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Abstract

The rate of return of a zero-coupon bond with maturity 7" is determined
by our expectations about the mean (+), variance (-) and skewness (+) of
the growth of aggregate consumption between 0 and 7. The shape of the
yield curve is thus determined by how these moments vary with T". We first
examine growth processes in which a higher past economic growth yields a
first-degree dominant shift in the distribution of the future economic growth,
as assumed for example by Vasicek (1977). We show that when the growth
process exhibits such a positive serial dependence, then the yield curve is
decreasing if the representative agent is prudent (u” > 0), because of the
increased risk that it yields for the distant future. A similar definition is
proposed for the concept of second-degree stochastic dependence, as observed
for example in the Cox-Ingersoll-Ross model, with the opposite comparative
static property holding under temperance (u” < 0), because the change in
downside risk (or skweness) that it generates. Finally, using these theoretical
results, we propose two arguments in favor of using a smaller rate to discount
cash-flows with very large maturities, as those associated to global warming
or nuclear waste management.

Keywords: Stochastic dependence, yield curve, far distant future, pru-
dence, temperance, downside risk.
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1 Introduction

How much effort are we ready to make today to improve the future? House-
holds are faced with this question when they plan their savings for retirement,
whereas entrepreneurs have to determine whether to undertake new invest-
ment projects. At the collective level, one needs to determine, for example,
whether to limit the national budget deficit, or whether to invest in the ed-
ucation system. In a recent past, similar questions emerged, but with the
striking innovation of being related to the far-distant future. Exploring the
universe, protecting the biodiversity, limiting the extraction of exhaustible
resources, dealing with nuclear wastes and global warming are a few exam-
ples of policy questions that confront us to our attitude towards improving
the welfare of human beings that will live in hundreds or thousands years in
the future. These valuation questions are all solved by the selection of the
discount rate.

As is well-known, the use of a single rate to discount sure cash-flows at
all maturities implies that costs and benefits occurring, say, in more than
100 years are typically irrelevant for the decision, because of the exponential
nature of discounting. This is why for example the so-called ”Copenhagen
Consensus”! ranked all projects linked to the prevention of global warming
at the lowest priority level based on standard cost-benefit analyses with a
constant discount rate. The problem is that there is a priori no scientific rea-
son to believe that one should discount all maturities at the same rate. The
tradition of using a constant rate in cost-benefit analysis should not be seen
as a dogma, but rather as a useful practical simplification. Various authors
— among whom Weitzman (1998, 2001, 2004) is the most vocal — claimed
that one should opt for discount rates that are decreasing with the maturity
of the cash flows under scrutiny. Weitzman (2004) in particular develops an
argument for selecting a zero discount rate for maturities around 50 years,
the discount rate becoming even negative for longer time horizons. Of course,
adopting such recommendations would massively reallocate our collective in-
vestments towards those benefiting to distant generations, potentially at the
detriment of actions with more immediate benefits such as fighting malaria
and promoting education in developing countries. It is therefore important

Tt is the outcome of a conference held in Copenhagen in May 2004 aimed at ranking
a set of various collective investment projects, including fighting AIDS and malaria in
developing countries, water management, biodiversity, education,....



to have a good understanding of the reasons why we should adopt such de-
creasing discount rates.

Since the seminal contribution of Vasicek (1977), economists have inten-
sively explored how efficient discount rates should vary with the maturity of
the corresponding cash payment. The immense literature on the term struc-
ture of interest rates has produced an important corpus of knowledge about
this question. It is quite unfortunate that researchers discussing this question
in the various forums of environmental economics do not take advantage of
the existence of this vast literature.? There are several reasons for that. First,
most papers on the yield curve are aimed at explaining the observed shape
of that curve, whereas environmental economists have a much more norma-
tive approach. Notice however that the absence of frictions in the standard
models on the term structure implies that the equilibrium interest rates are
also the socially efficient discount rates to be used in cost-benefit analysis.
Second, researchers in finance are usually interested in pricing traded assets,
which implies that their time-horizon is limited by the largest maturity of
existing liquid markets for risk-free assets, which does not exceed 30 years.
Last but not least, this literature is highly complex, and it does usually
not provide intuition to the underlying phenomena. This is well summarized
by Piazzesi (2005): "The quest for understanding what moves bond yields
has produced an enormous literature with its own journals and graduate
courses. Those who want to join the quest are faced with considerable obsta-
cles. The literature has evolved mostly in continuous time, where stochastic
calculus reigns and partial differential equations spit fire. The knights in
this literature are fighting for different goals, which makes it often difficult to
comprehend why the quest is moving in certain directions.” This quest leads
to the (preliminary) conclusion that the shape of the yield curve is governed
by the dynamics of the short term interest rate (and maybe a few other
stochastic factors) that may entails mean reversion together with temporary
and permanent shocks. Because the term structure is obtained by arbitrage
using an exogenously given dynamic process for the price kernel, this rea-
soning is usually not based on individual preferences. It is therefore not an
easy starting block to explain to public decision-makers how much effort our

2See for example the collective book edited by Portney and Weyant (1999) on discount-
ing. See also Arrow et al. (1996), Weitzman (1998, 2001), Newell and Pizer (2003) and
Groom, Koundouri, Panopoulou and Pantelidis (2004).



generation should undertake to improve the welfare of future generations.

The aim of this paper is twofold. First, we exhibit the fundamental
determinants of the shape of the yield curve based on the preferences of the
representative agent and on the stochastic process of aggregate consumption
in the economy. Second, we examine realistic dynamic growth processes that
are relevant to determine the very long discount rates. We consider the
classical Lucas (1978)’s tree economy with an exogenous growth process to
examine these questions.

The efficient interest rate associated to time horizon ¢ is decreasing in
our willingness to save in order to finance consumption at that date, which
itself depends upon our expectations about the growth of our incomes over
[0,t]. Therefore, the term structure of interest rates provides a rich set of
information about these expectations. For example, when consumers expect
an increase in their future incomes, they want to cash this benefit imme-
diately by reducing their saving. This raises the equilibrium interest rate.
This wealth effect relies on the standard assumption that consumers want
to smooth their consumption over time. It explains why the yield curve is
upward sloping when the representative agent expects an accelerating growth
rate in the future (Estrella and Hardouvelis (1991)).

