 
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
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
     (57) 

We have that (0) 0th   and  
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It implies that 
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We also obtain that 
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It yields 

 2 2 2 2
0 0''(0) .t y y y yh tx tx        (61) 

The Taylor expansion of ( )th k yields in turn 

 
2 2

2 2 2
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 (62) 

This concludes the proof.   
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Appendix B: Proof of Proposition 2 

When / 2  , equation (28) implies that 

 
( / 2)

( ( )) ( ( )) 0.t
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t  
         

      


 (63) 

This is a direct consequence of the assumption that  has a symmetric distribution. Thus, the 

term structure of t is flat for / 2  .  

Fully differentiating equation (28) with respect to   yields 
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where 
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characterizes a distorted probability distribution. Because the bracketed term in the RHS of (64) 

is always positive, we have that ( ) /t t    is decreasing in  for all ] , ]   . Because it 

vanishes at / 2  , we obtain that ( ) /t t    is negative for all / 2  , and it is positive for 

all  / 2,   .   

 

Appendix C: Proof of Proposition 3 

Consider equation (27). When t tends to zero, using L’Hospital’s rule implies that the limit of 

( )t  when t tends to zero equals 
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This implies that 

  2
0lim ( ) / 2 .t t            (67) 

When t tends to infinity, the same technique implies that the term structure of ( )t  tends 

asymptotically to 
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 (68) 

When 0   , both ratios in the limit tend to max , so that we obtain that 

  2
maxlim ( ) / 2 .t t            (69) 

When 0    , the first ratio tends to min  and the second ratio tends to max . This implies that 

  2
min maxlim ( ) ( ) / 2 .t t                 (70) 

The third case with 0   follows in a similar fashion.     
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