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Efficient estimation of jump diffusions and general

dynamic models with a continuum of moment conditions

Abstract

A general estimation approach combining the attractive features of method of moments with the

efficiency of ML is proposed. The moment conditions are computed via the characteristic function.

The two major difficulties with the implementation is that one needs to use an infinite set of

moment conditions leading to the singularity of the covariance matrix in the GMM context, and

the optimal instrument yielding the ML efficiency was previously shown to depend on the unknown

probability density function. We resolve the two problems simultaneously in the framework of C-

GMM (GMM with a continuum of moment conditions). First, we prove asymptotic properties of the

C-GMM estimator applied to dependent data and then provide a reformulation of the estimator that

enhances its computational ease. Second, we propose to span the unknown optimal instrument by

an infinite basis consisting of simple exponential functions. Since the estimation framework already

relies on a continuum of moment conditions, adding a continuum of spanning functions does not

pose any problems. As a result, we achieve ML efficiency when we use the values of conditional CF

indexed by its argument as moment functions. We also introduce HAC-type estimators so that the

estimation methods are not restricted to settings involving martingale difference sequences. Hence,

our methods apply to Markovian and non-Markovian dynamic models. Finally, a simulated method

of moments type estimator is proposed to deal with the cases where the characteristic function does

not have a closed-form expression. Extensive Monte-Carlo study based on the models typically used

in term-structure literature favorably documents the performance of our methodology.



Introduction

Recent advances in estimation of univariate diffusions have highlighted the shortcomings

of many standard continuous time models often used in asset pricing.1 As a consequence

additional factors, such as stochastic volatility or jumps, are required to account for these

shortcomings. Unfortunately, the extant univariate econometric methods can not be easily

extended to the multivariate case.

These developments prompted the introduction of new estimation methods. In principle,

the generalized method of moments (GMM) estimation approach is quite general because,

despite unknown expressions for the probability density function (p.d.f.), moment conditions

are available in analytical form for many multifactor models of practical interest. The choice

of the appropriate moments typically is a challenge because the efficiency may vary with

the set of moment conditions. Of course, the maximum likelihood (ML) method is efficient

and for this reason is more attractive than GMM. Since ML is not feasible in most multi-

variate settings several simulation-based maximum likelihood methods have been introduced

recently.2

This paper proposes a general estimation approach which combines the attractive features

of method of moments estimation with the efficiency of ML in one framework. The method

exploits the moment conditions computed via the characteristic function (CF) of a stochastic

process instead of the likelihood function, as in the recent work by Chacko and Viceira

(1999), Jiang and Knight (2002), and Singleton (2001). The most obvious advantage of such

an approach is that in many cases the CF is available in analytic form, while the likelihood

is not, the most celebrated example being the class of affine diffusion models. Moreover, the

CF contains the same information as the likelihood function up to the Fourier transform.

Therefore, a clever choice of moment conditions should provide the same efficiency as ML.

Another advantage of the CF-based estimation is that it applies to many different settings.

There are two cases where the advantages of the CF-based estimation are the most notable.

1Applications of the parametric and non-parametric methods in finance include among others, Aı̈t-Sahalia

(1996), Aı̈t-Sahalia (2000), Conley et al.(1997), Hansen and Scheinkman (1995), Lo (1988).
2See Brandt and Santa-Clara (2000), Durham and Gallant (2000), Elerian, Chib and Shephard (2001),

Eraker, Johannes, and Polson (2000) for various implementations of simulation-based ML.
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One typical example is an N -factor affine term-structure model with N observed yields

corresponding to different maturities. In this case, yields are a linear function of the state

variables (see e.g. Duffie and Kan, 1996), and, therefore, these state variables are effectively

observed. A second application involves a jump component. Very often jump-diffusion

specifications imply that asset prices come from a mixture of distributions. In this case, the

likelihood function is not bounded, and ML estimation is not feasible (see Honoré, 1998).

On the other hand, it is known that GMM using ad hoc moment conditions does not achieve

the efficiency associated with ML. This paper shows that GMM based on CF achieves ML

efficiency. The applicability of our method is not limited to the two previous examples. For

instance, it can be applied to randomly sampled continuous time processes and stochastic

volatility models as well.

The main contribution of this paper is the resolution of two major difficulties with the

estimation via the CF. The first one is related to the intuition that the more moments

one generates by varying the CF argument, the more information one uses, and, therefore,

the estimator becomes more efficient. However, as one refines the range of CF argument

values, the associated covariance matrix approaches singularity. The second difficulty is

that in addition to a large set of CF-based moment conditions, one requires an optimal

instrument to achieve the ML efficiency. Prior work (e.g. Feuerverger and McDunnough,

1981 or Singleton, 2001) derived the optimal instrument, which is a function of the unknown

probability density. Such an estimator is clearly hard to implement.

We use the framework of Carrasco and Florens (2000a), known as C-GMM, to rely on

a continuum of moment conditions in a GMM procedure. This allows us to address the

two problems simultaneously. First, the original work of Carrasco and Florens deals with

covariance matrix singularity by replacing it with a covariance operator. Computing the

unbounded inverse operator is known in functional analysis as an ill-posed problem and can

be resolved by regularizing the operator. This method was initially developed in an iid

framework where the moment functions were indexed by an index parameter in an interval

of R. We reformulate the GMM objective function to facilitate the implementation of the

estimation technique. We also allow the moment functions to be complex valued and be

functions of an index parameter taking its values in R
d for an arbitrary d ≥ 1 in order to
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accommodate the specific features of CF. Finally, we extend the method in various directions

in order to be able to resolve the second problem of the instrument choice. We distinguish

two cases depending on whether the observable variables are Markov or not.

In the Markov case, the moment conditions are based on conditional CF. Therefore, we

derive the asymptotic properties of the C-GMM estimator applied to dependent data. We

then propose to span the unknown optimal instrument by an infinite basis consisting of

simple exponential functions. Since the estimation framework already relies on a continuum

of moment conditions, adding a continuum of spanning functions does not pose any problems.

As a result, we achieve ML efficiency when we use the values of conditional CF indexed

by its argument as moment functions. We propose a simulated method of moments type

estimator for the cases when CF is unknown. If one is able to draw from the true conditional

distribution, then the conditional CF can be estimated via simulations and ML efficiency

obtains. This approach can be thought as a simple alternative to the Indirect Inference

proposed by Gouriéroux, Monfort and Renault (1993) and the Efficient Method of Moments

(EMM) suggested by Gallant and Tauchen (1996).

If the observations are not Markov, it is not possible to construct the conditional CF.

Therefore, we propose to use joint CF of a particular number of data lags, which do not have

to be martingale differences. Hence, we extend the C-GMM methodology to autocorrelated

moment functions. While we were not able to obtain optimal moment functions yielding ML

efficiency in this case, we derived an upper bound on the variance of the resulting estimator.

In the worst case scenario, if one uses the joint CF for estimation, the variance of the C-

GMM estimator corresponds to that of the ML estimator based on the joint density of the

same data lags. As the joint CF is often unknown, a simulated method of moments becomes

especially useful. The simulation scheme differs from that used in the Markov case. Instead

of simulating conditionally on the observable data, we simulate the full time-series as it is

done in Duffie and Singleton (1993).

The paper is organized as follows. The first section provides motivating examples and

reviews issues related to the estimation via CF. Section 3 extends the C-GMM proposed

by Carrasco and Florens (2000a) to the case where the moment functions are correlated. It

shows how to estimate the long-run covariance and how to implement the C-GMM estimator
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in a simple way. Section 4 specializes to the cases where the moment conditions are based

either on the conditional characteristic function or joint characteristic function. In the

first case, we establish which choice of the instrument function yields ML efficiency. These

results can be applied in a straightforward manner in case of fully observed vector of state

variables, i.e. a Markov process. Section 5 considers simulation-based CF estimation which is

of greatest importance for partially observed state vector (non-Markov) processes. Finally, a

Monte Carlo comparison of the C-GMM estimator with other popular estimators is reported

in Section 6. The last section concludes.

1 Motivating Examples

We provide motivating examples that are of interest in many applications and for which there

is no feasible maximum likelihood estimation available. The characteristic function based

methods, henceforth CF-based, will provide feasible estimators that attain ML efficiency

in each of these cases. The first class of processes are multivariate diffusions prominently

used in the term structure literature and also other continuous time multiple-asset pricing

models. These models have typically been estimated via QMLE, or simulation-based method

of moments. Next we consider diffusion processes augmented with a jump component. ML

estimation of such processes has several difficulties that can be circumvented via CF-based

estimators. The final subsection covers subordinated processes, also traditionally challenging

for the implementation of efficient estimation procedures.