Among the many difficulties to extract testable hypothesis about the
relationship between the term structure and expectations about the future
economic activity, the most important one is due to uncertainty. Since Leland
(1968), we know that uncertainty about future incomes raises the prudent
consumers’ willingness to save. This precautionary effect tends to reduce the
interest rate. This implies for example that the anticipation of a deterministic
reduction in the volatility of growth yields an increasing yield curve (Barsky
(1989)). It is interesting to examine how does the accumulation of risk for
longer time horizons influence the determination of the corresponding interest
rate. Because longer horizons mean larger expected consumption, people
want to save less for these better times. On the contrary, longer horizons also
mean more risk, which implies that consumers want to save more for these
more uncertain times. Which of these wealth and precautionary effects will
dominate the other? If the wealth effect dominates the precautionary effect,
then the yield curve must be increasing.

The simplest case is when the growth of the economy follows a station-
ary random process. In this case, both the expected log consumption and
its variance increases proportionally with the time horizon. It implies that
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the wealth effect and the precautionary effect exactly compensate each other
when the representative agent has a constant relative risk aversion (CRRA).
As is well-known (see for example Mankiw (1981)), CRRA combined with
an i.i.d. consumption growth process implies that the yield curve is com-
pletely flat. In sections 3 and 4 of this paper, we show how the existence of
serial correlations in the growth rate of the economy affects the shape of the
yield curve. We define two types of serial correlations. Positive first-degree
stochastic dependence (FSD) occurs when an increase in the first subperiod
growth rate induces a first-degree stochastic improvement in the conditional
distribution of the growth rate in the second subperiod. Such a positive serial
dependence in the growth of the economy tends to magnify the long-term risk
on consumption relative to the short-term risk. It implies that the prudent
representative agent will want to rebalance her efforts towards the longer
time horizons, thereby tending to reduce long interest rates. This is for-
mally shown in section 3 in a much simpler and more intuitive way than
traditionally done in the existing literature. It is also more general in the
sense that our result only requires that the representative agent be prudent.
FSD dependence is the main feature of the two classical models of the term
structure, namely Vasicek (1977) and Cox, Ingersoll and Ross (1985a,b).

There is positive second-degree stochastic dependence (SSD) in growth
rates if an increase in the first subperiod rate yields an increase in risk in
the conditional distribution of growth in the second subperiod. This tends
to raise the skewness of the distribution of future consumption. Ex ante, it
reduces the expected marginal utility of wealth at that maturity if the fourth
derivative of the utility function is negative, a condition that is satisfied for
CRRA preferences. This tends to reduce the willingness to purchase more
zero-coupon bonds associated to long maturities, thereby raising their rate of
return. This is proved in section 4. Notice that the main feature of the Cox-
Ingersoll-Ross model is to add some SSD dependence in the Vasicek model.
The link of our results to these two classical models are made more explicit
in section H.

In section 6, we examine two specific stochastic processes with positive
FSD dependence that are realistic representations of the uncertainty faced
by Humanity in the very long run. The first stochastic process for aggregate
consumption has a drift that can take two possible values. A switch from
one drift to the other can occur at each period with a very small probability.
This is aimed at modeling the kind of event that we experienced with the

4



industrial revolution at the end of the 18th century, where the drift changed
quite abruptly from the secular 0% per year to 2% per year since then.
Our model formalizes the risk of a switch in the opposite direction — ”The
Limit to Growth” — due for example to the scarcity of natural resources or
to the extinction of scientific progresses. We show that the positive FSD
dependence that this stochastic process yields a strong negative effect on the
rate at which we should discount far-distant cash-flows. In the second model
of long-term uncertainty inspired from Weitzman (2004), we assume that
the drift is unique but unknown. As time goes by, one will use Bayes rule to
update the beliefs about the true value of the drift. This stochastic process
also yields positive FSD dependence — and thus decreasing discount rates —
for the simple reason that a good news in the short term is a good news for
the secular distribution of growth.

2 The term structure

The preferences of the representative agent in the economy are represented
by her utility function u and by her rate of pure preference for the present §.
The utility function v on consumption is assumed to be three times differ-
entiable, increasing and concave. Let ¢; denote consumption at date ¢t. The
equilibrium per period rate of return at date 0 for a zero-coupon bond matur-
ing at date t is denoted r;. To be in equilibrium, investing marginally in such
an asset should leave the expected discounted utility of the representative
agent unchanged. This condition is written as

e B (&) e = (cp), (1)

which is the standard Euler equation for the consumption-saving problem.
On the right-hand side of this equality, u'(co) is the welfare cost of reduc-
ing consumption by one monetary unit, which is invested in the zero-coupon
bond. The left-hand side is the welfare benefit that such investment yields.
Consumption at date ¢ is increased by €™, which yields an increase in ex-
pected utility by Fu'(¢)e™', which must be discounted at rate § to take
account of the delay. The classical consumption-based pricing formula is



obtained by rewriting condition (1) as

(2)

Two factors determine by how much the risk-free rate exceeds the rate of
pure preference for the present d. The first factor is a wealth effect. If we
expect to consume more in the future, i.e., if £¢; > ¢y, the marginal utility of
one more euro in the future is smaller than the marginal utility of one more
euro immediately: u/(E¢;) < u/(co). It implies that —t~!In(u/'(E¢) /u/(co))
is positive. This positive wealth effect is increasing in the expected growth
rate of consumption over the entire period [0,¢] and in the rate at which
marginal utility is decreasing with consumption, which is measured by the
index of relative risk aversion R(c) = —cu”(c)/u/(c). The intuition is that
higher expectations about future incomes reduces the willingness to save,
thereby raising the equilibrium interest rate.

But, except when marginal utility is linear, Eu’(¢;) is not equal to u/'( E¢;),
which introduces a second factor to the determination of interest rates. When
the representative agent is prudent, i.e., when marginal utility is convex, the
uncertainty surrounding future consumption raises the expected marginal
utility: Fu/(¢;) > o' (E¢;). This raises the willingness to save, thereby yield-
ing a reduction of the equilibrium interest rate. This precautionary effect
goes opposite to the wealth effect. It is increasing in the riskiness of future
consumption and in the index of convexity of marginal utility, which is de-
fined as relative prudence P(c) = —cu”(c)/u"(c). ~ We can make these
different factors more explicit by using second-order Taylor approximations
of u/(z) in the above equality. This technique yields

Ee, — ¢

re ~ 0 + R(co) ; ,

- ®
where the three terms in the right-hand side measure respectively the impa-
tience effect, the wealth effect and the precautionary effect. This approxi-
mation is exact for the instantaneous rate rg.

