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Abstract

Encompassing tests of a model M0 are based upon the notion that M0

ought to be able to account for results derived upon alternative models.
Within a Bayesian framework, posterior distributions obtained under an al-
ternative model M1 are explicitely compared with posterior distributions
obtained within M0 by means of a suitable "transition" distribution for the
parameters of M1 conditionnally on those of M0.
In our paper, we propose a generic Bayesian procedure for testing the

capabilities of a parametric model M0 to encompass a wide range of infer-
ential results derived under a nonparametric alternative M1. By combining
the use of Dirichlet prior measures on M1 with that of Monte Carlo simu-
lation techniques, we develop exact operational and highly °exible Bayesian
encompassing test procedures of M0 relative to M1. An application to an
exponential lifetime model M0 illustrates the performance of our procedure.
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1 Introduction

The objective of our paper is that of proposing a generic Bayesian procedure
for testing the validity of a parametric model M0. Speci¯cally, we rely upon
Monte Carlo simulation techniques to construct an exact Bayesian test of
whether or not M0 encompasses a general nonparametric model M1.
As discussed by Florens et al (1996) Bayesian encompassing corresponds

to a concept of su±ciency among models, dual to the traditional concept of
su±ciency (among statistics) as de¯ned by Blackwell (1951,1953) and Lecam
(1964) and obtained from the latter by interchanging parameters and statis-
tics. The model M0 encompasses (Bayesian) inference results derived on
M1 if the latter can be reproduced within M0 without any additional data
treatment beyond that already necessitated by the analyis of M0 itself. In
other words, M1 then becomes "inferentially redundant" relatice to M0. In
a wide range of scienti¯c disciplines the capability of one's current model (or
theory) to encompasses ¯ndings derived under other models is perceived to
be a critical component of its validation.
Conversely, failure to encompass results obtained onM1 constitutes prima

facie evidence of "de¯ciencies" of M0 which, if deemed relevant to one's
objectives, would indicate a need for further re¯nements of M0. It does
not, however, warrant the conclusion that M1 is to be preferred to M0 since
the requirement that M0 ought to encompass rival models is by no means
conditional upon the validity of the latter. Signi¯cant advances in sciences
have resulted from the need to account for "anomalous" ¯ndings derived
under invalid models and/or theories.
This latter comment illustrates a fundamental di®erence between an en-

compassing test, whereby the model M1 is essentially instrumental in the
construction of the test but generally does not constitute an acceptable al-
ternative to M0 itself, and a Bayesian model selection procedure whereby
one chooses between two alternative models M0 and M1 which are generally
treated symmetrically relative to one another (notwithstanding the obvious
fact that loss function and prior probability assessments can be used to favor
one model relative to the other). Actually, as we shall discuss further later,
encompassing tests are based upon a comparison between posterior densities
while model selection depends upon a ratio of predictive densities (Bayes
factor, see e.g. Florens and Mouchart (1993)) This di®erence will turn out
to be highly signi¯cant in the context discussed hereafter, whereby M0 is a
parametric model and M1 a nonparameteric one - a situation which is aimed
at providing a °exible and yet quite stringent test of the validity of M0 by
examining its capability to encompass a potentially broad range of results
derived under a general nonparametric speci¯cation for M1. In particular,
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the use of a natural conjugate prior Dirichlet process for M1 - which assigns
probability one to discrete measure but is, nevertheless, dense within a set
of continuous measures - has critical and somewhat "extreme" implications
for model selection while it produces a fully operational fundamentally well-
behaved and highly °exible encompassing test procedure.
In particular, °exibility originates from the fact that our encompassing

test procedure allows its user to select speci¯c functionals of interest (mo-
ment, tail probabilities,...) whose posterior densities on M1 have to be en-
compassed by M0, i.e. to decide which ¯ndings associated with M1 are
particularly relevant to the proprietor of M0 in any given (decisional) appli-
cation. In constrast, Bayesian model selection procedures are based upon
a single Bayes factor and often provide limited insights as to which speci¯c
aspects of the competing models drove the ¯nal decision.
Finally, we wish to mention here that the encompassing tests we pro-

pose prolong a long tradition in sampling statistics, initiated at the turn of
the century by K. Pearson with chi-squared test statistics, extended in the
thirties with the Kolmogorov-Smirnov and Cramer von Mises test statistics
and broadly labeled today as "goodness of ¯t" tests. Recent extensions are
discussed e.g. by Revesz (1984). Additional related contributions are specif-
ically discussed in the sequel of our paper after the relevant concepts and
notation have been introduced.
Our paper is organized as follows : The models and notation are intro-

duced in section 2; Posterior odds are derived in section 3; Encompassing is
discussed in section 4 (principle in section 4.1. and nonparametric version
in section 4.2, respectively); an application to the exponential distribution is
presented in section 5 and section 6 concludes.