1.1 Multivariate Affine Diffusions

Suppose the sequence Xt, t = 1, . . . , T is observed, where Xt ∈ Rp with p ≥ 1. It is assumed

the process Xt is Markov and satisfies the following stochastic differential equation:

dXt = µ (Xt, θ0) dt+ σ (Xt, θ0) dWt

where the function µ is the drift, σ2 is the diffusion matrix and {Wt} is a standard Brownian

motion. Finally, θ ∈ Rq is the parameter of interest and θ0 is the true value of θ. The diffusion

is assumed to be affine. Loosely speaking, this means that the drift and variance functions
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are linear in Xt (for a more formal characterization see Duffie, Filipovic and Schachermayer,

2002).

Multivariate affine diffusions, which date back to the works of Vasicek (1977) and Cox,

Ingersoll and Ross (1985), play a key role in modeling the term structure of interest rates.

This general rich class of models yields essentially closed-form expressions for zero-coupon-

bond prices (see Duffie and Kan (1996) or Dai and Singleton (2000)) and characteristic

functions (see Duffie, Pan and Singleton (2000)).

Let ψθ (τ |Xt) denote the characteristic function of Xt+1 conditional on Xt :

ψθ (τ |Xt) ≡ Eθ
(
eiτXt+1 |Xt

)
(1.1)

By stationarity of Xt, ψθ (τ |x) does not depend3 on t. Under suitable regularity conditions,

given in Proposition 1 of Duffie, Pan and Singleton (2000), one can show that the conditional

characteristic function equals:

ψθ (τ |Xt) = exp (A(τ) +B(τ)Xt) (1.2)

where A(τ) and B(τ) satisfy complex-valued ordinary differential equations (ODE) that can

either be solved explicitly or numerically (see Equations (2.5) and (2.6) in Duffie, Pan and

Singleton (2000) or Equations (7) and (8) in Singleton (2001) for further details).

For multivariate processes a closed-form solution of the probability density f(Xt+1|Xt, θ)

is not available and, therefore, MLE is not feasible. Consequently, estimation involves ei-

ther quasi-MLE or approximations to the likelihood function. An example of the former

is Duffee (2002) who uses a Gaussian density involving analytic expressions for the first

and second conditional moments. Examples of the latter include Dai and Singleton (2000)

who use simulation-based EMM and Äıt-Sahalia and Kimmel (2002) who use closed-form

polynomial expansions to the likelihood function proposed in Äıt-Sahalia (2002a,b). In all

these multivariate cases we will provide asymptotic efficient estimators that are equivalent

to MLE.

3We use the notation ψθ (τ |x) for Eθ
(
eiτXt+1 |Xt = x

)
.
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1.2 Jump Diffusion Processes

There is a mounting evidence in the empirical literature that a jump component is an im-

portant modeling component for financial times series.4 However, even if the analytical

likelihood is available, estimation of this component presents certain challenges, which can

be resolved by relying on the CF rather than ML methods. The issue goes back to at least

Kiefer (1978) and relates to the mixture of normal distributions.

We will sacrifice some generality to discuss the issues, namely consider the univariate

jump-diffusion, also known as the Merton (1976) model.5 The Merton model discretized

over interval ∆ takes the form:

∆Xt =

(
µ− 1

2
σ2

)
∆ + σ∆Wt + Jt∆Nt (1.3)

where ∆Wt ∼ N (0,∆), Jt ∼ N (µJ , δ
2
J), and ∆Nt follows a Bernoulli with probability λ∆ <

1. As a result, each of the sample observations ∆Xt, t = 1, . . . , T, comes from a normal

distribution with parameters µ1 =
(
µ− 1

2
σ2
)
∆, σ1 = σ

√
∆, with probability γ = λ∆, and

from a normal distribution with parameters µ2 =
(
α− 1

2
σ2
)
∆ + µJ , and σ2 =

√
σ2∆ + δ2

J

with probability 1 − γ.

Honoré (1998) points out the difficulties that arise with ML estimation in this case because

the likelihood is unbounded. As a remedy, he proposes to tie up the two unknown volatilities

σ1, and σ2 via a multiplicative parameter and re-estimate the whole model for each value of

this parameter from a selected grid. Alternatively, Quandt and Ramsey (1978), recognizing

the same issue, suggest to rely on the method of moments, where moment conditions are

based on the CF because, contrary to the likelihood, the CF is always bounded. The CF of

∆Xt is the weighted sum of the CF of two normal distributions, namely:

ψ(µ1,µ2,σ1,σ2,γ)(τ) = γψ(µ1,σ1)(τ) + (1 − γ)ψ(µ2,σ2)(τ) (1.4)

where ψ(µl,σl)(τ) = exp (iτµl − τ 2σ2
l /2) , l = 1, 2.

4The most recent examples include, among others, Johannes (2000) and Piazzesi (2000) for interest rates,

and Chernov et al. (2002), Johannes, Eraker, and Polson (2001) and Pan (2002) for equities.
5See Duffie, Filipovic and Schachermayer (2002) for the most general affine jump-duffusion specifications

and regularity conditions.
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In fact, often the mixture of distributions can not be computed analytically, while the

respective CF is available. One example is a combination of normal and exponential distrib-

utions, which is encountered in the models of jumps to volatility (Duffie, Pan, and Singleton,

2000; Eraker, Johannes, and Polson, 2001). The convolution of the two distributions is only

available as an approximation, while the CF can be computed via (1.2) where A(τ) and

B(τ) satisfy complex-valued ODE that are augmented with the jump component parame-

ters. Inference can be performed using the method described in this paper and we show that

the resulting estimator is efficient.6 Hence, the best of the two worlds can be achieved: ML

efficiency in the framework of the method of moments which avoids the likelihood function

unboundedness. This view on the jump component simplifies many estimation problems

recently encountered in finance.7

1.3 Subordinated Diffusions

Since asset prices are driven by information arrivals there is a long tradition in finance to

consider subordinated processes, an idea originated in the work of Mandelbrot and Taylor

(1967) and Clark (1973). They argued that since the number of transactions in any time

period is random, one may think of asset price movements as a realization of a process Xt

= YTt. The nondecreasing stochastic process Tt is a directing process related to the number

of transactions or, more fundamentally, to the arrival of information. Obviously, as noted

by Mandelbrot and Taylor, time deformation is also related to the mixture of distributions

model (see e.g. Tauchen and Pitts (1983)).8

For illustration, assume Tt =
∫ t

0
X∗

udu where X∗
u takes on positive values. Moreover X∗

u is

6Note that the maximum likelihood approach of Aı̈t-Sahalia (2002b) does not apply to jump diffusion

processes.
7Schaumburg (2000) is also concerned with the estimation of Lévy processes. He proposes a procedure

which approximates the likelihood function based on a representation of a vector in a Hilbert space using

Fourier series. However, the closed form expression of the CF is available for all Lévy processes via the

Lévy-Khintchine formula. Hence CF-based estimation is much more simple and intuitive.
8There is now a substantial literature on time deformation, recent examples include Madan and Seneta

(1990), Geman and Yor (1993), Anderson (1996), Ghysels and Jasiak (1996), Ghysels, Gouriéroux and Jasiak

(1997), Carr, Geman, Madan and Yor (2001) and Carr and Wu (2002).
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supposed to be observed, e.g. it could model the volume of transactions. Assume that both

Yt and X∗
t are affine diffusion processes: dYt = µ (Yt, θ0) dt+ σ (Yt, θ0) dWt

dX∗
t = µ∗ (X∗

t , θ0) dt+ σ∗ (X∗
t , θ0) dW

∗
t

where Wt and W ∗
t are independent Brownian motions. It can be shown that (Xt, X

∗
t ) is a

bivariate diffusion with drift [X∗
t µ (Xt) , µ

∗ (X∗
t )]′ and diagonal diffusion matrix X∗

t σ (Xt)
2 0

0 σ∗ (X∗
t )2

 .
Using (1.2), one can derive the conditional CF of

(
Xt+1, X

∗
t+1

)
given (Xt, X

∗
t ) and estimate

efficiently the parameters of both diffusions. Other examples of subordinations (possibly

endogenous) resulting in Markov processes are discussed in Carrasco, Hansen, and Chen

(1998).

To conclude, it is also worth noting that the framework of subordinated diffusions easily

adapts to that of randomly sampled data.9 In this case the calendar time spacing of data is

the directing process of the diffusion process. Hence, the CF approach easily allows to take

into account the random nature of data sampling.

