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Introduction

After the renewal of banks regulatory framework with the Basel II agreement in 2003,

the European Solvency II committee is currently working on new capital standards for

insurance companies.

Recently, the Basel II risk-based capital requirements have been widely criticized be-

cause they could exacerbate financial cycles, or more generally business cycle fluctuations

(see e.g. Kashyap and Stein [2004], Adrian and Shin [2007, 2008], Plantin, Sapra and

Shin [2008], Rochet [2008]). Basically, these authors claim that solvency capital require-

ments (SCR hereafter) rules which do not depend on the state of the business/financial

cycle may lead to large pro-cyclical leverage effects. As a result of such rules, investors

demand of securities increases during financial booms which pushes stock prices even

upper. Conversely, investors have to sell securities during financial downturns in order

to restore their solvency ratios, which precipitates the financial recession.1 Yet, a cycli-

cal SCR rule allowing for smaller capital requirements during downturns could at least

dampen, if not completely eliminate, this procyclical leverage effect.

Providing further support such a cyclical SCR rule, a growing empirical literature

points to predictability and mean-reversion in stocks returns (see e.g. Campbell [1991],

Campbell [1996], Barberis [2000], or Campbell and Viceira [2002] for U.S. data and Bec

and Gollier [2007] for french data). More precisely, excess stock returns risk is found to

be mean reverting in the sense that the risk associated with long holding periods is lesser

than the one associated with short holding horizons as e.g. the widely scrutinized one-

year horizon. Beyond this potential investment horizon effect, returns mean reversion

may also imply a cyclical effect. In other words, the financial cycle’s position could help

predicting future returns and future risk.

Our contribution to this literature is twofold. First, we assess empirically the im-

portance of these cyclical and investment horizon effects for European stock price data.

This question is explored by modelling the joint dynamics of excess return of equities

1See Adrian and Shin [2007] for a very clear presentation of this procyclical leverage effect.
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and an indicator of the financial market cycle from a vector autoregression model. Actu-

ally, in the recent empirical literature devoted to asset returns predictability, the vector

autoregressive dynamics is often retained. The choice of this representation is basically

motivated by the fact that this framework allows for straightforward computation of the

conditional first and second-order moments matrices, namely the conditional mean and

variance-covariance matrices. Hence, two crucial variables for dynamic portfolio alloca-

tion optimization are obtained easily — the time-t conditional expectation (forecast) and

conditional variance (risk measure) for asset returns at horizon t+h. We also propose a

measure of the Value-at-Risk based on the vector autoregression estimates. It is in line

with existing measures in that it derives from the empirical distribution of the expected

k−period returns. Nevertheless, it has the advantage of not imposing any assumption

regarding the law of distribution of the sample but relies on bootstrapped quantiles

instead. Our second contribution is then to propose a VaR measure which takes the

influence of the recent cycle conditions into account, since it is based on the bivariate

dynamics of stock returns and financial market cycle. Furthermore, we take advantage

of this to propose a cycle-dependent measure of the Solvency Capital Requirement which

accounts for the illiquidity risk.

Using quarterly French, German and British data from 1970Q4 on, it turns out that

both cyclical and horizon effects do influence the Value-at-Risk: it is higher during

booms than during recessions, and lower for long than for short investment horizons.

Hence, beyond the fact that constant SCR rules may be destabilizing, they are not

even justified by a constant VaR. By contrast, our findings support SCR rules which

would be flexible enough so as to take these cyclical and horizon effects into account.

This modification of the methodology is countercyclical: it should induce intermediaries

to be more conservative in long expansionary phases and to be more risk-taking in

downturns.

The paper is organized as follows. Section 1 presents the econometric methodology.

Section 2 describes the data used for the vector autoregression presented in Section 3. In

Section 4, estimated stocks returns VaR are compared across investment horizons and
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phases of financial cycle. Section 5 concludes.

1 Vector autoregression modelling of VaR

1.1 The vector autoregressive model

So as to simplify the presentation, and without loss of generality, let us consider the

following vector autoregression of order one2 :

zt = Φ0 + Φ1zt−1 + vt, (1)

where

zt =

[

xt

st

]

is a m×1 vector with xt, the n×1 vector of log excess returns and st the m−n−1×1 vector

of variables which have been identified as financial markets cycle indicators. In equation

(1), Φ0 is the m×1 vector of intercepts and Φ1 is the m×m matrix of slope coefficients.