The term structure of interest rate is determined by how these two con-
flicting factors are compounded over time. A more distant future usu-
ally yields a larger expected consumption and a larger uncertainty. The
risk-averse and prudent representative agent’s willingness to purchase zero-
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coupon bonds with that long maturity is reduced by the larger expected con-
sumption, and is increased by the larger uncertainty. Therefore, as suggested
by approximation (3), an increasing (decreasing) yield curve is obtained if the
wealth effect becomes more (less) dominant compared to the precautionary
effect when considering longer time horizons.

To illustrate, let us consider a simple case. Suppose that u(c) = ¢'=7/(1—
), which implies that R(c) = v and P(c¢) = v+ 1 for all ¢. Suppose also
that the logarithm of consumption follows a stationary Brownian motion:?

dInc, = pdt + odz, (4)

where 1 and o are two scalars measuring respectively the mean and standard
deviation of the change in log consumption.

Proposition 1 Suppose that relative risk aversion is a constant v and that
the log of consumption follows a stationary Brownian motion with trend pu
and volatility o. Then, the yield curve is flat with r; = ro = § +yp — 0.5720?
for all t.

Proof: Because u/(c) = ¢77, we have that
Eu'(c)
u/(co)

— Bexp|— (Iné — Incy)]

By assumption, In ¢;—In ¢ is normally distributed with mean pt and variance
o?t. We can thus rewrite the above equation as

BUE) L fexp(reyesy (il e

This can be rewritten as

g~ (0 (0=75)) [ [ () 2

The bracketed term is the integral of the normal density function with mean
pt — yo?t and variance o?t. This equals unity. Thus we obtain that
L' (c)
w'(co)

= exp [—7 (ut — 0.570215)] .

3Using Ito’s Lemma, this is equivalent to assume that dc/c = (1 + 0.502)dt + odz.
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Thus, using equation (2) yields?
re =06+ —057v*0%. B (5)

This formula is equivalent to those obtained by Mankiw (1981), Hansen
and Singleton (1983), Breeden (1986) and Campbell (1986). It shows that
when relative risk aversion is constant(CRRA) and the growth rate of the
economy follows a stationary Brownian motion, a longer time horizon yields
an increase in the wealth effect and an increase in the precautionary effect
that exactly compensate each other, yielding a flat yield curve.

Gollier (2002 a,b) characterized the conditions on preferences that im-
ply a monotone yield curve under the assumption of a stationary Brownian
motion. For example, he shows that increasing relative risk aversion implies
an increasing yield curve if the probability of recession is small enough. In
this paper, we follow a more standard strategy which consists in relaxing the
assumption of a stationary Brownian motion. This is relaxed by assuming
that the mean p and/or the volatility o of the consumption growth process
are path-dependent, i.e., that the growth at time ¢ depends upon the growth
in the periods preceding ¢. In a word, we assume that future growth rates are
predictable. The typical methodology in the literature on the term structure
of interest rates is to assume the following time series model:

dine, = p(s)dt + o.(s)dz,
ds = g(s)dt + os(s)dz.

Both the mean and the volatility of the growth rate of the economy are
affected by a state variable (also called a "factor”) s that itself follows a
potentially non-stationary Brownian motion. The special case of a deter-
ministic process for the state variable (o5 = 0) is easy to treat using the
above integration method. For example, when o.(s) = o, we easily obtain in
the CRRA case that

ry = 0 4+ ym(t) — 0.5v%0?, (6)

4We can reconcile equations (3) and (5) by observing that the growth rate of expected
consumption equals p + 0.50%. This implies that equation (5) can be rewritten as

dE C
Ct

rr=0+R —0.5RPo>.

This proves that approximation (3) is exact in this case.
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where m(t) = ¢t~} f(f p(s(7))dr is the mean change in log consumption in
period [0,¢], and s(7) is the solution of the differential equation s’ = g(s)
with initial condition s(0) = sg. Only the wealth effect is affected by the
deterministic change in the expectation p about the growth rate of the econ-
omy. These changes in expectation explain why the yield curve is usually
not flat for short and medium time-horizons. For example, the expectation
of an accelerating growth implies an increasing yield curve. Observe from (6)
that the unpredictable shocks in changes in log consumption have no effect
on the shape of the yield curve. It only shifts it downwards.

The complexity of the theory on the yield curve comes from the stochastic
component of the motion of the state variable s (og # 0). In this paper, we
isolate two effects of these predictable changes in expectations. Suppose first
that the volatility o. of the growth rate of the economy is constant. When
o. and o4 have the same sign, and when p is increasing in s, the expected
future growth rate of consumption is positively correlated with the short-
term growth rate. More precisely, an increase in the stochastic component
dz; of the short-term growth yields a first-degree stochastic dominant shift
in the future growth rate. In section 3, we examine the effect of this positive
correlation on the shape of the yield curve. Alternatively, suppose that the
expected growth rate p of the economy is state-independent, and that the
volatility of the growth rate is increasing in the state variable. Then, if
o. and o, have the same sign, the volatility of the future growth rate of
the economy is positively correlated with the short-term growth rate. More
precisely, an increase in the growth rate dz; in the short run yields a second-
degree stochastic shift in the future growth rate. We examine the effect of
this type of statistical relations on the shape of the yield curve in section 4.

3 First-degree stochastic dependence

In this section, we consider an arbitrary stochastic process for ¢;. We examine
the effect of positive serial dependence in changes in consumption on the
interest rate associated to maturity 7. To do so, let us split period [0, 7]
into two subperiods [0,¢] and [¢,7]. Consider a random vector (Z,Z2) where
71 and Ty denote the change in consumption respectively in period [0, ¢] and
[t,T]. It implies that consumption at date T equals ¢o+T1+Z2. Let F' denote
the distribution function of (z1,7,), and let F} and F; denote, respectively,



the marginal distributions of Z; and Z,. Let also Fy; be the conditional
distribution of @y : Fy1(x1,22) = Pr[Za < x5 | #1 = x1]. We suppose that
this distribution function exists.

Definition 1 Consider a pair of random variables (T1,72). We say that
there is positive FSD dependence between T1 and Ty if Fop is nonincreasing
in x1 for all xs.

In other words, an increase in x; generates a first-order stochastic dom-
inant shift in the conditional distribution of Z,. In the statistical literature,
this notion is referred to as the ”stochastic increasing positive dependence”,
because Ty is more likely to take on larger value when x; increases (see for
example Joe (1997)). Milgrom (1981) uses this concept to define the notion
of a good news. An example of stochastic process that satisfies the FSD
property is the AR(1) process To = ¢1 + € with a positive ¢.