2 Overview of the Methodology

In this section we discuss the major unresolved issues pertaining to estimation via CF and

explain how we propose to tackle them via GMM based on the continuum of moment con-

ditions (C-GMM). We then intuitively describe how to use the continuum of moment in

practice. Finally, we give an overview of the main results of this paper. Our discussion is

based on the most simple case where the conditional CF is known in closed-form. In this

case, we will be able to abstract from many technical details and provide the most trans-

parent expression for the C-GMM objective function. More general results and regularity

conditions will be discussed in subsequent sections.
9Aı̈t-Sahalia and Mykland (2002) emphasize the importance of taking into account the data sampling

scheme for the asymptotic properties of estimators. See also Duffie and Glynn (2001), who rely on random

sampling to construct their GMM estimators.

8



2.1 Estimation based on Characteristic Function: The issues

Since the conditional characteristic function is available in all the aforementioned cases as

well as many others, one may think of using the CF to generate a set of moment conditions

to estimate θ. Assume that Xt is scalar to simplify. Equation (1.1) implies that the following

unconditional moment conditions are satisfied:

Eθht(τ ; θ) = 0 for all τ ∈ R

with

ht(τ ; θ) ≡ h(τ,Xt, Xt+1, θ) = (eiτXt+1 − ψθ(τ |Xt))m(τ,Xt) (2.1)

where m(τ,Xt) is an arbitrary instrument. There are two issues of interest here: the choice

of τ and the choice of the instrument m(τ,Xt).

The generalized method of moments is the simplest estimation procedure, which can

exploit these moment conditions. Consider a discrete set of τi, i = 1, . . . , Nτ . The estimator

of θ is obtained as:

θ̂T =argmin
θ

ĥT (θ)′WT ĥT (θ) (2.2)

where the vector ĥT (θ) with ith individual element ĥT (τi; θ) is known as a set of sample

moment functions:

ĥT (τi; θ) =
1

T

T∑
t=1

ht(τi; θ) (2.3)

with ht(τi; θ) denoting the unconditional moments and WT is the weighting matrix.10

We first discuss the selection of an appropriate set of τi. Different sets of τi may lead

to different values of the θ estimates because they describe different aspects of the data

generating process (henceforth DGP). Increasing the number of moments of the type (2.1)

should describe the properties of the DGP distribution more and more accurately. Indeed,

if τ goes through all real numbers (Nτ approaches infinity), the probability density can be

recovered. The problem with such an approach is that, as the number of moment conditions

10This approach is taken by Chacko and Viceira (1999), who select the unity instrument, m(τ,Xt) = 1.
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increases, they become more and more correlated with each other, and their covariance

matrix, KT , becomes singular, therefore the optimal weighting matrix WT = K−1
T can not

be computed.

The selection of a grid for the real-valued index τ is not the only problematic issue. The

optimal choice of instruments m(τ,Xt) is cumbersome as well. Feuerverger and McDunnough

(1981), and Singleton (2001) discuss under which conditions the CF-based estimator achieves

the Cramér-Rao lower bound and show that the instrument that attains the bound is:

m(τ,Xt) =
1

(2π)p

∫
e−iτx∂ ln fθ

∂θ
(x|Xt) dx (2.4)

The drawback of this approach is that the instrument m requires the knowledge of the

unknown likelihood function fθ.
11

In this paper we will be able to address the two raised issues – (i) potential covariance

matrix singularity, and (ii) optimal selection of instrument without relying in the unknown

probability density function – using the framework of Carrasco and Florens (2000a), who

proposed using a continuum of moment conditions in the context of GMM.

2.2 Extending GMM to a continuum of moment conditions

Extension of the regular GMM to the one utilizing the continuum of moment conditions can

be understood as follows. In the framework of regular GMM τi, which indexes individual

moment conditions in (2.2), (2.3), can be selected to be equal to i/Nτ . Note that for finite

Nτ , the expression in (2.2) with the optimal weighting matrix is equivalent to:

θ̂T =argmin
θ

||K−1/2
T ĥT (θ)|| (2.5)

11There are certain parallels between the raised issues and the estimation of univariate subordinated

diffusions via an infinitesimal generator in Conley, Hansen, Luttmer, and Scheinkman (1997). They show

that, assuming a continous sampling, constructing moment conditions by applying the generator to the

likelihood score of the marginal distribution is optimal and, in particular, is more efficient than building

moments via the score directly. Being unable to implement in practice the corresponding optimal instrument

(or test function) for the discrete sampling case, they still use the score for the empirical application.
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where || · || is the euclidean norm on R
Nτ :

||f ||2 =
Nτ∑
τ=1

f 2(τ). (2.6)

Then letting Nτ increase without bound, the entire continuum set of moment conditions

can be recovered. When Nτ is infinite the objective function (2.2) can not be constructed.

The extension to infinite Nτ is easier to perform given the representation in (2.5) because

it suggests that one has to consider an objective function based on a different norm, which

takes into account the infiniteness of the set of possible values of τ :

||f ||2 =

∫
R
f(τ)f(τ)π(τ)dτ (2.7)

where f̄ denotes the complex conjugate of f , and π denotes a probability density function

(pdf), which is typically selected to be Gaussian.

This new norm gives a flavor of how one could use the continuum set of moment conditions

in a GMM framework. However, it is still not clear how one could compute the infinite-

dimensional covariance matrix KT . It turns out that this is feasible in a new space of moment

conditions, or more accurately, moment functions endowed with a norm (2.7) (Assumption

A.2). In this space, KT is understood as the covariance operator, and the problem of finding

its inverse is well studied in functional analysis. The next subsection will discuss these issues

in detail.

Applying the continuum of moment conditions principle to the CF-based moment con-

ditions (2.1), one is able to exploit all the information contained in CF. The appropriate

choice of m, which happens not to depend on the unknown p.d.f. f(Xt+1|Xt; θ), also be-

comes easy in this setting. As we will show in Section 4, viewing τ as a double index (r, s)′,

and constructing the C-GMM estimator based on moment functions:

ht(τ ; θ) = (eisXt+1 − ψθ(s|Xt))m(r,Xt) (2.8)

with

m(r,Xt) = eirXt (2.9)

yields an ML-efficient estimator.
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Such a choice of instrument is quite intuitive. Although we can not construct the opti-

mal instrument in (2.4), we can span it via a set of basis functions. The utilization of the

continuum of moment conditions is precisely what allows us to perform this spanning. More-

over, as we show in Appendix C, because of the simple functional form of the new optimal

instrument (2.9), the introduction of the double index does not increase the computational

complexity of the estimation procedure: all elements associated with the index r can be

computed in analytic form.

In order to further our understanding of the C-GMM methodology we next provide

informal statements of the key results, which show how to construct the estimator in the

case where the conditional CF is available in analytical form. Since moment conditions (2.1)

based on conditional CF form martingale difference sequence, all the results are particularly

simple. A rigorous statement of more general results will be provided in section 3.12

2.3 An Example of Computing the C-GMM Estimator

We assume that the stationary process Xt is a p × 1-vector of random variables which

represents the data-generating process indexed by a finite dimensional parameter θ ∈ Θ ⊂

R
q.

The C-GMM estimator is based on the arbitrary set of moment conditions:

Eθ0ht(τ ; θ0) = 0 (2.10)

where ht (τ ; θ) and index τ ∈ R
d. We will refer to ht(τ ; θ0) as moment function. Let

ĥT (τ ; θ0) =
∑T

t=1 ht(τ ; θ0)/T denote the sample mean of the moment functions. Having

the CF-based moment conditions (2.1) in mind, we assume here that the moment functions

form martingale difference sequences.

As discussed above, our goal is to consider all moment functions associated with different

values of the index τ. This requirement implies an infinity of possible functions. The most

12We will need more general results because CF-based estimation is not limited to analytic conditional

CF. In the following sections we will develop CF-based estimators when the observable data is not Markov,

and hence conditional CF is not available, and when there is no analytic expression for CF, i.e. simulated

C-GMM.
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convenient way to work with such infinite set is to impose a Hilbert space structure, and in

particular to define the inner product, which leads to the norm discussed in (2.7). Assump-

tion A.2 introduces a space L2 (π) to which ht(.; θ0) belongs as a function of τ. The inner

product in this space is defined as

〈f, g〉 =

∫
f (τ) g (τ)π (τ) dτ (2.11)

where g (τ) denotes the complex conjugate of g (τ) and π is a pdf usually selected to be

Gaussian. The norm corresponding to the inner product is ‖ f ‖2= 〈f, f〉 coincides with the

one in (2.7).