It is assumed that the roots of the characteristic polynomial Φ(z) = Im−Φ1z lie strictly

outside the unit circle in absolute value, a condition which rules out nonstationary or

explosive behavior in zt. Finally, vt is the m× 1 vector of innovations which is assumed

to be i.i.d. distributed with mean zero and covariance matrix Σv.

A very parsimonious version of this autoregressive model will be retained for the

evaluation of VaR from French, German and UK data. Let R0t denote the nominal

short rate and r0t = log(1 + R0t) the log (or continuously compounded) return on this

asset that is used as a benchmark to compute excess returns on equities. Then, with

ret the log stock return, let xet = ret − r0t denote the corresponding log excess returns.

Finally, let mct denote the cyclical component of the log price index, to be defined later

in the paper. In our empirical work, we will estimate a vector autoregression in which

zt = (xet, mct)
′.

2The analysis can be easily extended to more than one lag.
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1.2 From vector autoregression to Value-at-Risk

Following Campbell and Viceira [2004], the one-period log returns are added over k

successive periods in order to get the cumulative k−period log returns. The one corre-

sponding to the log excess return on equities is denoted xk
et ≡ xe,t+1 + · · · + xe,t+k. The

vector autoregression is particularly well suited for forecasting purposes. By forward

recursion of equation (1), it is possible to derive the expression of (zt+1 + · · ·+ zt+k):

zt+1 + · · · + zt+k = [k + (k − 1)Φ1 + (k − 2)Φ2
1 + · · · + Φk−1

1 ]Φ0 + (Φk
1 + Φk−1

1 + · · ·+ Φ1)zt

+(1 + Φ1 + · · ·+ Φk−1
1 )vt+1 + (1 + Φ1 + · · ·+ Φk−2

1 )vt+2 + · · ·

+(1 + Φ1)vt+k−1 + vt+k,

or equivalently:

zt+1 + · · ·+ zt+k =

[

k−1
∑

i=0

(k − i)Φi
1

]

Φ0 +

[

k
∑

j=1

Φj
1

]

zt +

k
∑

q=1

[

k−q
∑

p=0

Φp
1vt+q

]

, (2)

where the first two terms on the RHS correspond to the k−period conditional mean,

Et(zt+1 + · · · + zt+k). Finally, the cumulative k−period log excess return on equities

derives from equation (2) as follows:

xk
et = Mr(zt+1 + · · · + zt+k), (3)

where the selection matrix is defined by Mr = [In×n 0n×(m−n−1)]. Dividing both sides of

equation (3) by k gives the annualized log excess return.

The value-at-risk obtains straightforwardly from equation (2). The VaR is basically

defined as a number such that there is a probability p that a worse excess (log-)return

occurs over the next k periods. As such, the VaR is a quantile of this return distribution.

The VaR of a long position (left tail of the distribution function) over the time horizon

k with probability p may hence be defined from:

p = Pr
[

xk
et ≤ V aR

]

= Fk(V aR), (4)
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where F (·) denotes the cumulative distribution function of xk
et. The quantile function is

the inverse of the cumulative distribution function from which the VaR obtains:

V aRk(p) = F−1
k (p). (5)

Since xk
et is the sum of log excess returns over k periods, it is also the log of the product of

the excess returns (not taken in log) over k periods. Hence, the VaR of the corresponding

capital requirement simply obtains as:

V aRcr
k (p) = exp(V aRk(p)) − 1

Since we are interested in the value-at-risk for various time horizons, it is desirable to

keep an equivalent risk level over all the horizons, which means adjusting p with k. For

instance, the 1 − p = 95% level retained in VaR analysis is chosen on a yearly basis. In

order to maintain the same yearly probability, the corresponding probability for horizon

k must be adjusted accordingly, that is 1−p = (95%)k. All the computations below will

retain this horizon-adjusted probability.