2 Models and notation

The observation x = (x1; :::; xn) is an i.i.d. sample of a random variable
X with support S in IRp. Let M0 denote the parametric model to be
(in)validated and M1 a nonparametric model to be encompassed. On M0

all probability are assumed to be absolutely continuous with respect to an
appropriate ¾-¯nite dominating measure and are represented by the corre-
sponding density functions. OnM1 we are dealing with probability measures
on a sampling distribution F . In order to unify the presentation of our results
and at the cost of an abuse of notation, we shall equally represent such prob-
abilities by a "density function" on F . Densities on a (¯nite-dimensional)
parameter µ, on a sample x and on a distribution F are denoted ¹0, p and
º, respectively. In addition, p and º are subscripted with the index of the
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relevant model. Conditioning is represented in the usual way. The symbol
» reads as "is distributed as".
The sampling distribution of X on M0 is denoted by F

µ with parameter
µ in £ ½ IRk and with density f(xjµ). The sampling density of the sample x
is then given by

p0(xjµ) =
nY

i=1

f(xijµ): (1)

Let ¹0(µ); p0(x) and ¹0(µjx) denote the prior density of µ, the predictive
density of x and the posterior density of µ, respectively. Following Bayes
theorem, we have

¹0(µ):p0(xjµ) = ¹0(µjx):p0(x): (2)

The sampling distribution of X on M1 is denoted by F . Following Fer-
guson (1973), a natural conjugate prior distribution for F is provided by a
Dirichlet measure which is parametrized by a real positive number na and a
probability Fa on IR

p, say

F » Di(naFa): (3)

In view of its importance for the sequel of the discussion, we brie°y discuss
here the interpretation of the Dirichlet measure (3). Consider ¯rst a ¯xed
partition B = (B1; :::; BR) of the support S of F and let ¼0 = (¼1; :::; ¼R),
with ¼r = F (Br), denote the corresponding vector of sampling probabilities.
A su±cient statistic for the sample x is given by the vector f 0 = (f1; :::fR),
where fr denotes the proportion of observations in Br. The random variable
nf has multinomial distribution with parameter(s) ¼ (and n). Its density
function is given by

g(nf j¼) = n!
RY

r=1

(¼r)
nfr

(nfr)!
: (4)

A natural conjugate distribution for ¼ is given by a Dirichlet distribution
whose support is the simplex

SR = f¼; ¼r > 0;
RX

r=1

¼r = 1g (5)
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of dimension R¡ 1, with parameters na > 0 and fa 2 SR and whose density
function is given by

º1(¼) = ¡(na)
RY

r=1

(¼r)
nafar¡1

¡(nafa;r)
: (6)

The M1-posterior distribution of ¼ is itself a Dirichlet distribution with
parameters

np = na + n; npfp = nafa + nf: (7)

The Dirichlet prior measure in (3) is then de¯ned as one which assigns
a Dirichlet distribution to the random vector F (B) = (F (B1); :::; F (BR))
associated with any arbitrary partition B of the support S of ¼. That is to
say that the Dirichlet prior measure in (3) assigns the following density to
F (B) :

º1(F (B)) = ¡(na)
RY

r=1

[F (Br)]
naFa(Br)¡1

¡(naFa(Br))
(8)

with support SR. It follows from our discussion that the posterior distribution
of F on M1, is a Dirichlet measure with parameters

np = na + n; npFp = naFa + nFn; (9)

where Fn is the empirical distribution of the sample

Fn =
1

n

nX

i=1

±xi; (10)

and ±xi denotes the Dirac measure at xi which is such that ±xi(A) = 1IA(xi)
for A ½ IRp. Following Ferguson (1973), the predictive distribution p1(x)
on M1 can be represented in a variety of ways. The following sequential
representation proves to be the most operational for our analysis

x1 » Fa

xi+1jx1; :::; xi » na
na+i

Fa +
i

na+i
Fi; for i : 1 ! n¡ 1:

(11)
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Within an encompassing framework it may be desirable to achieve some
degree of "coherency" between the prior distributions of the two models.
The concept of coherency introduced by Florens et al (1996) is too strong
in that it requires that the two priors be linked together by a transition
which actually depends upon sample size. An alternative approach consists
of choosing the prior parameter Fa in such a way that the two models be
indistiguishable from one another on the basis of a single observation x1 (i.e.
that the Bayes factor associated with a single observation be equal to one).
In view of the representation of the M1 predictive in (11), this is equivalent
to setting Fa equal to the former that is to say

Fa(B) =

Z

B

p0(x1)dx1; 8B 2 Bp (12)

De¯nition 2.1 The prior measure Di(naFa) is predictive-coherent if and
only if condition (12) holds.