Anticipating the GMM asymptotic results, we need to think of an analogue of the optimal

weighting matrix, which features in the objective function (2.5). The covariance operator

K is the counterpart of the covariance matrix in finite dimension. It is an integral operator

that can be written as

Kf (τ1) =

∫
k (τ1, τ2) f (τ2)π (τ2) dτ2 (2.12)

with

k (τ1, τ2) = Eθ0

(
ht (τ1; θ0) ht (τ2; θ0)

)
(2.13)

In order to implement the C-GMM estimator with the optimal weighting operator (2.5),

we have to estimate K. Given a simple form of the operator (2.12), (2.13), we can estimate

it via the usual two-step procedure. In the remainder we let θ̂1
T be a T 1/2−consistent first

step estimate of θ0 :

θ̂1
T =argmin

θ

∥∥∥ĥT (τ ; θ)
∥∥∥ (2.14)

We construct the second-step covariance operator estimator by estimating k in (2.12) by

k̂T (τ1, τ2) =
1

T

T∑
t=1

ht

(
τ1; θ̂

1
T

)
ht

(
τ2; θ̂1

T

)
(2.15)

Finding the inverse of the covariance operator involves solving equation

Kg = f (2.16)
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with respect to g. Thus, the issue of covariance matrix singularity in regular GMM is re-

placed by the issue of covariance operator invertibility. As discussed in Carrasco and Florens

(2000a), since the inverse of K is not bounded, the solution of this equation is not continuous

in f, in other words, it is unstable to small perturbations of f . We, therefore, consider the

regularized version of the inverse, involving a penalizing term αT . Namely, the operator K

is replaced by some nearby operator that has a bounded inverse. For αT > 0, the equation:

(
K2

T + αT I
)
g = Kf (2.17)

has a unique stable solution for each f ∈ L
2(π). The Tikhonov approximation of the gener-

alized inverse to K is given by:

(KαT
T )−1 =

(
K2

T + αT I
)−1

KT

In order to implement the square-root of the inverse of the covariance operator we have

to represent it in terms of the eigenvalues, λ̂j and corresponding eigenfunctions (principal

components), φ̂j, of KT :

(KαT
T )−1/2 f =

T∑
j=1

√
λ̂j√

λ̂2
j + αT

〈
f, φ̂j

〉
φ̂j. (2.18)

This expression shows that αT is used to discard the smallest, i.e. the least informative,

principal components φ̂j, and, this way the analogue of the covariance matrix singularity

problem is resolved. The choice of αT is clearly important: if it is too large the generalized

inverse will be far away from the actual inverse, and if it is too small the generalized inverse

will be unstable. We determine the rate at which αT should converge to zero. However

note that the penalizing term αT really plays a role only to compute the optimal weighting

operator and hence to obtain an optimal C-GMM estimator. An estimator obtained for an

arbitrary fixed αT > 0 will be still consistent but will have a larger variance

Having understood how to estimate the covariance operator and how to approximate its

inverse, one way to implement the C-GMM estimator is to minimize the objective function:

θ̂T =argmin
θ

∥∥∥(KαT
T )−1/2 ĥT (τ ; θ)

∥∥∥ =argmin
θ

T∑
j=1

λ̂j

λ̂2
j + αT

∣∣∣〈ĥT (τ ; θ) , φ̂j

〉∣∣∣2 . (2.19)
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Such an estimator will have the usual
√
T asymptotic normality properties. However, the

computation of eigenvalues and eigenfunctions can be difficult in large samples. It turns out

that it is possible to rewrite the objective function (2.19) in terms of matrices and vectors.

Proposition 2.1 Solving (2.19) is equivalent to solving

min
θ
v̄′ (θ)

[
IT − C

[
αT IT + C2

]−1
C
]
v (θ) (2.20)

where C is a T × T−matrix with (t, l) element ctl/ (T − q), t, l = 1, ..., T, IT is the T × T

identity matrix, v = [v1, ..., vT ]′ with

vt (θ) =
〈
ĥT (τ ; θ) , ht

(
τ ; θ̂1

T

)〉
,

ctl =
〈
hl

(
τ ; θ̂1

T

)
, ht

(
τ ; θ̂1

T

)〉
.

Further computational simplifications are obtained by explicit substitution of the moment

functions (2.8) with optimal instruments (2.9). These computations are provided in the

Appendix C. Standard errors are computed in a similar fashion (see section 3.3).

Section 3 develops these ideas formally. We apply the martingale difference results dis-

cussed in this section to derive the ML-efficient estimator based on the conditional CF in

Section 4.1. Then, in Section 4.2, we use more general results to derive the properties of the

estimator based on joint CF, which is relevant for processes with latent variables. Finally,

Section 5 establishes properties of the simulation-based estimators when CF is not available

in analytic form.

3 C-GMM with dependent data

This section will extend the results of Carrasco and Florens (2000a) in the i.i.d. case to

the case where the data are weakly dependent. The first subsection proves asymptotic

normality and consistency of the C-GMM estimator, introduces the covariance operator

and its regularized version, which is known to yield the C-GMM estimator with the smallest

variance. The next subsection derives the convergence rate of the estimator of the covariance

operator. The third subsection proposes a simpler way to compute the C-GMM objective

function in large samples in terms of matrices and vectors as opposed to the computation of
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Carrasco and Florens (2000a) in terms eigenvalues and eigenfunctions. The last subsection

discusses the choice of moment conditions to achieve ML efficiency.

All regularity conditions used in this section are collected in Appendix A. All the proofs

are provided in Appendix D.

3.1 General asymptotic theory

The data are assumed to be weakly dependent (see Assumption A.1 for a formal definition).

The C-GMM estimator is based on the arbitrary set of moment conditions:

Eθ0ht(τ ; θ0) = 0 (3.1)

where ht (τ ; θ) ≡ h (τ, Yt; θ) with Yt = (Xt, Xt+1, .., Xt+L)′ for some finite integer L, and index

τ ∈ Rd. 13 As a function of τ, ht(.; θ0) is supposed to belong to the set L2 (π) as described

in definition A.2. Moreover all parameters are identified by the moment conditions (3.1),

see Assumption A.3. Let ĥT (τ ; θ0) =
∑T

t=1 ht(τ ; θ0)/T . In the sequel, we write the functions

ht(.; θ0), ĥT (.; θ0) as ht(θ0) and ĥT (θ0) or to simplify ht and ĥT . {ht(θ0)} is supposed to satisfy

the set of Assumptions A.4, in particular ht should be a measurable function of Yt. Since L

is finite, ht inherits the mixing properties of Xt. Finally, ht is assumed to be scalar because

the CF itself is scalar and hence we do not need results for a vector ht.

These assumptions allow us to establish the asymptotic normality of the moment func-

tions.

Lemma 3.1 Under regularity conditions A.1 to A.3, and A.4(i)(ii) we have

√
T ĥT (θ0) ⇒ N (0, K)

as T → ∞, in L2 (π) where N (0, K) is the Gaussian random element of L2 (π) with a zero

mean and the covariance operator K : L2 (π) → L2 (π) satisfying

〈Kf, g〉 (3.2)

= Eθ0

[
〈f, ht(θ0)〉 〈g, ht(θ0)〉

]
+

∞∑
j=2

Eθ0

[
〈f, h1(θ0)〉 〈g, hj(θ0)〉

]
+

∞∑
j=2

Eθ0

[
〈f, hj(θ0)〉 〈g, h1(θ0)〉

]
13In the previous section we discussed the case corresponding to L = 1.
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for all f and g in L
2 (π) .14 Moreover the operator K is a Hilbert-Schmidt operator.15

We can now establish the standard properties of GMM estimators: consistency, asymp-

totic normality and optimality.

Proposition 3.1 Assume the regularity conditions A.1 to A.4 hold. Moreover, let B be

a bounded linear operator defined on L2 (π) or a subspace of L2 (π). The null space of

B : {f ∈ L2 (π) : Bf = 0} = {0}. Let BT be a sequence of random bounded linear operators

converging to B. The C-GMM estimator

θ̂T =argmin
θ

∥∥∥BT ĥT (θ)
∥∥∥

has the following properties:

1. θ̂T is consistent and asymptotically normal such that

√
T
(
θ̂T − θ0

)
L→ N (0, V )

with

V =
〈
BEθ0 (∇θh) , BE

θ0 (∇θh)
〉−1

×
〈
BEθ0 (∇θh) , (BKB

∗)BEθ0 (∇θh)
〉

×
〈
BEθ0 (∇θh) , BE

θ0 (∇θh)
〉−1

.

2. Among all admissible weighting operators B, there is one yielding an estimator with

minimal variance. It is equal to K−1/2, where K is the covariance operator defined in

(3.2).