As can be seen from equation (5), such a VaR measure is directly affected by the

distribution chosen for F (·). It is now well-known that the normal distribution is not

suitable for most speculative assets, even at the quarterly or yearly frequency. Since

there is no consensus regarding which alternative distribution to choose, we propose

to retain a bootstrap approach relying on the empirical distribution. Basically, this

approach consists in resampling S times the residuals estimated from model (1) so as to

re-built S simulated sequences of 1
k
(zt+1+· · ·+zt+k) using equation (2). The method will

be discussed to greater extend below and will be applied to the European data described

in the next section.

2 The assets return data

The benchmark asset from which the excess returns on equities will be calculated is a

short rate. For France, the 3-month PIBOR rate obtained from Datastream is retained
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from 1970M11 to 1998M12. It is then continued using the 3-month EURIBOR rate

from 1999M1 to 2008M12. For Germany and the United-Kingdom, the money market

3-month rate and the T-bills 3-month rate are respectively retained for the whole sam-

ple. The end-of-quarter values from these monthly series are retained to get quarterly

observations, and r0t denotes the log return on the 3-month rate.

National data for stock prices and returns come from Morgan Stanley Capital In-

ternational (MSCI) database and are available since December 1969. More precisely,

quarterly stock market data are based on the monthly MSCI National Price and Gross

Return Indices in local currency. From these data, a quarterly stock total return series

and a quarterly dividend series are obtained following the methodology described in

Campbell [1999]3. Note that we depart from Campbell’s approach by not including the

tax credits on dividends. Indeed, MSCI calculates returns from the perspective of US

investors, so it excludes from its indices these tax credits which are available only to local

investors. For e.g. France, Campbell chooses to add back the tax credits quite roughly,

by applying the 1992 rate of 33.33% to all the sample. Nevertheless, this rate hasn’t

remained fixed over the sample considered here (1970Q1—2008Q3). On top of this, the

way dividends are taxed has also changed during that period. We couldn’t find exact

tax rate data for our sample and have chosen to work with data excluding tax credits.

For each country, the equities excess return, xet, is then obtained by substracting r0t

from the log return on equities.

Finally, we have to find a proxy variable for the financial market cycle. From a

practitioner’s point of view, a variable such as a moving average of the log of the stock

market price index would seem to be a good candidate because of its simplicity. Nev-

ertheless, such kind of proxy variable has the serious drawback that a moving average

is backward-looking by nature, and for this reason would always be late compared to

the current cycle. Another possibility is to extract the trend component of the log stock

market price index using the filter proposed in Hodrick and Prescott [1997]. This filter

3See also Campbell’s “Data Appendix for Asset Prices, Consumption and the Business Cycle”,

March 1998, downloadable from Campbell’s homepage.
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is the most used one in the business cycles literature since more than three decades.

Since this HP filter uses all the sample to extract the cyclical component, it is well in

line with the current cycle contrary to such backward-oriented filtering methods as the

moving average class of filters for instance. Nevertheless, this filter is not perfect (see

e.g. King and Rebelo [1993], Cogley and Nason [1995], Pederson [2001] and Mise, Kim

and Newbold [2005]): its main drawback is the endpoint issue which would make the

results regarding, say, the last two years of the sample, unreliable. Finally, we have cho-

sen to follow e.g. Clarida, Gali and Gertler [2000] or Christensen and Nielsen [2009] in

estimating the trend component of the log stock price index by m∗

ct = g(t) where g(t) is a

polynomial in the time index t. Regarding the choice of the stock price index underlying

mct, we have retained the European index provided by MSCI Barra. This Europe Index

is a free float-adjusted market capitalization weighted index that is designed to measure

the equity market performance of the developed markets in Europe.4 More precisely,

mct denotes the cyclical component of the logarithm of the European index, with g(t) a

seventh-order polynomial.5

Figure 4 in Appendix reports the French, German and UK log returns and the

European stock market cycle data under study.