The long-term interest rate in such an economy equals

1 EUI(CO + fl + fg)

rp=0— T In 7 (c0) . (7)

We want to compare this rate to the one that would prevail in an economy
with the same marginal distributions for x; and 75, but with no serial de-
pendence between them. In the economy without any serial dependence, the
long-term interest rate would equal

1 EU/(CQ + fl + %“12)

rp=0- =l e , (8)

where (71, 7%) is a vector of independent random variables with distribution
Fy and Fy, respectively. Interest rate rs. would be what one would obtain from
the calibrated model by assuming independence and by using the observed
variance of annual changes in consumption as the estimation of Var(Ac).
We want to determine the conditions under which rr is smaller than 7%,
when T, exhibits positive FSD dependence with respect to z;. There is a
simple intuition for why this should be the case. The existence of a positive
dependence in the changes in consumption tends to magnify the long-term
risk compared to short-term risks. This induces the prudent representative
agent to purchase more zero-coupon bonds with a long maturity, thereby
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reducing the equilibrium long-term rate. Comparing (7) and (8) implies that
rr is smaller than rZ. if

EU/(CO —+ 51 + 52) 2 EU’(Co + fl + 512) (9)
The following Lemma is useful to examine this problem.

Lemma 1 Consider a differentiable bivariate function h . The following two
conditions are equivalent:

1. For any pair of random variables (T1,Z2) that satisfies positive first-
order dependence, we have that

Eh(T1,T2) > Eh(T1,75) (10)
2. h is supermodular, i.e., Oh/Oxy is increasing in .

Proof: See the appendix.®

Tchen (1980) showed a closely related result: If condition (10) is satisfied
for all supermodular functions, then F'(xy, z5) < Fi(z1)F(x9) for all (x1, z3),
i.e., (T1,T2) are "positive quadrant dependent”, a concept weaker than FSD
dependence.® Shaked and Shanthikumar (2007) generalize these properties
of ”supermodular orders” to more than two random variables.

Applying this lemma to condition (9) requires using function h(xy, x2) =
u'(co + x1 + x2). It is supermodular if the representative agent is prudent.

Proposition 2 The presence of any positive first-order stochastic depen-
dence in changes in consumption reduces the long-term risk-free rate if and
only if the representative agent is prudent.

This result confirms our intuition: positive FSD dependence in changes in
consumption raises the riskiness of consumption at date 7', without changing
its expected value. Under prudence, this reduces the interest rate associated
to maturity 7'. It tends to generate a downward-sloping yield curve.

®We can also prove that if h is supermodular, then condition (10) is satisfied if and
only if (Z1,T2) exhibits positive FSC.
6See Joe (1997), Theorem 2.3.
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It would have been more fashioned to define 7; and 7 as the (conditional)
changes in log consumption over respectively subperiods [0, ¢] and [t, T'|. This
change the nature of the comparative static exercise because the expectation
of the log consumption is not the same as the log of the expectation of
consumption. Because ¢r = coe® ™2 when z; denotes the change in log
consumption, we can use Lemma 1 to obtain the following alternative result.
Observe that h(zi,z2) = u'(coe™ 2) is supermodular if relative prudence
P(c) = —cu"(c)/u"(c) is larger than unity.

Proposition 3 The presence of any positive first-order stochastic depen-
dence in changes in log consumption reduces the long-term risk-free rate if
and only if relative prudence is larger than unity.

Similarly, the long-term risk-free rate is increased by any negative FSD
dependence if and only if relative prudence is larger than unity. Observe that
when relative risk aversion is constant (u(c) = ¢!=7/(1—7)), relative prudence
is also constant and is equal to relative risk aversion plus one. Thus, CRRA
implies that relative prudence is always larger than unity. When relative risk
aversion is constant, positive (negative) FSD dependence in changes in log
consumption always reduces (raises) the long-term risk-free rate relative to
the benchmark of independent growth rates.

Corollary 1 Suppose that u is a power function and that changes in log
consumption (T1,Ts) have the same marginals and exhibit positive first-order
stochastic dependence. It implies that the yield curve is decreasing: rp < ry.

Proof: It is easy to check that the yield curve is flat (r! = r%) in the
economy with the independent growth rate (7'1,7%). Because r; = r¢ and
rr < r% from Proposition 3, we obtain that 7 < 7 in the economy with the
positively correlated growth rates (z1,7;). W

Notice that positive FSD dependence alone is not sufficient to obtain a de-
creasing yield curve. The above corollary relied on the additional assumption
that relative risk aversion is constant. More generally, going back to Propo-
sition 3, relative prudence must be larger than unity to obtain that positive
FSD influences the long rate downwards. It is easy to exhibit utility func-
tions that are concave but whose relative prudence is not larger than unity.
For example, the simplest departure of CRRA with u(c) = (c+k)'79/(1—g),
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k > 0, implies a relative prudence P(c) = (1+g)c/(c+ k). For such a concave
utility function, relative prudence tends to zero with c. At early stages of
its development, this economy may have an upward sloping yield curve even
if growth rates are positively FSD dependent. This comes from an implicit
wealth increase. Observe that in spite of the fact that the dependence of
(Z1,T2) does not affect the expected cumulative change in log consumption
, the expected cumulative change in the level of consumption is increased
by the presence of positive FSD dependence. This can be checked by using
function h(xy,x2) = €*7*2 in the Lemma. This implicit increase in expected
future incomes reduces the willingness to save for the long term, and it re-
quires an increase in the corresponding interest rate. Therefore, one needs
a sufficiently strong precautionary effect to dominate this opposite wealth
effect. By Proposition 3, it requires that relative prudence be larger than
unity.

4 Second-degree stochastic dependence

A natural extension of this work is to examine economies where the changes
in consumption z; and T, are statistically related according to the positive
second-degree stochastic dependence (SSD) property. This is the case when
an increase in the first period change in consumption raises the risk associ-
ated to the second period change in consumption in the sense of Rothschild
and Stiglitz (1970). In other words, the volatility of economic growth is in-
creased after a boom, and it is reduced after a downturn. An example of
such heteroskedastic process is To = p+ 71, with F¢ = 0 and ¢ independent
of %1.

Definition 2 Consider a pair of random variables (T1,Ts). We say that
there is a positive SSD dependence between Ty and Ty if q(z2 | ©1) = [ Fop (21, y)dy
is non-decreasing in xy for all xo, and if E [Ty | 1] is independent of x;.