As discussed in Carrasco and Florens (2000a), the operator K−1/2 does not exist on the

whole space L2 (π) but only on a subset, denoted H (K) , which corresponds to the so-called

reproducing kernel Hilbert space (RKHS) associated with K (see Parzen, 1970, for details).

14Definition A.1 describes a Hilbert-space valued random element.
15For a definition and the properties of Hilbert-Schmidt operators, see Dautray and Lions (1988) or Dunford

and Schwartz (1988). As K is a Hilbert-Schmidt operator, it can be approached by a sequence of bounded

operators denoted KT . This property will become important when we discuss how to estimate K.
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The inner product defined on H (K) is denoted 〈f, g〉K .16 Since the inverse of K is not

bounded, the regularized version of the inverse, involving a penalizing term αT , is considered

(see the discussion of Equation (2.17)).

In order to implement the C-GMM estimator with the optimal weighting operator, we

have to estimate K, which can be done via bounded operator KT approaching K as the

sample size grows because K is a Hilbert-Schmidt operator (see Lemma 3.1). We postpone

the explicit construction of KT , which is very similar to the GMM procedure, until the next

subsection and establish the asymptotic properties of the optimal C-GMM operator, given

KT , first.

Proposition 3.2 Assume the regularity conditions A.1 to A.5 hold. Let KT denote a

consistent estimator of K that satisfies ‖KT −K‖ = Op (T−a) for some a ≥ 0 and

(KαT
T )−1 = (K2

T + αT I)
−1
KT denote the regularized estimator of K−1.17 The optimal GMM

estimator of θ is obtained by:

θ̂T =argmin
θ

∥∥∥(KαT
T )−1/2 ĥT (θ)

∥∥∥ (3.3)

and satisfies

√
T (θ̂T − θ0)

L→ N
(
0,
(〈
Eθ0 (∇θh) , E

θ0 (∇θh)
〉

K

)−1
)

(3.4)

as T and T aα
5/4
T go to infinity and αT goes to zero. 18

A simple estimator of the asymptotic variance of
√
T (θ̂T − θ0) will be discussed in Sub-

section 3.3. Proposition 3.2 gives a rate of convergence of αT but does not indicate how to

choose αT in practice. Recall that the estimator will be consistent for any αT > 0 but its

variance will be the smallest for the αT decreasing to zero at the right rate. In the simula-

tions, we choose an arbitrary αT relatively small. Of course a data-driven selection method

of αT would be preferable. Carrasco and Florens (2000b) propose a cross-validation method

to select αT by minimizing the mean square error of θ̂T . This method is developed in an iid

16The properties of the RKHS norm associated with this inner product are discussed in Appendix B.
17See the discussion of equations (2.16)-(2.18).
18Let θ = (θ1, ..., θq)

′. By a slight abuse of notation,
〈
Eθ0 (∇θh) , Eθ0 (∇θh)

〉
K

in (3.4) denotes the

q × q−matrix with (i, j) element
〈
Eθ0 (∇θih) , Eθ0

(
∇θjh

)〉
K
.
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context and its adaptation to time-series seems to be beyond the scope of the current paper.

Simulations in Carrasco and Florens (2000b) show that the estimator is not very sensitive

to the choice of αT .

3.2 Convergence rate of the estimator of the covariance operator

Note that the covariance operator defined in (3.2) is an integral operator that can be written

as

Kf (τ1) =

∫
k (τ1, τ2) f (τ2)π (τ2) dτ2 (3.5)

with

k (τ1, τ2) =
∞∑

j=−∞
Eθ0

(
ht (τ1; θ0) ht−j (τ2; θ0)

)
(3.6)

The function k is called the kernel of the integral operator K. To estimate K, we use a kernel

estimator of the type studied by Andrews (1991). Given the first step estimator θ̂1
T from

(2.14), we estimate the kernel of the covariance operator at the second step via:

k̂T (τ1, τ2) =
T

T − q

T−1∑
j=−T+1

ω

(
j

ST

)
Γ̂T (j) (3.7)

with

Γ̂T (j) =


1
T

∑T
t=j+1 ht

(
τ1; θ̂

1
T

)
ht−j

(
τ2; θ̂1

T

)
, j ≥ 0

1
T

∑T
t=−j+1 ht+j

(
τ1; θ̂

1
T

)
ht

(
τ2; θ̂1

T

)
, j < 0

(3.8)

where ω is a kernel and ST is a bandwidth that will be allowed to diverge at a certain

rate. The kernel ω is required to satisfy the regularity conditions A.6, which are based on

Assumptions B and C of Andrews (1991).

Denote f (λ) the spectral density of Yt at frequency λ and f (ν) its νth derivative at λ = 0.

Denote ων = (1/ν!) (dνω (x) /dxν)|x=0 .

Proposition 3.3 Assume that the regularity conditions A.1 to A.6 hold and that S2ν+1
T /T →

γ ∈ (0,+∞) for some ν ∈ (0,+∞) for which ων ,
∥∥f (ν)

∥∥ <∞. Then

‖KT −K‖ = Op

(
T−ν/(2ν+1)

)
.
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For the Bartlett kernel, ν = 1 and for the Parzen, Tuckey-Hanning and QS kernels, ν = 2.

To obtain the result of Proposition 3.3, we have selected the value of ST that delivers the

fastest rate for KT . For this ST , we then select αT such that T aα
5/4
T goes to infinity according

to Proposition 3.2. Instead, we could have chosen ST and αT simultaneously. However, from

Proposition 3.2, it seems that the faster the rate for KT , the faster the rate for αT . So this

approach seems to guarantee the fastest rate for αT .

Note that if {ht} are uncorrelated (as in Section 2.3), then the kernel of K simplifies

to k (τ1, τ2) = Eθ0

(
ht (τ1; θ0) ht (τ2; θ0)

)
and can be estimated by the sample average. The

resulting estimator will satisfy ‖KT −K‖ = Op

(
T−1/2

)
, hence a = 1/2 in that case. When

{ht} are correlated, the convergence rate of KT is slower and accordingly the rate of conver-

gence of αT to zero is slower.

3.3 Simplified Computation of the C-GMM Estimator

Carrasco and Florens (2000a) propose to write the objective function in terms of the eigen-

values and eigenfunctions of the operator KαT
T . The computation of eigenvalues and eigen-

functions can be burdensome, particularly in large samples. We review briefly this method

before turning to a more attractive approach that consists in rewriting the objective function

in terms of matrices and vectors.

Note that k̂T is a degenerate kernel that can be rewritten as

k̂T (τ1, τ2) =
1

T − q

T∑
t=1

ht

(
τ1; θ̂

1
T

)
Uht

(
τ2; θ̂

1
T

)
where

Uht

(
τ ; θ̂1

T

)
= ω (0) ht

(
τ ; θ̂1

T

)
+

T∑
j=1

ω

(
j

ST

)(
ht−j

(
τ ; θ̂1

T

)
+ ht+j

(
τ ; θ̂1

T

))

using the convention that ht

(
τ ; θ̂1

T

)
= 0 if t ≤ 0 or t > T. Hence KT has at most T

eigenvalues (denoted λ̂j) different from zero. They can be calculated by solving the equation

KT φ̂j = λ̂jφ̂j. It turns out that λ̂1, ..., λ̂T are the eigenvalues of the T ×T−matrix C defined

in Proposition 3.4 below. The eigenfunctions of KT take the form φ̂j (τ) =
∑T

t=1 βjtht

(
τ ; θ̂1

T

)
where βj = (βj1, ..., βjT )′ , j = 1, ..., T are the T eigenvectors of C. The φ̂j are orthogonal but
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need to be normed, let φ̂j denote the orthonormalized eigenfunctions of KT . The objective

function in equation (3.3) becomes

T∑
j=1

λ̂j

λ̂2
j + αT

∣∣∣〈ĥT (θ) , φ̂j

〉∣∣∣2 . (3.9)

The objective function (3.9) can be rewritten as a quadratic form involving only matrices

and vectors.

Proposition 3.4 Solving (3.3) is equivalent to solving

min
θ
w′ (θ)

[
IT − C

[
αT IT + C2

]−1
C
]
v (θ) (3.10)

where C is a T × T−matrix with (t, l) element ctl/ (T − q), t, l = 1, ..., T, IT is the T × T

identity matrix, v = [v1, ..., vT ]′ and w = [w1, ..., wT ]′ with

vt (θ) =

∫
Uht

(
τ ; θ̂1

T

)
ĥT (τ ; θ) π (τ) dτ,

wt (θ) =
〈
ht

(
τ ; θ̂1

T

)
, ĥT (τ ; θ)

〉
,

ctl =

∫
Uht

(
τ ; θ̂1

T

)
hl

(
τ ; θ̂1

T

)
π (τ) dτ.