3 Empirical assessment of the influence of the finan-

cial market cycle on excess equities log returns

In the sequel, we will consider an autoregressive model for zt = (xi
et, mct), i = FR, GE, UK

in equation (1). The estimated model writes as follows:

zt = Φ0 +

n
∑

i=1

Φizt−i + vt. (6)

4As of June 2007, the MSCI Europe Index consisted of the following 16 developed market country

indices: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands,

Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.
5The whole analysis has also been performed using a HP filter to extract the cyclical component,

without changing the conclusions.
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The lag order n is chosen so as to eliminate residuals serial correlation, which leads to

retain one lag for all the models. The estimation results are reported in Table 2, see

Appendix. For these VAR(1) systems, the null of no residuals serial correlation up to

order 8 is not rejected according to the Portmanteau statistics. It is also worth noticing

that both ARCH and White F tests do not reject the homoskedastic null hypothesis

in France and Germany, whereas there is an ARCH(2) effect in the residuals from the

United Kingdom model. This will be taken into account when bootstrapping the UK

residuals in the next section.

So as to check for the dynamic relationship between the market cycle and the excess

equities returns, we performed Granger-causality tests. Table 1 reports the correspond-

ing LR statistics and p-values. These statistics are distributed as a Chi-squared with

one degree of freedom. As can be seen from this table, the nullity of mc’s coefficients in

Table 1: LR statistitics for Granger (non-)causality tests

FR GE UK

from mc to xe 3.05 6.06 9.15

p-value (0.08) (0.01) (0.00)

from xe to mc 4.16 1.82 1.49

p-value (0.04) (0.18) (0.22)

the equation of xe is strongly rejected for Germany and the United Kingdom, whereas

it is rejected at the 8%-level in France. On the whole, we may conclude that our proxy

variable of the financial market cycle Granger-causes the log excess returns on equities.

This confirms the relevance of the joint modelling of these two variables.

This causal link is further confirmed by the impulse response function of the log

excess return on equities to an innovation in the market cycle. In order to identify this

innovation, we performed a Choleski decomposition of Σv — the variance-covariance

matrix of the vector autoregression estimated residuals — retaining the following order-
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ing of the variables in the model: (mct, x
i
et). Denoting vt = (vm

t , vx
t )′ the residuals of

model (1) for such an ordering of the variables, we define the structural innovations in

the market cycle and the returns εt = (εm
t , εx

t )
′, with E(εε′) = I, by:

vt = Gεt,

where G is the lower-triangular 2×2 matrix such that GG′ = Σv. This choice allows the

market’s cycle innovations to affect instantaneously the excess return, while the return

innovations influence the market cycle after one period only.6 Figure 1 below reports

this impulse response function of the german xe to a favorable unit shock in the market

cycle innovation, together with two-standard deviation confidence interval computed

from 10,000 drawings of the estimated residuals. As can be seen from Figure 1, the

instantaneous response of the excess return is positive, but then becomes significantly

negative for two years before progressively going back to zero. The french and UK

return response functions have the same shape, and are respectively a little bit less and

more pronounced than the german returns response. Of course, an adverse shock would

generate the reverse effect: the log returns would drop the first quarter but then would

become positive the next two years before the shock’s effect completely vanishes. This

figure also reveals that after eight quarters, the impact of the financial cycle innovation

on the excess return is not significantly different from zero.

If the dynamics of the log returns is affected by innovations in market cycle, so should

be the dynamics of the Value-at-Risk.

4 The dynamics of Value-at-Risk

4.1 The proposed empirical measures of the VaRk

The bootstrap method described below belongs to the multivariate filtered historical

simulation (FHS) method presented in Chirstoffersen [2009]. This method consists in

simulating future returns from a model using historical return innovations. It is qualified

6The results obtained from the alternative identification scheme are qualitatively similar.
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Figure 1: Response of german xe to a unit shock in εm

by “filtered” because it does not use simulations from the set of returns directly, but from

the set of shocks, which are basically returns such as filtered by our vector autoregressive

model.

The FHS method described in Chirstoffersen [2009] would amount in our case to

the following: First, using random draws from a uniform distribution, the estimated

residuals of model (6) are resampled S times. Using these S series of v
s together with

the estimated parameters of model (6) and the observed value of zt−1, in equation (3),

S hypothetical sequences of xk
et are obtained. The V aRk(p) then obtains by retaining

— amongst these S simulated sequences — the value of return such that there is a

probability p that a worse value occurs at horizon k. This method clearly accounts for the

uncertainty of the shocks realization. However, by setting z
s
t−1 = zt−1, it makes the VaR

measure strongly dependent on the last available observations. In order to illustrate this,