We want to determine the effect of such statistical relationship in changes
in consumption over time on the long-term interest rate. As in the previous
section, we compare an economy (71, Z2) with positive SSD dependence with
another one (7, 75) in which changes in consumption are serially indepen-
dent with the same marginals. The following Lemma is helpful to solve this
problem.
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Lemma 2 Consider a twice differentiable bivariate function h . The follow-
ing two conditions are equivalent:

1. For any pair of random variables (T1,Ts) that satisfies positive second-
order dependence, we have that

Eh(z1,T) > Eh(T1,T5) (11)

2. —0h/0xy is supermodular, i.e., if 0*h/0z% is non-increasing in .

Proof: See the appendix.

Notice that if we apply this lemma to function h(xy, z2) = v(x1 + x3) for
any function v with a convex first derivative, we obtain the result that, under
positive SSD, T'; + 5 is a downside reduction in risk with respect to Z; + 7%,
as defined by Geiss, Menezes and Tressler (1980). It implies that these two
sums have the same mean and the same variance, but the first has a larger
skewness than the second. This is not a surprise since a downside reduction
in risk is obtained by transferring zero-mean lotteries from low wealth states
to larger wealth levels, as explained by Eeckhoudt, Gollier and Schneider
(1995).

Applying this to the term structures given by (7) and (8) with A(xq, x2) =
u'(co + o1 + x2), we obtain the following Proposition.

Proposition 4 The presence of any positive second-degree stochastic depen-
dence in changes in consumption raises the long-term risk-free rate if and
only if the third derivative of the utility function is non-increasing.

Observe that condition ©”” < 0 — which is sometimes referred to as ”tem-

perance” — is quite natural. It is necessary for the intuitive property that
absolute prudence —u”’ /u” is decreasing in wealth, as explained by Kimball
(1990). Moreover, all CRRA functions satisfy this condition. There is a
simple intuition for why a positive SSD in Ac should raise the equilibrium
long-term rate. Indeed, a positive SSD implies an increase in skewness of
¢r = co+21+Z2. When " is negative, the increased skewness in ¢ reduces
Eu/(¢r), which yields a reduction in the demand for the zero-coupon bond
which matures at 7. This raises its equilibrium rate of return. The assump-
tion that the fourth derivative of the utility function is negative is compatible
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with decreasing prudence (Kimball (1990)), and with risk vulnerability (Gol-
lier and Pratt (1996)), two very intuitive behavioral assumptions.

As in the previous section, we could have defined z; and Z, as the
changes in log consumption. We should then use Lemma 2 with h(xq,xs) =
u'(coe®™ ). This yields the following result.

Proposition 5 Suppose that u is four times differentiable. The presence of
any positive second-order stochastic dependence in changes in log consump-
tion raises the long-term risk-free rate if and only if f(c) = u”(c)+3cu™(c) +
Au" (c) is uniformly negative.

When relative risk aversion is constant, f(c) equals —y3c™7~! which is
uniformly negative. This implies that a positive SSD dependence in Alnc
always raises the long-term interest rate for that family of utility functions.
This tends to generate an upward-sloping yield curve. The proof of the
following corollary parallels the one of Corollary 1 and is therefore skipped.

Corollary 2 Suppose that u is a power function and that changes in log
consumption (T1,Z2) have the same marginals and exhibit positive second-
order stochastic dependence. It implies that the yield curve is increasing:
rT 2 T

Notice that condition f > 0 in Proposition 5 adds the two terms u” and
3cu” to condition u”” < 0 in Proposition 4. The first additional term is
due to the fact that making changes in log consumption serially independent
raises the expected consumption at 7. This reinforces the initial reason for
a longer long-term rate. Also, it yields an increase in the second moment of
¢r. Under prudence, this tends to reduce the long-term rate. This explains
the opposite term 3cu’” > 0 in the definition of function f. As said above,

the two negative terms must always dominate this positive term in the case
of CRRA.

5 Relations with the existing literature on
the term structure

Our aim in this section is not to provide a survey of the enormous existing
literature on the term structure of interest rates. Rather, we want here to
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illustrate our results by comparing them to those of the two most famous
time series models used in this literature: Vasicek (1977) and Cox, Ingersoll
and Ross (1985a,b). In most existing models of the term structure, the state
variable is the instantaneous interest rate ry. For example, in the model
of Vasicek (1977), the time series model for the stochastic discount factor
A(t) = e/ (¢;) /1! (co) takes the following form:

dA
A
dro = ¢(T —ro)dt + o,.dz.

= —rodt — opdz

The term structure is then obtained by rewriting the equilibrium condition
(1) as r; = —t~'ln FA;. Parameter o, is the conditional volatility of the
instantaneous interest rate. Parameter ¢ controls mean reversion: if ¢ = 0,
the instantaneous risk-free rate 1y exhibits no tendency to return to any
specific value. When ¢ > 0, the instantaneous rate r( is expected to return
to its mean T at rate ¢. With a typical value of ¢ = 0.3 year~!,7 this yields
a half-life time of 2.3 years for a shock on the instantaneous interest rate.
Assuming that u/(c) = ¢, this model can be rewritten as®

_ 2

ro=0+0504 ), Ony, (12)
Y Y

dro = ¢ —ro)dt + o,dz.

dlnec =

Campbell (1986) examines a more general (discrete) version of this model
in which the first difference of the log endowment follows a univariate, sta-
tionary stochastic process with a constant drift. We recognize in equation
(12) various elements affecting the yield curve. First, we observe that the
conditional volatility of the growth rate of consumption is a constant o, /7.
This excludes the existence of SSD dependence. Second, when ¢ # 0, there
is a deterministic component in the expectations about the future growth of

"For example, Backus, Foresi and Telmer (1998) consider ¢ = 0.024 month~1.
8By Ito’s Lemma, the reader can check that

A
—6dt —ydlnc=dInA = dx —0.50%dt.
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the economy. When the current level of rg is below 7, one anticipates an ac-
celerating economic growth, which makes the yield curve increasing for short
and medium maturities. In fact, when there is no serial dependence (o, = 0),
using equation (6) yields

1—e 9
ot

The mean yield curve, which is obtained by taking ro = 7, is completely
flat in that case. Thus, a non-zero slope to the mean yield curve can be
obtained only by introducing some permanency to shocks on Inc. Indeed,
when o, # 0 and has the same sign as o, there is positive FSD dependence
in the time series of Alnc. As claimed by Proposition 3, this tends to
reduce the long-term interest rates, thereby yielding a reduction in the slope
of the yield curve. This is confirmed by the analytical solution obtained
by Vasicek (1977) which adds a third term v in the right-hand side of
(13), with v; being negative and decreasing in ¢ when 0,0, is positive.® In
order to explain the upward-sloping mean yield curve, as documented for
example by Backus, Foresi and Telmer (1998), one needs to have negative
FSD dependences in Alnec. Assuming without loss of generality that o, is
positive, this requires that o,/ be sufficiently negative. This sheds light on
why ”a little experimentation tells us that o, governs the average slope of
the yield curve, with negative values required to produce an upward slope
we observe in the data” (Backus, Foresi and Telmer (1998)).