¥
Note that, independently of whether or not condition (12) holds, Fa(B)

represents the prior expectation of F (B) on M1. As usual within a natu-
ral conjugate framework and as illustrated by (9), na represents the prior
"weight" attached to Fa in a metric which is directly comparable to the ac-
tual sample size n and is, therefore, often refered to as to a "hypothetical"
sample size - see e.g. Rai®a and Schlaifer (1961).
Our motivation for selecting a prior Dirichlet measure on M1 is fourfold :

(i) It is easy to specify since, as we just discussed, its parameters have "nat-
ural" interpretations ; (ii) It is °exible in that, following Ferguson (1973) it
generates a dense subset of probabilities ; (iii) It is natural conjugate so that
its two parameters are revised by means of the simple (additive) convolu-
tion rule given by (9) ; and (iv), it will prove especially operational for the
construction of simulation based encompassing test procedures.
Nevertheless, two important characteristics of the Dirichlet measure de-

serve additional comments. Firstly, Dirichlet measures generate discrete
probabilities. Actually, this property is intrinsic to inference in nonpara-
metric models since the empirical distribution which is itself discrete con-
stitutes a su±cient statistic and, therefore, serves as the basis of numerous
goodness of ¯t tests, such as the Kolmogorov-Smirnov test. One might con-
sider instead using prior measures whose realizations are continuous. Several
approaches have been explored in the recent literature. One consists of intro-
ducing prior measures whose trajectories are the convolution of a Dirichlet
realization and a of preassigned continuous probability -see e.g. Lo (1984) or
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Escobar and West (1995). From our viewpoint, the main drawback of that
approach lies in the complexity of the resulting posterior distributions (for
example, posterior expectations are linear combinations comprising as many
terms as there are partitions of the set f1; :::; ng). An alternative approach
consists of selecting a logistic normal measure -see e.g. Leonard (1978) or
Lenk (1988, 1991). Here again posterior distributions are complicated and,
furthermore, this prior speci¯cation produces Bayesian procedures which are
not convergent. See also Lavine (1992, 1994) for an alternative way of gener-
ating continuous probabilities. Preliminary investigations suggest that there
are no conceptual di±culties generalizing the encompassing test procedures
which are developed here to such continuous extensions and, furthermore,
that actual computation are likely to prove simpler than those necessitated
e.g. to produce posterior odds.
Secondly, as illustrated by (11), predictive probabilities associated with

Dirichlet prior measures are intrinsically "bumpy" in the sense that they
generate ties with positive probabilities. As we shall discuss further below,
this property has "extreme" implications for (Bayesian) model selection pro-
cedures which essentially reduce to a test of continuity versus discreteness.
It also produces in¯nite divergence measures in a "brute force" comparison
between posterior densities. On the other hand functionals of F admit pos-
terior densities on M1 under mild technical conditions and will, therefore,
result in encompassing test procedures which are no longer bumpy.

3 Posterior odds

Let ± 2 f0; 1g denote a binary model indicator. Let P denote a probability
distribution on (±;X) which is such that

P (± = 0) = a; P ( j± = i) = Pi; (13)

where Pi denotes the predictive probability on Mi, for i = 1; 2. It is always
possible to dominate P0 and P1 by a ¾-¯nite measure such as, for example,
1
2
(P0 + P1). Let, therefore, dPi denote the density of Pi w.r.t. a suitable
dominating measure1. The corresponding Bayes factor is then given by the
ratio dP0=dP1 (not to be confused with the Radom-Nikodyn derivative of P0
with respect to P1 which does not exist in the present context). The posterior
odds ratio is given by the product of the prior odds ratio a=(1 ¡ a) by the
Bayes factor and the posterior probability of model M0 equals

1We need to draw an explicit distinction between dPi and the predictive densities pi

introduced earlier, since they are actually related to di®erent dominating measures.
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P (± = 0jx) = adP0
adP0 + (1¡ a)dP1

: (14)

We consider the case where F µ is absolutely continuous with respect to the
Lebesgue measure in IRp, with density function f(xjµ). The corresponding
predictive densities on M0 for a single observation xi and for the sample x
are given by

p0(xi) =

Z

µ

f(xijµ)¹0(µ)dµ (15)

and

p0(x) =

Z

£

nY

i=1

f(xijµ)¹0(µ)dµ; (16)

respectively. The posterior probability of model M0 under a predictive co-
herent prior Dirichlet measure is then characterized in the following theorem.

Theorem 3.1 : If F µ is absolutely continuous w.r.t. the Lebesgue measure
with density f(xjµ) and if the Dirac prior on M1 is predictive-coherent in the
sense of (12), then the posterior probability of M0 is given by

P (± = 0jx) = ap0(x)

aP0(x) + (1¡ a)®n
Qn
i=1 p0(xi)

1Ifdn=ng; (17)

where a = P (± = 0); p0(xi) and p0(x) are de¯ned in (15) and (16), respec-
tively, dn denotes the number of distinct values in the sample x and ®n the
predictive probability of no ties on M1, which is given by

®n = P1(dn = n) =
¡(na):n

n
a

¡(na + n)
(18)

¥

Proof : The key issue is that of choosing a suitable dominating measure.
Let L denote the Lebesgue measure on IRp. Clearly, dP0=dL = p0. Since P1,
as de¯ned in (11), can generate ties, we decompose it as follows

Pi = ®nP11 + (1¡ ®n)P12;
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where P11 = P1( jdn = n) and P12 = P1( jdn 6= n). We note that P11
and P12 are mutually singular since, in particular, P11(dn = n) = 1 and
P12(dn = n) = 0. Note furthermore that P0(dn = n) = 1 by the absolute
continuity of F µ. Let choose P¤ = L + P12 as the dominating measure. It
immediately follows that dP0=dP¤ = p01Ifdn=ng. Furthermore, it follows from
(11) that, conditionally on dn = n, the xi' s are i.i.d. Fa on M1, whence

dP1
dP¤

= ®n

nY

i=1

p0(xi)1Ifdn=ng + (1¡ ®n)1Ifdn<ng

and (17) follows. It also follows from (11) that ®1 = 1 and ®i+1 =
na
na+i

®i
which implies (18) and completes the proof. ¥
If M0 consists of a simple hypothesis, i.e. if F

µ ´ Fa, then p0(x) =Qn
i=1 p0(xi) and the following corollary obtains.