Figure 2 reports this date-dependent VaR measure calculated from 300,000 simulations

for the one-year investment horizon and for all t from 1980Q1 to 2008Q4. For each

date t, we have estimated model (6) from 1973Q1 until t and obtained the k−year
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VaRs by the bootstrap method described above. Note that for the UK model, the

bootstrap procedure is adapted to account for the residuals heteroskedasticity following

the lines described in e.g. Cavaliere, Rahbek and R. [2008]: instead of being resampled,

the estimated VAR residuals are multiplied by a Gaussian i.i.d. N (0, 1) sequence so

that the resulting simulated residuals keep the same heteroskedastic features as the

estimated ones. These figures also plot the ex-post observed values of exp(xk
et) − 1. In

all these countries, the one-year VaR(95%) under-estimates the one-year stock return

during the 2001-2002 recession episode. For France and Germany, the same occurs

with the 1986-1987 downturn. Table 3 in appendix reports the percentage of violations,

i.e. the percentage of VaRs above the corresponding ex-post observed return, for the

V aR(95%)’s up to five years. It turns out that the model for french returns performs

remarkably well for the one and two-year horizons, while it becomes too conservative

for longer horizons. The UK model is also quite good in reproducing the expected

percentages of violations even though it is slightly too conservative at the one year

horizon. Finally, the German model is slightly too liberal for the one and two-year

horizons.

Nevertheless, since we aim at evaluating the impact of the financial cycle on the VaR

for various investment horizons, we would rather control for the position in the cycle.

We will do this by setting the excess return to its sample average, i.e. xe

s
t = x̄e, while

fixing the market cycle indicator respectively to its mean (mid-cycle measure), to its

mean plus one or two standard deviation (one or two standard expansion case) and to

its mean minus one or two standard deviation (one or two standard recession case).

4.2 Empirical measures of VaRk across investment horizon and

financial cycle

The results reported below were obtained for S = 300, 000 simulations for each k =

1, · · · , 20 years, from which we picked up the corresponding (1−95k%) quantile for each

V aRcr
k . Figure 3 plots the five measures of V aRcr

k described above, namely the mid-
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Figure 2: One-year VaR(95k%) and observed one-year returns
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cycle, the one and two standard expansions and the one and two standard recessions

against holding horizons up to twenty years. The corresponding figures are reported in

Tables 4 to 6 in Appendix, up to the twenty-year horizon. The first important result

1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1
France

Mid−cycle
−σ recession
+σ expansion
−2σ recession
+2σ expansion

1 2 3 4 5 6 7 8 9 10
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1
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Mid−cycle
−σ recession
+σ expansion
−2σ recession
+2σ expansion

1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5
The United Kingdom

years

Mid−cycle
−σ recession
+σ expansion
−2σ recession
+2σ expansion

Figure 3: Value-at-Risk(95k%) across cycle and horizons

emerging from this figure is that whatever the investment horizon, the VaR depends on

the position in the financial cycle. For all countries and horizons, the VaR is stronger in

expansion than in recession. The VaR’s gap between recession and expansion times at
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the one-year horizon ranges from around 8.4% in France to 13.7% in the United Kingdom,

while it is 11.8% in Germany, for the one-standard deviation case. It ranges from 17.1%

in France to 27.6% in the United Kingdom for the two-standard deviation case. In

all the countries considered here, this gap widens with the holding horizon. The lower

cyclical impact found on French returns may stem from the fact that this is the country

in which the European financial cycle indicator has the lowest explanatory power for

the excess returns. Overall, these results suggest that a rule imposing the same solvency

capital requirement whatever the state of the financial market cycle could actually be

pro-cyclical.

The second important result concerns the dynamics of the VaR across investment

horizons. In a previous study (see Bec and Gollier [2007]), mean-reversion was found

in log returns on French equities relatively to other assets returns: their relative risk

was found decreasing with the holding period. This is confirmed by the results in

Figure 3. Indeed, the worst expected loss in terms of capital requirement, at the (1 −

0.95k)−percent level, decreases with the investment horizon. In all countries, starting

from a one-standard recession, it becomes a gain after two to five years according to our

estimates. These results are quite robust to the estimation period.