The Cox-Ingersol-Ross (CIR) model adds a square root terms in the
volatility, which makes it time-varying:

(13)

Te =T+ (ro —T)

_ 2
dlnc = = 6+0'50Adt+01\ﬁdz (14)

dr = ¢(F —r)dt + o.\/rdz.

This implies that a positive shock on the state variable r increases both the
short term expected growth of the log consumption and its future volatility.

9Vasicek (1977) obtained

2 . 1 — ¢t 2 (1_ —pt\2
Ut_[ar UO’A:||: e 1]+&( e )

2¢2 + 1) ot 4¢3 t
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This yields a positive SSD dependence of Alnc. This captures the fact that
higher interest rates seem to be more volatile. As claimed in Proposition 5,
this positive SSD in Alnc generates an unambiguous increase in the long-
term rate compared to what is obtained in Vasicek’s model. However, as
explained for example by Backus, Foresi and Telmer (1998), the sophistica-
tion introduced in the CIR model does not change the shape of the yield
curve markedly.

We hereafter focus on quantifying the effect of FSD dependences. What
do we know about the time series of changes in log consumption? Following
Cochrane (1988) and Cogley (1990), let us define the variance ratio as

t"War(In¢, — Incy)

Var(lnc, —Inco)

V() =

The variance ratio associated to time horizon ¢ equals the variance of the
change in log consumption at horizon ¢ divided by ¢ times the variance of
one year changes in log consumption. V'(¢) provides a relative measure of the
uncertainty associated to In¢; | ¢o. In the case of serially independent Alne,
this variance ratio is uniformly equal to unity. V' > 1 indicates a positive FSD
dependence in Alnc, whereas V' < 1 indicates a negative FSD dependence.
Cochrane (1988) estimated V' (¢) for ¢t = 1, ..., 30 by using data on the log real
per capita GNP in the United States, 1869-1986. Figure 1 summarizes his
estimates. The per period risk attached to time horizons less than 3 years
is increasing. This comes from the positive serial dependence of growth at
high frequency. On the contrary, V' is decreasing in ¢ for time horizons
longer than 3 years. It tends to roughly one-third. Long horizons entail
only one-third per period risk than short horizons, when risk is measured
by the variance of log consumption. This means that shocks to U.S. GNP
are mostly temporary. Thus, in the U.S. context, Alnc exhibits negative
FSD dependences for long maturities. According to Proposition 3, assuming
CRRA, this should generate an upward-sloped unconditional yield curve.

Taking equation (5) as an approximation because ¢r | ¢ is generally not
lognormal, we can use Cochrane’s V' ratio to obtain the following formula for
the yield curve:

7y =6 +yp — 0.5v202V (1), (15)

where 0 = y/Varln¢; | ¢g is estimated to be 6.1% per year by Cochrane. Let
us fix the expected growth rate of the economy to u = 1.8% per year, which is
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Figure 1: The variance ratio for the log real per capita GNP, 1869-1986.
(Source: Cochrane (1988)).

the average growth rate of real per capita consumption in the United States
over the period 1889-1978 (Kocherlakota (1996)). In Figure 2, we draw the
yield curve 7, — 0 computed from equation (15) for four different degrees of
relative risk aversion: v = 1,2,4 and 6. The upward-sloping shape of the
average yield curve is familiar. Using U.S. monthly data from January 1952
to February 1991, Backus, Foresi and Telmer (1998) estimated the mean 1-
month yield to be 5.314%, going up to 6.693% for the yield corresponding to
a 10-year maturity.

Cogley (1990) showed that the pattern of the variance ratio exhibits much
differences across countries. In fact, the evidence indicates that the relative
stability of long-term growth is unique to the United States. Using annual
real per capita GDP, 1871-1985, he computed the variance ratio V' (20) for
a twenty years horizon. He found 0.77 for Canada, which means that, as
in the U.S. but at a smaller degree, this country should have a mean 20-
year maturity yield that is larger than the short-term yield. He also found
0.97 for Sweden, 1.03 for the United Kingdom, and 1.09 for Denmark. The
yield curve should be almost flat in these countries. But he also obtained
1.4 for Australia, 1.84 for France and 2.02 for Italy. In these countries,
the per-period growth risk is increasing with time horizon. It implies that
the long-term interest rate should be smaller than the short-term one. For
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Figure 2: The average yield curve using Cochrane’s ratio.

France, using Maddison (1991), we estimated u = 1.97% and o = 8.05%. For
~v = 2, it makes a risk-free rate r; equaling ¢ + 2.66% for the short term, and
§ + 1.58% for the long run. For v = 4, it generates ¢ + 2.76% and ¢ — 1.54%
respectively for the short term and for the long term.

6 What about far-distant maturities?

As explained in the introduction, our aim is to determine whether the dis-
count rates that we should use for very long maturities (in the hundreds and
thousands years) are smaller than the discount rates used for the more stan-
dard maturities considered in finance and that can be observed on financial
markets. Whereas most of the existing literature provides a positive analysis
of the term structure, our aim in this section is more normative. As ex-
plained earlier in this paper, the evidence that there is some mean-reversion
in consumption growth with a half-life of 2.3 years is important to explain
the shape of the yield curve observed on financial markets. It is of course ir-
relevant to determine the rate that we should use to discount the cash-flows
associated with the consequences of, say, global warming or nuclear wastes
in 200 years. In this section, we show how the results presented in sections
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3 and 4 are useful to make recommendations for such long time horizons.

We examine two possible dynamic processes governing the long-term
growth of the economy. The first one involves Poisson jumps, whereas the
other one exhibits some parameter uncertainty.