Corollary 3.2 : Under the conditions of theorem 1 and if F µ ´ Fa on M0,
then

P (± = 0jx) = a

a+ ®n(1¡ a)1Ifdn=ng: (19)

¥
It is important to note that the predictive density P1, as de¯ned in (11), is

degenerate. It follows that Bayesian model selection procedures based upon
posterior odds fundamentally amount to a test of continuity (M0) versus
discreteness (M1), a conclusion which is fully supported by the behavior
of the posterior probabilities in (17) and (19). Note, in particular, that
P (± = 0jx) ´ 0 as soon as dn < n. M0 is rejected as soon as a tie is observed.
Conversely, if dn stays equal to n, then ®n ! 0 and P (± = 0jx) ! 1 as
n ! 1, independently of the actual "validity" of M0. In the absence of ties,
M0 ends being always accepted for large enough sample sizes. The same holds
for any sample size if na = 0 (non-informative prior on M1). In other words,
the "implicit null hypothesis" of a posterior odds "test" procedure consists of
the set of all continuous distributions, despite the fact that the Dirichlet prior
on M1 is dense ! This "extreme" behavior of posterior odds unequivocally
suggest that they are fundamentally inadequate as an instrument for testing
the "validity" ofM0 by confronting it to a general nonparametric alternative
M1.
We conclude this discussion with two additional comments. Firstly, the

behavior of the posterior odds is fundamentally una®ected if we remove the
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assumption of predictive-coherency. It can be proved that if Fa no longer sat-
is¯es condition (12), the posterior probabilities in (17) and (19) nevertheless
remain valid, except that p0(xi) is to be replaced by p1(xi), the predictive
density of xi on M1. Secondly, it is not possible to eliminate the intrinsic
"bumpy" character of the M1-predictive distribution by increasing the prior
weight attached to Fa, i.e. by increasing na along with n, the actual sample
size. It is well known that dn(na lnn)

¡1 converges almost surely to 1 on M1

as n increases -see e.g. Rolin (1993). One would, therefore, be tempted to set
na equal to n= lnn, a choice which preserves the consistency of the posterior
distribution since na=n still tends to zero as n tend to in¯nity. This choice,
however, does not prevent ®n from (rapidly) tending to zero as n tends to
in¯nity. Actually, it can be shown that, in order to have ®n tending toward a
constant, we have to choose na's of the order of n

2. Such choices are clearly
unacceptable since, in particular, they destroy the consistency of posterior
distributions on M1.

4 Encompassing

We ¯rst brie°y present the encompassing principle per se, using notation in-
troduced earlier, and then apply it to the pair of models under consideration.

4.1 General principle

As already discussed in the introduction our objective is not that of choos-
ing between M0 and M1 but rather that of (in)validating M0 by analyzing
whether results derived on M1 can be reproduced within M0. Within a
Bayesian framework, results to be encompassed typically take the form of a
posterior density on a functional ¸ of the "parameter" F associated withM1.
Drawing upon the general presentation in Florens et al (1997), we brie°y dis-
cuss here how the encompassing principle applies to the models introduced
in section 2.
The key step consists of prolonging M0 into a model M¤ which is char-

acterized by a joint probability on (µ;X) and F . This extension is obtained
by adding onto M0 a conditional distribution for F , given µ. The joint dis-
tribution of (F; µ; x) on M¤ is then characterized by the density

¼(F; µ; x) = ±(F jµ):[p0(xjµ):¹0(µ)]: (20)

Note that ¼ emboddies the key assumption that F and x are mutually
independent, conditionally on µ, an assumption we shall qualify further in a
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moment. The "M0-posterior density" of F is then de¯ned as the posterior
density of F which obtains from ¼. It can be rewritten as