As a further check, the simulations were also performed with re-estimation of the

vector autoregression for each s ∈ S so as to take the parameters estimates uncertainty

into account — which is not done in the common FHS approach. Indeed, the impact of

parameter uncertainty on the conclusions regarding the horizon effect has been stressed

in a recent empirical work by Pastor and Stambaugh [2009]. Nevertheless, as shown in

Figure 5 and Tables 7 to 9 reported in appendix, both the cyclical and horizon effects

are robust when the parameters uncertainty is taken into account.

5 Concluding remarks

The vector autoregressive joint modelling of stocks excess returns and financial market

cycle indicator reveals that the latter helps predicting the former. Put in other words,
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the financial market cycle variable Granger-causes the excess returns on equities. Since

the Value-at-Risk is evaluated from the expected excess returns, it is also influenced

by the state of the financial cycle. The gap found between the VaR evaluated at a

one-standard recession and the one measured at a one-standard expansion might be

as high as 13.7% at the one-year horizon. Our results provide support to the claim

that fixed solvency capital requirements may have important procyclical consequences

on the dynamic investment strategies of the financial intermediaries. They also suggest

some predictability in French, German and British equities returns since they point to a

decrease in the VaR as the holding period increases. One limit of the approach retained

here is that it assumes the existence of financial markets cycles without explaining it.

A better understanding of this phenomenon is a challenging question on our research

agenda.
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Figure 4: The data (1970Q4—2008Q4)
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Figure 5: Value-at-Risk(95k%) when taking parameters uncertainty into account
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Table 2: VAR estimation results

France Germany UK

mc,t xFR
e,t mc,t xGE

e,t mc,t xUK
e,t

mc,t−1 0.86 -0.10 0.87 -0.14 0.88 -0.15

[19.77] [-1.75] [20.14] [-2.46] [20.32] [-3.02]

xFR
e,t−1

0.13 0.10

[2.04] [1.20]

xGE
e,t−1

0.09 0.08

[1.35] [0.94]

xUK
e,t−1 0.09 0.15

[1.22] [1.81]

c -0.00 0.57 -0.00 0.57 -0.00 0.73

[-0.50] [0.60] [-0.44] [0.63] [-0.47] [0.91]

R-squared 0.75 0.02 0.75 0.04 0.75 0.07

Log-likelihood 158.67 -586.04 157.50 -581.61 157.34 -560.86

ARCH(1) p-val. 0.42 0.97 0.53 0.62 0.71 0.67

ARCH(4) p-val. 0.71 0.82 0.68 0.35 0.82 0.00

Q(8) p-val. 0.54 0.76 0.49 0.49 0.43 0.98

White F p-val. 0.12 0.51 0.26 0.30 0.23 0.05

Student’s t-statistics in [ ].

Table 3: Percentage of violations for V aR(95%)

1 year 2 years 3 years 4 years 5 years

p = 0.95

Expected % of violations 5.00 9.75 14.26 18.55 22.62

France 5.36 8.33 9.65 12.00 14.58

Germany 8.93 12.04 15.38 17.00 19.79

United Kingdom 3.57 10.18 12.50 17.00 20.83

The expected percentage of violations is given by (1 − pk).
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Table 4: French Value-at-Risk

mid-cycle −σ recession +σ expansion −2σ recession +2σ expansion

Years

1 -0.30611 -0.26366 -0.34802 -0.21627 -0.38715

2 -0.27821 -0.20842 -0.34465 -0.12825 -0.40361

3 -0.23525 -0.14588 -0.31676 -0.04316 -0.38757

4 -0.18424 -0.08179 -0.27707 0.03769 -0.35798

5 -0.12915 -0.01447 -0.23044 0.11707 -0.32040

6 -0.06826 0.05556 -0.17827 0.19847 -0.27678

7 -0.00419 0.13037 -0.12286 0.28538 -0.22799

8 0.06613 0.21033 -0.06252 0.37837 -0.17445

9 0.14165 0.29718 0.00383 0.47426 -0.11604

10 0.22168 0.38941 0.07573 0.57948 -0.05351

11 0.31089 0.48696 0.15308 0.69348 0.01285

12 0.40374 0.59695 0.23891 0.81446 0.08595

13 0.50667 0.71083 0.32555 0.94959 0.16448

14 0.61710 0.83931 0.42417 1.08982 0.24888

15 0.73611 0.97432 0.52691 1.24574 0.33967

16 0.86251 1.11812 0.64009 1.40576 0.43899

17 0.99823 1.27672 0.76231 1.58438 0.54554

18 1.14808 1.44362 0.89059 1.77637 0.65845

19 1.30955 1.62669 1.03072 1.98423 0.78501

20 1.48202 1.82309 1.18410 2.20767 0.91819

The figures correspond to V aRcr
k (1 − 0.95k).
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Table 5: German Value-at-Risk