Note that in the case where the {ht} are uncorrelated, the former formulas simplify:

Uht = h̄t, vt = wt, ctl =
〈
hl

(
τ ; θ̂1

T

)
, ht

(
τ ; θ̂1

T

)〉
. Hence we obtain the Proposition 2.1.

Similarly, an estimator of the asymptotic variance of
√
T (θ̂T − θ0) given in (3.4) can be

computed in a simple way.

Proposition 3.5 Suppose that the assumptions of Proposition 3.3 hold and T, T ν/(2ν+1)α
3/4
T

go to infinity and αT goes to zero. Then a consistent estimator of the q × q−matrix〈
Eθ0 (∇θh) , E

θ0 (∇θh)
〉

K
is given by〈
∇θĥT

(
θ̂T

)
, (KαT

T )−1 ∇θĥT

(
θ̂T

)〉
=

1

αT (T − q)
w′ (θ)

[
IT − C

[
αT IT + C2

]−1
C
]
v (θ)

where C is the T × T−matrix defined in Proposition 3.4, IT is the T × T identity matrix,

v = [v1, ..., vT ]′ and w = [w1, ..., wT ]′ are T × q−matrices with (t, j) element

(vt (θ))j =

∫
Uht

(
τ ; θ̂1

T

)
∇θj

ĥT

(
θ̂T

)
π (τ) dτ,

(wt (θ))j =
〈
ht

(
τ ; θ̂1

T

)
,∇θj

ĥT

(
θ̂T

)〉
.
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3.4 Efficiency

In Proposition 3.2, we saw that the asymptotic variance of θ̂T is
(〈
Eθ0 (∇θh) , E

θ0 (∇θh)
〉

K

)−1
.

Using results on RKHS (see Appendix B), it is possible to compute this term and hence to es-

tablish conditions under which this variance coincides with the Cramer Rao efficiency bound.

We consider arbitrary functions h (τ, Yt; θ0) that satisfy the identification Assumption A.3

and where, as usual, Yt is the (L+1)− vector of r.v.: Yt = (Xt, Xt+1, . . . , Xt+L)′. Let L2 (Yt)

be the set of random variables of the form g (Yt) with Eθ0
[
|g (Yt)|2

]
<∞. It is assumed that

h (τ, Yt; θ0) belongs to L2 (Yt) . Let S be the set of all random variables that may be written

as
∑n

j=1 cjh (τj , Yt; θ0) for arbitrary integer n, real constants c1, c2, ..., cn and points τ1, ..., τn

of I. Denote S its closure, S contains all the elements of S and their limits in L2 (Yt)−norm.

Proposition 3.6 Assume that (i) Xt is stationary, α− mixing, and Markov of order L,

(ii)
∫

supθ∈Θ |h (τ, y0; θ) fθ (x0, x1, ..., xL)| dx0dx1...dxL < ∞. (iii) the conditional pdf of xt

given xt−1, .., xt−L is differentiable w.r. to θ. (iv) the optimal GMM estimator, θ̂T , based on

h (τ, Yt; θ) , τ ∈ Rd is tractable and its asymptotic distribution is as given in (3.4).

Then, θ̂T is asymptotically as efficient as MLE if and only if

∇θ ln fθ (xt+L|xt+L−1, .., xt; θ)|θ=θ0
∈ S.

A proof of this proposition is given in Carrasco and Florens (2002). It states that the

GMM estimator is efficient if and only if the score belongs to the span of the moment

conditions. This result is close to that of Gallant and Long (1997) who show that if the

auxiliary model is rich enough to encompass the DGP, then the efficient method of moments

estimator is asymptotically efficient. Note that the condition (ii) is trivially satisfied when

{ht} is bounded. It is important to remark that π does not affect the efficiency as long as

π > 0 on Rd. In small samples however, the choice of π might play a role.
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4 GMM estimators based on the characteristic func-

tion

This section studies the properties of moment conditions (3.1) based on the conditional or

joint characteristic. The first subsection will focus on Markov processes while the second

subsection will discuss mainly the nonmarkovian case.

4.1 Using the conditional characteristic function

In this subsection, we consider moment conditions based on the conditional CF (CCF) and

discuss the choice of the instruments so that the estimator based on these moment conditions

achieves ML efficiency.

Suppose an econometrician observes realizations of a Markov process X ∈ Rp. The con-

ditional characteristic function of Xt+1

ψθ (s|Xt; θ) = Eθ
[
eisXt+1|Xt

]
is assumed to be known. We denote ψθ (s|Xt; θ0) by ψθ (s|Xt) . Let Yt = (Xt, Xt+1)

′ .

The CCF permits to construct unconditional moment conditions for an arbitrary choice

of instrument, m, which is a function of Xt. Besides being a function of Xt, m may be

a function of an index r either equal to or different from s. The following two types of

unconditional moment functions are of particular interest:

SI – the Single Index moment functions: h (s, Yt; θ) = m(s,Xt)
(
eisXt+1 − ψθ (s|Xt)

)
where

s ∈ Rp and m (s,Xt) = m (−s,Xt)

DI – the Double Index moment functions: h (τ, Yt; θ) = m(r,Xt)
(
eisXt+1 − ψθ (s|Xt)

)
where τ = (r, s)′ ∈ R2p and m (r,Xt) = m (−r,Xt)

Note that in either case, the sequence of moment functions {h (., Yt; θ)} is a martingale

difference sequence with respect to the filtration It = {Xt, Xt−1, ..., X1}, hence it is uncorre-

lated, which simplifies the estimation of the covariance operator K.

We now discuss which choice of instruments m used in the unconditional moment func-

tions is optimal, i.e. yields an efficient CF-GMM estimator, where “efficient” means as
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efficient as the MLE. One set of optimal instruments is known since Feuerverger and Mc-

Dunnough (1981) in the i.i.d. setting, and was extended by Singleton (2001) for affine

diffusions. Singleton (2001) shows that the optimal SI instrument is

m(s,Xt) =
1

(2π)p

∫
e−isx∇θ ln fθ (x|Xt; θ0) dx. (4.1)

He proves, that under standard regularity assumptions, the solution of∫
m(s,Xt)

(
eisXt+1 − ψθ (s|Xt)

)
ds = 0

for this choice of instrument is asymptotically efficient. As noted in Section 1, the drawback

of this instrument is that it depends on the unknown probability density function.

When r = s is not imposed, there is a choice of instrument that does not depend on the

unknown p.d.f., while attaining the ML-efficiency. The optimal DI instrument is

m(r,Xt) = eirXt . (4.2)

For this choice of instrument, the GMM estimator is asymptotically efficient.

Proposition 4.1 Consider

h (τ, Yt; θ) = eirXt
(
eisXt+1 − ψθ (s|Xt)

)
, (4.3)

with τ = (r, s)′ ∈ R
2p and denote K the covariance operator of {h (., Yt; θ)} . Assume that

N (K) = {f ∈ L2 (π) : Kf = 0} = {0} and Assumptions A.2, A.3, A.7, and A.8 hold. Then

the optimal GMM estimator based on (4.3) satisfies

√
T
(
θ̂T − θ0

)
L→ N

(
0, I−1

θ0

)
as T , Tα

5/2
T go to infinity and αT goes to zero. Iθ0 denotes the Information matrix.

The condition N (K) = {0} is equivalent to require that the covariance matrix be non

singular in the usual GMM. The efficiency resulting from moment functions (4.3) can be

proved from Proposition 3.6. Indeed S̄ the closure of the span of {ht} includes all functions

in L2 (Yt) hence it also includes the score function. Alternatively, one can prove this result
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directly by computing the asymptotic variance of the GMM estimator and comparing it with

the information matrix, see Equation (D.14) in Appendix.

The intuition for the efficiency result is as follows. For the GMM estimator to be as

efficient as the MLE, the moment conditions need to be sufficiently rich to permit to recover

the score. By the Fourier inversion formula, the SI moment functions correspond to the

score, indeed we have

1

(2π)p

∫
eisXt+1

[∫
e−isx∇θ ln fθ (x|Xt; θ0) dx

]
ds = ∇θ ln fθ (Xt+1|Xt; θ0) .

The advantage of SI moment functions is that they depend on a single index. This is done

at a cost: the optimal instrument is a function of the unknown score. If one does not want

to rely on instruments of type (4.1), one needs to use a double index. The DI moment

functions with instruments defined in (4.2) span all functions in L2 (Yt) and the unknown

score in particular.