º0(F jx) =
Z

£

±(F jµ)¹0(µjx)dµ; (21)

from which we can obtain an M0-posterior density for ¸ say, º0(¸jx). En-
compassing compares the two posterior densities for ¸ : º1(¸jx), as obtained
onM1 and º0(¸jx) which constitutes our "reinterpretation" of º1(¸jx) within
the context of the enlarged M0.
There are two key reasons for imposing independence between F and x,

conditionally on µ. Firstly, at a heuristic level, encompassing aims at reinter-
pretingM1-posterior densities withinM0, without additional data processing
beyond that already incorporated in the posterior density ¹0(µjx). Further-
more, from the viewpoint of M0, it appears natural to assume that µ is a
su±cient parametrization of M0, i.e. that p0(xjµ; F ) ´ p0(xjµ), an assump-
tion which immediately validates (20).
Secondly, at a more formal level, if the transition ± were allowed to de-

pend on x, then it would always be possible to produce a perfect match
between º1(¸jx) and º0(¸jx), immediately voiding the encompassing princi-
ple from any meaning. As discussed in Florens et al (1997), the assumed
conditional independence between F and x enables us to formally reinter-
pret encompassing as a concept of "su±ciency among models", dual to the
traditional concept of su±ciency (among statistics), as de¯ned by Blackwell
(1951, 1953) or Lecam (1964). That concept provides an unambiguous sta-
tistical foundation to the commonly observed scienti¯c pratice of verifying
that new theories or models be capable of accounting for ¯ndings ("failures"
as well as "successes") obtained from earlier models.
There remains to discuss how to formalize comparisons between º1 and º0.

An operational procedure consists of computing a measure of "divergence"
between º1 and º0, say, ²¸(x) = D(º1(¸jx); º0(¸jx)). Such a measure, which
depends upon the observed sample x, is refered to as to a measure of the
speci¯city of M1 relative to M0 (in reference to ¸). As discussed e.g. in
Florens et al. (1997) di®erent choices are available for the divergence D. In
the present paper, we restrict our attention to the entropy measure

²¸(x) =

Z

¤

ln

�
º0(¸jx)
º1(¸jx)

¸
º0(¸jx)d¸; (22)

which proves to be particularly operational for the problem under consider-
ation.
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Two additional issues need to be addressed before we close this brief
presentation of encompassing. Firstly and foremost, we have to select an
appropriate transition density ±(F jµ), often refered to as to a "Bayesian
Pseudo-True Value" (hereafter BPTV). In the present paper, we use a BPTV
which is de¯ned as the M0-(sample) expectation of the M1-posterior density
of F , that is to say

±(F jµ) =
Z
º1(F j~x)p0(~xjµ)d~x: (23)

This transition o®ers two keys advantages : (i) As we shall illustrate
below, it can be evaluated at a high level of generality under a combination of
Monte Carlo simulation and kernel smoothing; and (ii), it produces consistent
encompassing test procedures since, under general technical conditions, it
converges toward classical pseudo-true values (which are formally de¯ned as
plims on M0 of Maximum Likelihood estimators).
The sample size ~n in (23) need not be set equal to n, the actual sample

size. For the ease of reference, we shall explicitely distinguish between n
and ~n in all subsequent formulae. This being said, there are good reasons
for setting ~n = n. Foremost, it is common pratice to condition BPTV's
upon exogenous variables and in the context consideration, sample size truly
is exogenous. Also, though we do not speci¯cally discuss here asymptotic
encompassing - see e.g. Florens and Richard (1998) for asymptotic analysis
in the context of ¯nite parameter spaces - consistency of encompassing test
procedures under BPTV's does require that n and ~n both tend to in¯nity
at a common rate. Finally, setting ~n = n facilitates calibration. We note
also that, had we set ~n = 1, the BPTV would collapse into a (degenerate)
classical pseudo-true value.
A second problem is that of interpreting the actual value obtained for

²¸(x). An obvious and fairly simple "calibration" procedure consists of eval-
uating (by Monte Carlo simulation) its distribution on the M0-predictive
distribution of x and of computing the probability of drawing a value larger
than that which actually obtained (such a probability can usefully be rein-
terpreted as a Bayesian encompassing p-value). This "exact" calibration
procedure can also usefully contribute "standardizing" speci¯city measures
that would be evaluated under alternative divergence measures.
Finally, we ought to mention that more "decision oriented" Bayesian en-

compassing procedures could usefully be considered under speci¯c circum-
stances. If, for example, the functionals ¸ happened to be of interest to the
proprietor of M0 within a given decisional context (or if it was thought to
be desirable that decisions reached on M1 be encompassed within M0), then
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di®erences in posterior expected losses would provide a natural metric to
evaluate the speci¯city of M1 relative to M0. Assume, for example, that M1

were paired with a decision a 2 A and a loss function l(a; ¸). One would
then compute the following posterior expected losses

l¤1(x) = min
d2D

Z

¤

l(d; ¸)º1(¸jx)d¸;

l¤0(x) = min
d2D

Z

¤

l(d; ¸)º0(¸jx)d¸

= min
d2D

Z

¤££
l(d; ¸)¹0(µjx)±(¸jµ)d¸dµ:

(24)

The di®erence between l¤0(x) and l
¤
1(x) would provide an obvious measure

of how well M0 encompasses M1 for the speci¯c decision problem under
consideration. Here again, that di®erence could be calibrated under the
M0-predictive density of x.
We conclude this presentation of encompassing by mentioning here that

the use of measures of divergence (entropy,...) has often been advocated as
a simple alternative to a full decision-oriented evaluation. See e.g. DeGroot
(1970)