6.1 Two-state jumps in the growth of consumption

We reproduced in Table 1 the estimation by DeLong (2004) of the worldwide
GDP per capita over the last 7 millennia. A striking feature of the economic
growth that we observed over this essential period of homo sapiens is the
jump in the average growth rate that has been experienced at the end of the
eighteenth century. The debate on what Society should do for the future is
much influenced by this fact, and by the idea that in the future, economic
growth could go back to its secular zero level. The arguments for and against
the existence of such risk are based on the way we interpret what happened
at the end of the eighteenth century. Models abound that rely on human
capital, availability of natural resources, specialization of tasks,.... We will
not go into this controversy. As earlier in this paper, the economic growth
process will not be endogenized.

Year | GDP per capita | Annualized growth rate
-5000 130
-1000 160 0.005 %
1 135 -0.017 %
1000 165 0.020 %
1500 175 0.012 %
1800 250 0.119 %
1900 850 1.224 %
1950 2030 1.741 %
1975 4640 3.307 %
2000 8175 2.265 %

Table 1: Worldwide GDP per capita (in year-2000 international dollars)
and annualized growth rate (in %). Source: DeLong (2004)

We assume that the economy can be in one of two observable states. In
the low-growth state, the drift of log consumption is p; and its volatility is
0. In the high-growth state, the drift of log consumption is pus > p;, but
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the volatility remains the same. The economy switches from one state to
the other each time a Poisson event occurs. In discrete time, the model is
written as

Inciy = Ine +py + o0&

Hi+1 = (,ut;]- _W;/l’:‘/?ﬂ-)v

where p} is pg if pp = py, otherwise py = py. We assume that &; is standard
normal with no serial dependency. When the drift is p; (resp. po) in period
t, there is a probability 7 that it will switch to drift ps (resp. p;) in the
next period. We suppose that the probability of switching is very small,
which implies that there is a lot of persistence in shocks. Of course, this
yields FSD dependence in growth rates. There is positive FSD dependence
as soon as 7 is less than 0.5. Thus, applying Proposition 3 implies that the far-
distant discount rate is smaller than in the equivalent economy with a serially
independent growth process. In Figure 3, we describe the yield curve in the
following economy: In the high-growth state, the drift of log consumption
is uy = 2% per year, whereas it is 1 = 0% in the low-growth state. The
critical parameter is the switching probability m per year. We assume that
the switching probability 7 per year is 1%. Relative risk aversion is assumed
to be constant and equal to v = 2. We consider a rate 9 of pure preference for
the present and a conditional volatility o of log consumption such that § —
0.57v%02% = 0.19 We assume that the economy is currently in the high-growth
state. Figure 3 also describes the yield curve in the equivalent economy
with a serially independent growth process. The details of the computational
method generating these two yield curves are given in the appendix. Whereas
the discount rate is 4% in the ”short” term, it goes down to 1.03% for cash-
flows with a 500-year maturity.

6.2 A model with parameter uncertainty

As invoked in the so-called Peso-problem, the absence of sufficiently large
data to estimate the long-term growth process of the economy implies that
the parameters controlling the growth process are uncertain and subject to
learning in the future. Weitzman (2004) shows that, under CRRA and geo-
metric Brownian motion, the uncertainty surrounding the true drift of log

10 Ag usual, considering other values for § and o would just shift the yield curve vertically.
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growth

Figure 3: The yield curve with a two-state Poisson switch process for the
growth of log consumption, in the high-growth state.
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consumption justifies selecting a smaller rate to discount distant cash-flows.
In this section, we explain this phenomenon and we provide a more gen-
eral model than in Weitzman (2004). The intuition for why the uncertainty
surrounding the drift of the growth process justifies selecting a smaller long
discount rate is immediate from Proposition 2. Indeed, the observation of
a high growth in the short run induces the representative agent to revise
her expectations about the distribution of growth upwards. Thus, Bayesian
learning generates positive FSD dependence in the perceived growth process.
This magnifies the long-term risk, thereby inducing the prudent representa-
tive agent to make more effort for the distant future. As shown by Proposition
2, this result requires no other restriction on preferences than prudence.

We suppose that the growth process is stationary. Let z(#) denote the per-
period change in log consumption, conditional to parameter 6. The current
prior beliefs of the representative agent are described by the distribution of
random variable 6. Under CRRA preferences, the current yield curve takes
the following form:!*

1 ~
=209 — i In Ea(0), (16)

where function « is defined as
a(f) = Ee 7O, (17)

Using Jensen’s inequality, we directly get the following result, which is related
to Proposition 3.

Proposition 6 Suppose that the representative agent has CRRA preferences,
and that the process of log consumption is stationary with an unknown pa-
rameter 0. Under such circumstances, the socially efficient discount rate 1y
18 non-increasing with time horizon t. It tends to the smallest possible rate
ming [0 — Ina(0)] when t tends to infinity.

Proof: Observe first that function g(x) = xInz is convex. Then, using
Jensen’s inequality, we have that
~ :| 87} ~

2F [awy = [Ea(é)t] [m Ea(g)t} "y [a(e)tlna@)t

HTn the economy with serial independence, we just have 7, = § — In Ea/(6).
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is nonpositive. Thus, 7; is non-increasing in t. Moreover, as is well-known,

1/t
when ¢ tends to infinity, [Ea(@)t} tends to maxg (), which implies that

r tends to § — Inmaxy (6).1

Notice that r; is strictly decreasing in ¢ as soon as there exists two values
of the parameter,  and 6’ such that «(6) # «(6’). This result and its proof is
reminiscent — but is conceptually different — of a recommendation in Weitz-
man (1998) for why ”the far-distant future should be discounted at its lowest
possible rate”. Notice also that the above result does not require any condi-
tion on the distribution of changes in log consumption z(#), or on the prior
distribution of parameter §. Weitzman (2004) assumes that Z(0) is normal
with a known volatility o, which implies that a(f) = exp(—yu(6) +0.5720?).
It implies in turn that the discount rate tends to d— 0.5v20% + ~ ming ().
Because he also assumes that ,u(g) is normally distributed, the discount rate
goes to minus infinity for large maturities under this specification!!?