Singleton (2001) addresses the problem of the unknown score by replacing the integral in

(4.1) by a sum over a finite grid and computing the respective m as an optimal instrument in

the Hansen (1985) framework. This estimator approaches ML efficiency as the grid becomes

finer and finer. However, for too fine a grid, the covariance matrix of the resulting moment

functions becomes singular. Hence, one has to know the optimal rate of convergence of

the discretization interval to be able to implement such an estimator. The second caveat

is that optimal instruments depend on the selected grid, i.e. as one refines the grid, new

instruments have to be selected. Therefore, it is not clear how it is going to impact the

estimator in practice. In our approach the counterpart of the discretization grid size is

the penalization term αT whose convergence rate was discussed in the previous section.

Moreover, we choose our instrument (4.2) prior to choosing the discretization grid to compute

the integrals. Therefore, we are facing a pure numerical error, which can be controlled via

standard numerical techniques.

Finally, we notice that since the moment functions are uncorrelated and the optimal

instrument is known to have an exponential form, the computation of the terms C and v in

the objective function (3.10) is simplified. Appendix C outlines these computations. Note

that all elements involving the index r can be computed analytically. Therefore, using the
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DI instrument does not introduce computational complications.

4.2 Using the joint characteristic function

Many important models in finance involve latent factors, the most prominent example being

the stochastic volatility (SV) model. In this case, the full system can be described by a

Markov vector (Xt,Xt)
′ consisting of observable and latent components. As a result, Xt is

most likely not Markov.19

For non-Markovian processes, the conditional characteristic function is usually unknown

and difficult to estimate. On the other hand, the joint characteristic function (JCF), if not

known, can be computed by simulations.20 21 Denote the JCF as:

ψL
θ (τ) = Eθ

(
eiτ ′Yt

)
(4.4)

where τ =(τ0, τ1, ..., τL)′ , and Yt = (Xt, Xt+1, .., Xt+L)′ .

Feuerverger (1990) has considered this problem. His estimator is the solution to∫ (
ψL

θ (τ) − ψL
T (τ)

)
m (τ) dτ = 0. (4.5)

where ψL
T (τ) denotes the empirical JCF. For a special weighting function m, which is very

similar to (4.1), Feuerverger shows that the estimator is as efficient as the estimator which

solves

1

T

T∑
t=1

∇θ ln fθ (Xt+L|Xt+L−1, ..., Xt; θ) = 0 (4.6)

where fθ (Xt+L|Xt+L−1, ..., Xt) is the true distribution of Xt+L conditional on Xt, ..., Xt+L−1.

This result holds even if the process Xt is not Markovian of order L (or less).

If Xt is Markovian of order L then the variance of the resulting estimator is I−1
θ (L) with

Iθ (L) = Eθ

(
∇θ ln fθ (Xt+L|Xt+L−1, ..., Xt; θ)

2) (4.7)

19Florens, Mouchard, and Rolin (1993) give necessary and sufficient conditions for the marginal of a jointly

Markov process to be itself Markov.
20Jiang and Knight (2002) discuss examples of diffusion models for which JCF is available in analytical

form. Yu (2001) derives JCF of the Merton model generalization to self-exciting jump component.
21Simulations are discussed in Section 5.
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which is the Cramér-Rao efficiency bound. IfXt is not Markovian of order L then the variance

of the estimator has the usual sandwich form because ∇θ ln fθ (Xt+L|Xt+L−1, ..., Xt; θ0) is not

a martingale difference sequence with respect to {Xt+L, ..., X1} . This variance differs from

I−1
θ (L) and is greater than the Cramér-Rao efficiency bound. Note that (4.6) should not

be confused with quasi-maximum likelihood estimation because fθ (Xt+L|Xt+L−1, ..., Xt; θ) ,

is the exact distribution conditional on a restricted information set.

Feuerverger (1990) notes that the estimator based on the JCF can be made arbitrarily

efficient provided that “L (fixed) is sufficiently large” although no proof is provided. This

argument is clearly valid when the process is Markovian of order L. However, in the non-

Markovian case, the only feasible way to achieve the efficiency would be to let L go to infinity

with the sample size at a certain (slow) rate, the question of the optimal speed of convergence

has to the best of our knowledge not been addressed in the literature. The implementation

of such approach might be problematic since for L too large, the lack of data to estimate

consistently the characteristic function might result in an θ̂T with undesirable properties.

The approach of Feuerverger based on the joint characteristic function of basically the full

vector (X1, X2, ..., XT ) is not realistic because only one observation of this vector is available.

Instead, we can avoid using the unknown instrument m in (4.5) by considering a moment

condition based on the JCF of Yt :

h (τ, Yt, θ) = eiτYt − ψL
θ (τ) . (4.8)

for some small L = 0, 1, 2, . . . 22 Assume that the JCF is sufficient to identify the parame-

ters. Now the moments h (τ, Yt, θ0) are not a martingale difference sequence (even if Xt is

Markovian) and the kernel of K is given by

k (τ1, τ2) =

∞∑
j=−∞

Eθ0

[
h (τ1, Yt, θ0)h (τ2, Yt−j, θ0)

]
.

When Xt is Markov of order L, the optimal GMM estimator is efficient as stated below.

Proposition 4.2 Assume that Xt is Markov of order L and that the assumptions of Propo-

sition 3.3 hold and T, T ν/(2ν+1)α
5/4
T go to infinity and αT goes to zero. Then the optimal

GMM estimator using the moments (4.8) is as efficient as the MLE.
22Jiang and Knight (2002), in a particular case of an affine stochastic volatility model, arbitrary base the

instrument m on the normal density and experiment with values of L from 1 to 5.
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As the closure of the span of {ht} contains the score ∇θ ln fθ (Xt+L|Xt+L−1, ..., Xt; θ0),

the efficiency follows from Proposition 3.6.

Note that if Xt is Markov, it makes more sense to use moment conditions based on the

CCF because the resulting estimator, while being efficient, is easier to implement (as {ht}

are m.d.s.). If Xt is not Markov, the JCF-GMM estimator will not be efficient. However, it

might still have some good properties if the temporal dependence dies out quickly. As the

computation of the optimal KT may be burdensome (it involves two smoothing parameters

ST and αT ), one may decide to use a suboptimal weighting operator obtained by inverting

the covariance operator without the autocorrelations.

One interesting question is then: What is the resulting loss of efficiency? We can answer

this question only partially because we are not able to compute the variance of the optimal

JCF-GMM estimator when Xt is not Markov. However, we have a full characterization of

the variance of the suboptimal JCF-GMM estimator.

Assume that one ignores the autocorrelations and uses as weighting operator the inverse

of the operator K̃ associated with the kernel:

k̃ (τ1, τ2) = Eθ0

[
h (τ1, Yt, θ0)h (τ2, Yt, θ0)

]
. (4.9)

Proposition 4.3 Assume that the assumptions of Proposition 4.2 hold. The asymptotic

variance of the suboptimal JCF-GMM estimator θ̂T using (4.8) and (4.9) is the same as that

of the estimator θ̃T which is the solution of

1

T

∑
t

∇θ ln fθ (Yt; θ) = 0 (4.10)

where ln fθ (Yt; θ) is the exact joint distribution of Yt.

Since using the efficient weighting matrix should result in a gain of efficiency, the as-

ymptotic variance of θ̃T (given in Appendix D) can be considered as an upper bound for

the variance of the estimator obtained by using the optimal weighting operator that is K−1.

To illustrate the results of Proposition 4.3, consider first the case where {Xt} is i.i.d. and

L = 1. Then solving (4.10) is basically (for T large) equivalent to solving

2
1

T

∑
t

∇θ ln fθ (Xt; θ) = 0
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so that the resulting estimator θ̂T is efficient. Now turn to the case where {Xt} is Markov

of order 1 and again L = 1 then (4.10) is equivalent to

1

T

∑
t

∇θ ln fθ (Xt|Xt−1; θ) +
1

T

∑
t

∇θ ln fθ (Xt−1; θ) = 0

which will not deliver an efficient estimator in general.

5 Simulated Method of Moments

This section introduces the Simulated Method of Moments extensions of CF-based estima-

tors. Such estimators are of interest for applications involving processes that do not have

analytical expressions for the CF.

In this section we assume that Xt is a Markov process satisfying

Xt+1 = H (Xt, εt, θ) (5.1)

where εt is an i.i.d. sequence independent of Xt with known distribution.