4.2 Nonparametric encompassing

We now apply the encompassing procedure we just described to the pair
of models introduced in section 2. We have already established that the
M1-posterior distribution of F is Di(np; Fp) where np and Fp are de¯ned in
(9). It follows that the BPTV introduced in (23) is a mixture of Dirichlet
processes. Using the density notation introduced earlier we can rewrite the
M0-posterior density of F as follows :

º0(F jx) =

Z

£

±(F jµ)¹0(µjx)dµ

=

Z

£

Z

IR~np
º1(F j~x)p0(~xjµ)¹0(µjx)d~xdµ

=

Z

IR~np
º1(F j~x)p0(~xjx)d~x; (25)

where

p0(~xjx) =
Z

£

p0(~xjµ)¹0(µjx)dµ (26)
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denotes the M0-posterior predictive distribution of ~x, given x. It follows,
therefore, that º0(F jx) is itself a mixture of Dirichlet measures. Actually, the
only di®erence between ±(F jx) and º0(F jx) lies in the mixing distribution
which is p0(~xjµ) for ± and p0(~xjx) for º0. M1 and M0-expectations of F are
given by

E1(F ) = Fa;

E1(F jx) =
na

na + n
Fa +

n

na + n
Fn;

E0(F jµ) =
na

na + ~n
Fa +

~n

na + ~n
F µ;

E0(F jx) =
na

na + ~n
Fa +

~n

na + ~n
E0(F

µjx); (27)

respectively. We note that, under the predictive coherent prior in (12), we
have E0(F ) = Eµ[E0(F jµ)] = Fa = E1(F ). Furthermore, the comparison
between theM0-andM1-posterior expectations of F amounts to a comparison
between E0(F

µjx), the M0 posterior expectation of F
µ and Fn, the empirical

distribution of x.
We ¯rst demonstrate that analytical characterizations of the transition

±(F jµ) and of the M1-posterior distribution º1(F jx) are intractable. Accord-
ing to Ferguson (1973), it su±ces to derive the distribution of the vector
fF (Bl) l : 1 ! Lg for any non trivial partition fBl ; l : 1 ! Lg of IRp,
notwithstanding the fact that there might be speci¯c partition(s) of interest
to be encompassed by M0 (The latter would be included in the de¯nition of
the functional "of interest" ¸ = '(F ) which is introduced below).
Relative to an arbitrary partition fBl ; l : 1 ! Lg, a su±cient statistic

associated with the sample x is given by fnl ; l : 1 ! Lg, where nl denotes
the number of xi's in Bl. Therefore, the M1-posterior density of fF (Bl); l :
1 ! Lg is given by

¹1(F (B1)); :::; F (BL)jx) = ¡(na + n)
LY

l=1

(F (Bl))
naFa(Bl)+nl¡1

¡(naFa(Bl) + nl)
: (28)

A similar expression applies to theM1-posterior distribution of fF (Bl); l :
1 ! Lg conditional on ~x, except that the nl's in (28) are replaced by ~nl's.
Since, furthermore, the ~xi's are i.i.d. F

µ onM0, the ~nl's follow a multinomial
distribution with parameters ~n and fF µ(Bl) ; l : 1 ! Lg. It immediately
follows that ±(F (B1); :::; F (BL)jµ) is given by
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±(F (B1); :::; F (BL)jµ) =
P

f~nlg2~SL¡1

h
¡(na + ~n)

QL
l=1

(F (Bl))
naFa(Bl)+~nl¡1

¡(naFa(Bl)+~nl)

i
:h

~n
QL
l=1

(F µ(Bl))
~nl

~nl!

i
;

(29)

where ~SL¡1 = f(~n1; :::; ~nL); ~nl 2 IN;
PL

l=1 ~nl = ~ng. Such summations have no
(simple) analytical solutions and, furthermore, include very large numbers
of terms for all but small ~n and/or L. It also follows that º1(F jx) is itself
analytically intractable.
On the other hand, we can easily simulate trajectories of F under itsM0-

and M1-posterior distributions by relying upon powerful representations of
the Dirichlet process, as found, e.g., in Sethuraman (1994) or Rolin (1993).
Let F xi denote a realisation of the Mi-posterior distibution of F (i = 1; 2).
The following representation applies to F x1

F x1 = (1¡ °)
1X

k=1

®k±»k + °
nX

i=1

¯i±xi ; (30)

where

(i) °??f®k; k : 1 ! 1g??f»k; k : 1 ! 1g??f¯i; i : 1 ! ng;

(ii) ° » B(n; na), where B(a; b) denotes the Beta distribution with param-
eters a > 0 and b > 0;

(iii) The »k's are i.i.d. Fa;

(iv) ®k = vk
Qk¡1
l=1 (1¡ vl) for k : 1 ! 1, where the vl's are i.i.d. B(1; na);