More realistic specifications of the per-period growth process and/or of
the prior beliefs are thus welcomed. Equations (16) and (17) provide this
simple and flexible framework. Consider for example the following numerical
illustration. The relative risk aversion of the representative agent equals
~ = 2. The change in log consumption is normal with conditional standard
deviation o (0)=6.1%, whereas we assume that 6 — 0.572¢6% = 0. The drift z
is unknown, but it is either 3% or 0%. The prior belief is that there is a 2/3
probability that the true drift is 3%, yielding an expected drift of 2%. If it
would be 3% for sure, the yield curve would be flat at 6%, whereas it would
be equal to 0% in the low-growth scenario. In Figure 4, we draw the yield
curve given the current parameter uncertainty. The learning process induces
Society to use today a 0.22% rate per year to discount cash-flows realized in
500 years, whereas a discount rate of 4.0% per year is used for immediate
benefits and costs.

7 Conclusion

A correct assessment of how much Society should invest for its own future is
central to economic analysis. Many of us are now cooperating with various

121f 14(0) is normally distributed with mean p and variance o, we obtain that 7, =
§ 4+ vu — 0.5v%(0? + tod) which decreases linearly with the time horizon.

25



re

100 200 300 400 500

Figure 4: The yield curve with parameter uncertainty.

organizations to analyze environmental projects whose costs and benefits are
spread over hundreds of years, in particular those linked to global warming
and nuclear waste disposals. We know that the most important parameter
when using cost-benefit analysis for such long-lasting projects is by far the
discount rate. We as a profession have not been very good in proposing
an agreed-upon discount rate for the long term. Weitzman (2001) asked to
more than 2000 professional Ph.D.-level economists about their own recom-
mendation for the discount rate to be used for far distant real cash-flows.
He reported a large disagreement on this matter. Moreover, he obtained a
sample mean at around 4% per year, which is quite larger than the secular
post-industrial-revolution real short-term interest rate of 1% (Kocherlakota
(1996)). Economists seem to favor an upward-sloping discount yield curve.
The main message of the paper is that the shape of the term structure
of discount rates depends essentially on our view about how the uncertainty
on future aggregate consumption evolves with the time horizon. If this un-
certainty increases at a rate larger than what would be obtained by a pure
random walk for the per-period growth rate, the notion of prudence justifies
using a downward-sloping term structure. This is the case when per-period
growth rates exhibit positive first-degree stochastic dependence, as is the
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case with persistent shocks to growth rates, or when the drift of aggregate
consumption is unknown. Our calibrations induce us to recommend using
an average yearly discount rate of 4% for short-term cash-flows, and a yearly
discount rate between 1% and 2% for time horizons exceeding 400 years.
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Proof of Lemma 1

Define function K as: K(x1,x2) = Fou(w,v2) — Fa(xa), where Fy; is
the conditional distribution of T, and F3 is its marginal distribution. For
2 =1, we need to prove that

X = Eh(gl,%g) Eh Il, // $1,£U2 Il,xg) — F1($1)F2($2)]

is positive. For any given x, integration by parts yields

/ h(wr, 22)d [F (21, 2) — Fi(21) Fo(a)] = — / ONELT2) e oV dad Fy ().

aZEQ
(18)
It implies that

X:/U_%;;””K(xl,@)dﬂ(m)] s,

or equivalently,
X = / [ il xl’xz)K(xl,xg)} dary. (19)

Observe now that for any xs, —0h/Ozy is decreasing in x; because h is
supermodular. Moreover, K is decreasing in x; for all x5 by definition of
positive FSD. Therefore for any x», the covariance rule'® implies that

8h(x1, ZEQ)
E [ (91}2

ah(fl, ZEQ)

kw520

] E[K (31, 12)] = 0.

Since the integrand in (19) is positive for all xs, so is the integral X. This
proves that 2 = 1.

For 1 = 2, suppose by contradiction that —0h/Jdzy be increasing in
x1 in a neighborhood A of some (7;,72). Using a pair of random variables
satisfying positive FSD whose support is in A would generate X < 0, a
contradiction.

BEf(2)g(z) > Ef(Z)Eg(%) for all ¥ if f'(x)g'(x) is nonnegative for all x. See for
example Gollier (2001, section 6.4) for a formal proof.
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Proof of Lemma 2

We limit the proof to sufficiency. Let k(z1,z2) denote [** K(z1,y)dy.
Integrating by parts the integral in the right-hand side of equation (18) yields

Oh(x1, _ O?h(zq,
/h(ml,xg)dK(xl,xg) = ——(5; 72) yhm k(xl,y)—l—/ —g(; x2)]€(l‘1,$2)d$2
2 —o0 2
(20)

for all z;. By construction, we have that

yhjglo k(x1,y) = / (Fap(z1,y) — Fa(y)) dy = E T2 | 2] — E[25] =0
since the expectation of 5 is assumed to be independent of ;. Thus we can
use (20) to write

82h(§1, 1’2)

ax% k(%l, .TQ) d.fUQ.

X = Eh(G, 5) — Eh(F,7) = /E l

Positive SSD means that k is increasing in ; for all x. Because 92h/0x3 is
decreasing in x; by assumption, the covariance rule applied for each possible
To implies that

X < /E [%} E k(G 22)] da.

Because Ek(zy,x2) is zero for all x5 by construction, we obtain that X is
nonpositive.ll
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Computational method used to draw Figure 3

We use the iterative method presented for example by Backus, Foresi and
Telmer (1998) to compute the term structure in the two-state economy with
Poisson switches. Let b denote the price at date 7 of a zero-coupon bond with
maturity t. The CRRA representative agent should be indifferent to increase
her demand for such bond, yielding the following equilibrium condition:

b = Fe (ﬁ) e (21)
T - T4+1°

Cr

Applying this condition for ¢ = 1 and observing that bY,, = 1 yields
1 Lo
ri=—1Inb :5—57 o+ v,

with bt = b'(p,). Tterating (21) forward generates the following formula:

fiw) =0
S ) = LS (1 — m)e 10t 00) | e+
Y
Inb* = —t(0 —0.57%0%) —y(p+ fi(p))
and, finally,

1 1 t
Ty = —glnbt =0— 572024—7%“’@.

The analysis of the economy with no serial dependency is organized as follows.
Let y; be distributed as the change in log consumption in period ¢ conditional
to a high-growth state at date 0. Thus, conditional to u(t = 0) = us,
(Y1, Y2, ...) is an independent process. It happens that y; is distributed as
(2, 1 —y; pu1, m¢) + 0€ where 7, is the probability of a odd number of Poisson
events between 0 and ¢. The pricing formula in the high-growth state is then

1 17~ 1 1
ry=20— n lnEHyZﬂ =§— 57202 -~ Zln [(1 —m)e e 4 7-‘-1,6*’7#1} _
=1 i=1

An equivalent pricing formula is easily obtained for the low-growth state.
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