mid-cycle −σ recession +σ expansion −2σ recession +2σ expansion

Years

1 -0.29207 -0.23066 -0.34868 -0.16462 -0.40115

2 -0.24611 -0.14222 -0.33808 -0.02167 -0.41825

3 -0.19314 -0.05748 -0.30851 0.10229 -0.40919

4 -0.13720 0.02131 -0.27094 0.21111 -0.38483

5 -0.07801 0.10075 -0.22691 0.31276 -0.35308

6 -0.01689 0.18079 -0.17867 0.41239 -0.31450

7 0.04837 0.25979 -0.12703 0.51158 -0.27168

8 0.11951 0.34782 -0.06752 0.61486 -0.22532

9 0.19530 0.43865 -0.00619 0.72564 -0.17449

10 0.27711 0.53573 0.06066 0.84531 -0.11905

11 0.36181 0.64016 0.13052 0.97140 -0.05981

12 0.45246 0.75131 0.20870 1.10635 0.00361

13 0.55259 0.87134 0.29100 1.25071 0.07057

14 0.65708 1.00070 0.37960 1.40681 0.14242

15 0.76896 1.13575 0.47368 1.56679 0.22181

16 0.89146 1.28529 0.57293 1.74680 0.30508

17 1.02215 1.43914 0.68268 1.93804 0.39449

18 1.16318 1.61088 0.79921 2.13922 0.49166

19 1.31077 1.79060 0.92458 2.35119 0.59636

20 1.47416 1.98748 1.05881 2.58889 0.70935

See Table 4.
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Table 6: UK Value-at-Risk

mid-cycle −σ recession +σ expansion −2σ recession +2σ expansion

Years

1 -0.26393 -0.19159 -0.32966 -0.11199 -0.38808

2 -0.21611 -0.09083 -0.32484 0.05368 -0.41935

3 -0.16227 0.00289 -0.29919 0.19996 -0.41445

4 -0.09387 0.10151 -0.25394 0.34063 -0.38706

5 -0.01391 0.20847 -0.19661 0.48367 -0.34478

6 0.06399 0.31175 -0.13645 0.61970 -0.29872

7 0.14686 0.41768 -0.07222 0.75203 -0.24791

8 0.23588 0.52924 -0.00168 0.89329 -0.19284

9 0.32836 0.64478 0.07245 1.03721 -0.13387

10 0.42730 0.76961 0.15138 1.19161 -0.06975

11 0.53274 0.90138 0.23720 1.35587 -0.00141

12 0.64921 1.04536 0.33157 1.53449 0.07404

13 0.77534 1.20068 0.43194 1.72551 0.15514

14 0.90863 1.36979 0.53955 1.93144 0.24405

15 1.05608 1.55054 0.65562 2.15448 0.33848

16 1.21141 1.74176 0.78195 2.39252 0.43832

17 1.37745 1.95057 0.91838 2.65259 0.55024

18 1.55852 2.17239 1.06362 2.92867 0.66654

19 1.75267 2.41701 1.22060 3.23085 0.79454

20 1.96445 2.67799 1.39158 3.55673 0.93367

See Table 4.
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Table 7: French Value-at-Risk (parameters uncertainty)