(v) The ¯i's are uniformly distributed on the simplex Sn¡1, i.e. (¯1; :::; ¯n) »
Di(n; (1:::1));

and where, as above, ±xi(±»k) denotes the Dirac measure at point xi(»k),
i.e., ±xi(B) = 1IB(xi).
A similar representation applies to F x0 , except that x in (30) is replaced

by ~x which, according to (26), is generated as follows : µ is drawn from
¹0(µjx) and, conditionally on µ, the ~xi's are drawn independently from one
another from F µ.
Using these representations, we can generate repeated draws from the

posterior distributions º0 and º1. The next issue to be addressed is that of

15



using there draws to evaluate a divergence measure between º1 and º0. It
is important to immediately point out that º1 and º0 are mutually singular.
For example, F x1 in (30) assigns a non zero probability to x1, that is to say,
the set of measures on (IRp;Bp) which assign positive probability to x1 has
measure one on º1(F jx). On the other hand F x0 assigns zero probability to
x1, since the probability that ~x1 = x1 on p0(~xjx) is zero. It follows that
conventional divergence measures will automatically be maximal, leading
to automatic rejection of the corresponding encompassing test procedure
(a problem which is closely related to that already discussed in section 3
for posterior odds). We should then consider metrics which can produce
non degenerated comparisons of mutually singular distributions. Skorohod's
distances might provide a conceptual solution in that respect but it is far
from being obvious that they could lead to operational procedures.
A fully operational solution consists of restricting the encompassing com-

parison to the M0- and M1-posterior distributions of an appropriate func-
tional of F1 say

¸ = '(F ) 2 IRk; (31)

where ¸ would represent "parameters of interest" within M1 which would,
therefore, be obvious targets for an encompassing test. The key advantage
o®ered by this approach lies in the ¯nding that, under very mild technical
condition, the M0- and M1-posterior distributions of ¸ are absolutely con-
tinuous w.r.t. the Lebesgue measure -see e.g. Florens and Rolin (1994) -
whence divergence comparisons do apply to ¸. Typical choices for ¸ are :
(i) ¸ = (F (Bl); l : 1 ! l) for a measurable partition (B1; :::BL) of

IRp which regroups "regions of interest" in the sample space ; (ii) ¸ =R
IRp h(x)F (dx), where h denotes a Borel function from IRp to IRk. For ex-
ample a comparison of ¯rst and second order moments would obtain for
¸ = (x; xx0) and k = p+ 1

2
p(p+ 1).

The simulation method described above is then exploited in the follow-
ing way to produce an operational encompassing test procedure. A set of
randomly drawn trajectories f( ~F x1;r; ~F x0;r); r : 1 ! Rg is transformed into a
corresponding set of random drawns for ¸, say f~̧x1;r; ~̧x0;r); r : 1 ! Rg. Kernel
estimates of the posterior densities º1(¸jx) and º0(¸jx) are then evaluated,
which are denoted by º̂1(¸jx) and º̂0(¸jx), respectively. A measure of the
¸-speci¯city of M1 relative to M0 is then given by

²̂¸(x) =
1

R

RX

r=1

ln

"
º̂0(~̧

x
0;rjx)

º̂1(~̧x0;rjx)

#
; (32)
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Finally, in order to calibrate ²̂¸(x) on M0, we generate S (i.i.d.) samples
from p0(x), the M0-predictive distribution of x and compute ²̂¸(x) for each
such sample, a procedure which produces S i.i.d. draws from ²̂¸(x) on p0,
from which a Bayesian p-value immediately obtains as the proportion of
draws which exceeds the actual sample value ²̂¸(x).

5 An application : validation of an exponen-

tial distribution

Let X denote a positive scalar random variable, such as a lifetime. Our ap-
plication is based upon a sample x of size n = 50 which we drew from an
exponential distribution with parameter µ = 1. Let M0 consists of an expo-
nential distribution with parameter µ > 0 under a natural conjugate gamma
prior density for µ with parameters a0 > 0 and º0 > 0. The corresponding
sample and prior density functions are given by

p0(xjµ) = µne¡µt; and (33)

¹0(µ) =
aº00
¡(º0)

µº0¡1e¡a0µ; (34)

respectively, where t =
Pn

i=1 xi is a su±cient statistic. Actual calculations
are based upon the values a0 = º0 = 2. The M0-posterior distribution is
itself a gamma distribution with parameters a¤ = a0 + t and º¤ = º0 + n.
The M0-predictive densities in (15) and (16) are given by

p0(xi) = º0a
º0
0 (a0 + xi)

¡(º0+1); and (35)

p0(t) =
¡(º0 + n)

¡(º0)
aº00 (a0 + t)

¡(º0+n); (36)

respectively. We note in passing that p0(xi) represents a Pareto distribution.
OnM1, we use a non-informative Dirichlet prior measure on F by setting

na = 0. In view of the "weakly" informative M0-prior (a0 = º0 = 2),
imposing the predictive-coherency condition (12) makes little di®erence while
setting na = 0 simpli¯es the representation of F

x
1 in (30), which is now given

by
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F x1 =
nX

i=1

¯i±xi ; (37)

where f¯i; i : 1 ! ng »Di(n; (1; :::; 1)). A similar expression applies to F x0
with x being replaced by ~x to be drawn from the M0-predictive posterior
distribution in (26).
Finally, implicitely restricting M1 to distributions with ¯nite ¯rst and

second order moments, we consider here that the latter are the parameters
of interest to be encompassed by M0, i.e.

¸i =

Z 1

0

xiF (dx); for i = 1; 2: (38)

Following the procedure described in section 4.2, we draw two samples of
size R from º1(¸jx) and º0(¸jx), respectively, that is to say

~̧x
1;r =

nX

j=1

~̄
1;j;r

µ
xj
x2j

¶
; and ~̧x0;r =

nX

j=1

~̄
o;j;r

µ
~xj;r
~x2j;r

¶
; (39)

where f ~̄1;j;r; j : 1 ! ng and f ~̄0;j;r; j : 1 ! ng for r : 1 ! R are i.i.d. drawns
from a Di(n; (1; :::; 1)) distribution, and f~xj;r; j : 1 ! ng for r : 1 ! R are
i.i.d. draws from p0(~xjx) (in pratice, ~xr is drawn from (33), conditionally
on µ = ~µr, where ~µr itself is drawn from (34)). Next, we compute bivariate
kernel estimates for the posterior distributions of ¸ say

º̂i(¸jx) =
1

R

RX

r=1

K2(¸¡ ~̧x
i;r); for i = 1; 2; (40)

where K2 denotes the kernel

K2(u1; u2) =
2Y

i=1

1

hi;R
Á

µ
ui
hi;R

¶
; (41)

Á denotes the standardized normal density and hi;R = SiR
¡1=5, where Si

denotes the estimated standard deviation of the ~̧xi;r for i = 1; 2. The ¸-
speci¯city ofM1 relative toM0 then obtains by application of (32) and equals
0.58. In the present application we use a Monte Carlo sample size R = 1; 000.
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We generated 1,000 auxiliary samples of size n = 50 from the M0-
predictive density p0(t) in (36). Actually, each such draw is generating by
drawing ¯rst µ from the prior (34) and then x conditionally on µ from (33).
The computations we just described are applied to each auxiliary sample in
turn in order to produce 1,000 draws from the M0-predictive distribution of
²̂¸(x). An histogram of the latter is reproduced in ¯gure 1 and a few se-
lected "critical values" are reported in table 1. The M0-predictive mean and
standard deviation of ²̂¸(x) equal 0.8104 and 0.3374, respectively.
Finally, we also evaluated the ¸-speci¯cities of M1 relative to a variety of

"invalid" M0's, all constrained to have expectations equal to 1. The entropy
results are reported in table 2, together with the corresponding Bayesian
p-values which obtain from the histogram in ¯gure 1. In contrast with the
valid exponential model, these invalid models clearly fail to encompass M1

relative to ¸.

6 Conclusion

We have proposed a °exible and fully operational Bayesian procedure for
examining whether or not a tentative model M0 encompasses results derived
under a general nonparametric model M1. It is important to emphasize the
fact that encompassing is not a model selection procedure since, in particular,
M1 generally is not meant to be interpreted as an alternative toM0 but rather
as an instrument in testing the (in)validity of M0. Clearly, broad failure to
encompass characteristics of interest ofM1 would lead to the conclusion that
M0 is seriously de¯cient. Whether such de¯ciencies would lead one to try to
re¯ne M0 further or instead to trash it can only be answered in the context
of the speci¯c application under consideration after careful examination of
the said de¯ciencies.
Our method o®ers considerable °exibility in this respect relative, in par-

ticular, to the selection of results to be encompassed which would typically
depend upon the objectives of the proprietor of M0. Encompassing also re-
quires the selection of a transition probability and of a divergence measure.
Though such choices introduce a degree of arbitrariness in our procedure, the
pair consisting of the entropy measure (22) and of the BPTV (23) provides
a natural Bayesian extension of concepts widely used in statistics. Further-
more, arbitrariness is tempered by the fact that all encompassing results are
M0 calibrated in the end. As brie°y discussed in the paper, much arbitrari-
ness can also be removed by adopting a more decision oriented measure of
encompassing di®erences.
In view of the inherent complexity of the task of constructing empirical
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econometric models, we strongly believe that encompassing can provide an
invaluable tool for carefully investigating potential de¯ciencies of a model
and suggesting avenues for further improvements.
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Figure 1 :
M0-predictive distribution of ¸-speci¯city of M1.
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Table 1. Estimated critical values of the ¸-speci¯city

1¡ ® 0,90 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,98 0,99

C1¡® 1,28 1,30 1,33 1,35 1,39 1,44 1,49 1,59 1,70 1,94

Table 2. Bayesian p-values

M0 distribution Variance Entropy Prob-value

Exponential (1) 1; 000 0,58 0,829
Weibull (2) 0; 273 3,17 0,000
Gamma (1

2
; 1
2
) 2,000 1,43 0,052

Gamma (2,2) 0; 500 1,69 0,022
Gamma (4,4) 0; 250 1,95 0,009
Uniform (0,2) 0; 333 1,83 0,015
Lognormal (¡1

4
; 1
2
) 0; 649 1,31 0,086

Lognormal (¡1
2
¾2; ¾2) 0; 250 2,88 0,000

¾2 = 0; 2231
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