mid-cycle −σ recession +σ expansion −2σ recession +2σ expansion

Years

1 -0.31401 -0.26420 -0.36311 -0.21421 -0.41226

2 -0.29496 -0.21970 -0.36713 -0.14174 -0.43559

3 -0.26139 -0.16849 -0.34664 -0.06956 -0.42374

4 -0.21966 -0.11405 -0.31457 0.00176 -0.39965

5 -0.17135 -0.05572 -0.27606 0.07556 -0.36659

6 -0.11723 0.00943 -0.23023 0.15235 -0.32606

7 -0.05654 0.08171 -0.17788 0.23523 -0.28092

8 0.01156 0.16121 -0.12046 0.32479 -0.22857

9 0.08697 0.24931 -0.05396 0.42623 -0.17303

10 0.17399 0.34770 0.02045 0.53963 -0.10821

11 0.26710 0.45973 0.10466 0.66519 -0.03676

12 0.37436 0.58228 0.19702 0.80822 0.04542

13 0.49423 0.72032 0.30095 0.96520 0.13596

14 0.62857 0.87314 0.41824 1.14565 0.23775

15 0.77963 1.04771 0.54965 1.34281 0.35251

16 0.94941 1.24139 0.69417 1.56539 0.48175

17 1.13870 1.45816 0.86185 1.81736 0.62844

18 1.35317 1.70487 1.05418 2.10629 0.79257

19 1.59564 1.98619 1.26430 2.42112 0.97765

20 1.86485 2.29806 1.50109 2.77758 1.18346

See Table 4.
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Table 8: German Value-at-Risk (parameters uncertainty)

mid-cycle −σ recession +σ expansion −2σ recession +2σ expansion

Years

1 -0.29977 -0.23167 -0.36362 -0.16053 -0.42315

2 -0.26274 -0.15440 -0.35892 -0.03393 -0.44552

3 -0.21800 -0.08247 -0.33544 0.07218 -0.43661

4 -0.17046 -0.01332 -0.30198 0.16655 -0.41422

5 -0.11635 0.05504 -0.26241 0.25711 -0.38419

6 -0.05958 0.12931 -0.21740 0.34929 -0.34876

7 0.00361 0.20524 -0.16592 0.44571 -0.30590

8 0.07202 0.28898 -0.10989 0.54987 -0.25970

9 0.14941 0.38288 -0.04776 0.66441 -0.20819

10 0.23445 0.48566 0.02089 0.78687 -0.15020

11 0.32968 0.59792 0.09903 0.92424 -0.08483

12 0.43353 0.72439 0.18377 1.07507 -0.01474

13 0.54787 0.85986 0.27803 1.24225 0.06558

14 0.67420 1.01394 0.38083 1.42522 0.15182

15 0.81632 1.18285 0.50018 1.62921 0.25100

16 0.97539 1.37342 0.62949 1.84953 0.35690

17 1.14767 1.57865 0.77359 2.10612 0.47750

18 1.33907 1.81371 0.93346 2.38463 0.60929

19 1.55823 2.07320 1.10871 2.69625 0.75734

20 1.79473 2.36428 1.30868 3.04484 0.92634

See Table 4.
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Table 9: UK Value-at-Risk (parameters uncertainty)

mid-cycle −σ recession +σ expansion −2σ recession +2σ expansion

Years

1 -0.27507 -0.19795 -0.35045 -0.11471 -0.42073

2 -0.23643 -0.10857 -0.34891 0.03384 -0.44917

3 -0.18707 -0.02462 -0.32442 0.16134 -0.44088

4 -0.12445 0.06680 -0.28256 0.28893 -0.41241

5 -0.05186 0.16305 -0.22805 0.41727 -0.37242

6 0.02201 0.25813 -0.17118 0.54460 -0.32894

7 0.10060 0.35919 -0.10853 0.67282 -0.27895

8 0.18895 0.46839 -0.03999 0.81102 -0.22351

9 0.28158 0.58512 0.03536 0.95645 -0.16344

10 0.38536 0.71154 0.11873 1.11696 -0.09661

11 0.49804 0.85473 0.21000 1.29387 -0.02171

12 0.62356 1.00892 0.31188 1.48601 0.06053

13 0.76511 1.18400 0.42699 1.70135 0.15276

14 0.92093 1.37591 0.55388 1.94341 0.25612

15 1.09376 1.58759 0.69140 2.20537 0.36945

16 1.28533 1.82707 0.84786 2.50067 0.49686

17 1.50217 2.09404 1.02386 2.83593 0.63898

18 1.74117 2.38393 1.21926 3.20029 0.79817

19 2.01132 2.71948 1.43810 3.60353 0.97532

20 2.31281 3.09239 1.68384 4.06573 1.17359

See Table 4.
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