For instance, Xt may be the solution of a dynamic asset pricing model as that presented

by Duffie and Singleton (1993). If Xt is a discretely sampled diffusion process then H in (5.1)

can be obtained from an Euler discretization.23 Moments based on the unknown conditional

or joint characteristic function are used to estimate θ. Simulation methods are required in

this case. Consider two cases of interest:

• Assume Xt is fully observable. Then (5.1) permits to draw data from the conditional

distribution of Xt+1 given Xt and to estimate the CCF. This simulation scheme will

be called conditional simulation.

23However, there is a pitfall with this approach. When the number of discretization intervals per unit of

time, N, is fixed, none of the J simulated paths, X̃j
t , is distributed as Xt and the estimator θ̂T is biased.

Broze, Scaillet and Zakoian (1998) document the discretization bias of the Indirect Inference estimator and

show that it vanishes when N → ∞ and J is fixed. In a recent paper, Detemple, Garcia, and Rindisbacher

(2002) study estimators of the conditional expectation of diffusions. They show that if J is allowed to diverge

too fast relative to N, then the bias of their estimator blows up. The same is likely to be true here. However

as there is no limitation on how fine we can discretize (besides the computer precision), we assume that N

is chosen sufficiently large for the discretization bias to vanish.
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• Assume Xt = (Zt, Z
∗
t ) where Z∗

t is a latent variable, e.g. the volatility in a stochastic

volatility model. Zt only is observable. In such cases, it is usually unknown how to

draw from the conditional distribution of Zt. Moreover using the CCF of Zt will not

deliver an efficient estimator because Zt is not Markovian. On the other hand, it is

easy to simulate a path of Zt and to construct an estimator of the joint characteristic

function.

The main difference in the properties of the two estimators is that in the first case, the

estimator is as efficient as the MLE when the number of simulated paths, J, goes to infinity

while in the second case the estimator will, in general, never reach the efficiency bound even

if J goes to infinity. A subsection will be devoted to each case.

5.1 Conditional simulation

Assume Xt is observable. For a given θ and conditionally on Xt, we generate a sequence{
X̃θ,j

t+1|t, j = 1, 2, ..., J
}

from

X̃θ,j
t+1|t = H (Xt, ε̃j,t+1, θ)

where {ε̃j,t}j,t are identically and independently distributed as {εt} . Note that
{
X̃θ,j

t+1|t

}
j
are

i.i.d. conditionally on Xt and distributed as Xt+1|Xt when θ = θ0. The moment conditions

become

h̃J
T (τ ; θ) =

1

T

T∑
t=1

eirXt

(
eisXt+1 − 1

J

J∑
j=1

eisX̃θ,j
t+1|t

)

where τ = (r, s). To facilitate the discussion, we introduce the following notations:

Yt = (Xt, Xt+1)
′

ht(τ ; θ) = eirXt [eisXt+1 − ψθ(s|Xt)]

h̃
(
Yt, X̃

θ,j
t+1|t, τ

)
= eirXt [eisXt+1 − eisX̃θ,j

t+1|t ]

h̃J
t (τ ; θ) =

1

J

J∑
j=1

h̃
(
Yt, X̃

θ,j
t+1|t, τ

)
= eirXt

(
eisXt+1 − 1

J

J∑
j=1

eisX̃θ,j
t+1|t

)
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The resulting
{
h̃J

t (τ ; θ0)
}

are martingale difference sequences with respect to {Xt, Xt−1, ..., X1}

and therefore are uncorrelated. Moreover,

Eθ
[
h̃
(
Yt, X̃

θ,j
t+1|t, τ

)
|Yt

]
= ht (τ ; θ) .

Let K be the covariance operator associated with the kernel

k (τ1, τ2) = Eθ0

[
ht (τ1; θ0) ht (τ2; θ0)

]
(5.2)

and let U be the operator with kernel

u (τ1, τ2) = Eθ0

[(
h̃J

t − ht

)
(τ1; θ0)

(
h̃J

t − ht

)
(τ2; θ0)

]
.

Denote K̃ the covariance operator of
{
h̃J

t

}
. Let K̃αT

T be the regularized estimator of K̃. The

GMM estimator associated with the moments h̃J is defined as

θ̃T =argmin
θ

∥∥∥h̃J
T (., θ)

∥∥∥2

K̃
αT
T

.

Now we can state the efficiency result:

Proposition 5.1 Suppose that Assumptions A.2, A.3, A.7, A.8(i), A.9, and A.10 hold for

h̃J
t and a fixed J . We have

√
T
(
θ̃T − θ0

)
L→ N

(
0,
(〈
Eθ0 (�θh) , E

θ0 (�θh)
〉

K̃

)−1
)

as T and Tα
5/2
T go to infinity and αT goes to zero. Moreover, K̃ = K + 1

J
U and we have the

inequality (〈
Eθ0 (�θh) , E

θ0 (�θh)
〉
(K+ 1

J
U)

)
≤
(〈
Eθ0 (�θh) , E

θ0 (�θh)
〉

K

)
. (5.3)

For J large, the SMM estimator will be as efficient as the CCF-GMM estimator which

itself has been shown to reach the Cramér-Rao Efficiency bound because we have

〈
Eθ0 (�θh) , E

θ0 (�θh)
〉

K
= Iθ0 .
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5.2 Path simulation

Assume now that observable St is only a subset of a larger system Xt = (Zt, Z
∗
t ). The

JCF of Yt = (Zt, Zt+1, .., Zt+L)′, as defined in (4.4), is assumed to be unknown and will be

estimated via simulations. First, note that because only Zt is observable, we might not be

able to identify all the parameters characterizing the distribution of the full system Xt. The

identification Assumption A.3 needs to be checked on a case by case basis. Second, note also

that even if the full system is Markov, Zt is usually not Markov. Therefore there is no hope

to reach the Cramér-Rao efficiency bound when L is fixed, as discussed in Section 4.2.

For a given θ, we generate a sequence
{
X̃θ

j , j = 1, 2, ..., J (T )
}

from

X̃θ
j+1 = H

(
X̃θ

j , ε̃j+1, θ
)

(5.4)

X̃θ
0 = X̃0

where {ε̃j} are identically and independently distributed as {εt} , X̃0 is some arbitrary start-

ing value, and the number of simulations J (T ) goes to infinity with T . This path simulation

scheme was suggested by Duffie and Singleton (1993). Contrary to the simulation scheme

in the previous section, the sequence
{
X̃θ

j

}
is completely independent of the observations

{Xt} . Note that, as the starting value X̃0 is not drawn from the stationary distribution of

Xt, the sequence
{
X̃θ

j

}
is not stationary. We assume that Xt and consequently

{
X̃θ

j

}
are

geometric ergodic, which guarantees that X̃θ
j becomes stationary exponentially fast. Hence

the initial starting value will not affect the distribution of our estimator. A possibility that

is not exploited here is to draw a sequence of values from (5.4) and to use as X̃0 the say nth

value drawn which is basically stationary for n sufficiently large.Denote Z̃θ
j the component

of X̃θ
j corresponding to Zj and Ỹj =

(
Z̃θ

j , ..., Z̃
θ
j+L

)′
.

The estimation procedure is based on

h̃T (τ ; θ) =
1

T

T∑
t=1

eiτYt − 1

J (T )

J(T )∑
j=1

eiτ Ỹj ≡ 1

T

T∑
t=1

h̃t (τ ; θ) .

If ψL
θ were known, the following moment conditions would be used

hT (τ ; θ) =
1

T

T∑
t=1

eiτYt − ψL
θ (τ) ≡ 1

T

T∑
t=1

ht (τ ; θ)
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Note that {ht (τ ; θ)} are not a martingale difference sequence and are autocorrelated. There-

fore, K, the covariance operator associated with {hT (τ ; θ)} , has a more complicated expres-

sion than in the previous subsection:

k (τ1, τ2) =
∞∑

i=−∞
Eθ0

[(
eiτ ′

1Yt − ψL
θ (τ1)

) (
eiτ ′

2Yt−i − ψL
θ (τ2)

)]
We estimate K using the kernel estimator KT described in 3.7 and 3.8 where ψL

θ (τ1) can be

estimated using the observations Yt. Let KαT
T be the regularized version of KT . The GMM

estimator associated with moments h̃ is defined as

θ̃T =argmin
θ

∥∥∥h̃T (., θ)
∥∥∥2

K
αT
T

.

Note that X̃θ
j+1 depends on θ through the past history of

{
X̃θ

j

}
. Sufficient conditions

for the uniform weak law of large numbers of h̃T (., θ) are discussed in Duffie and Single-

ton (1993). Let T/J(T ) converge to ζ as T goes to infinity. Then, under the additional

assumption of geometric ergodicity of Xt (Assumption A.11) we have the following result:

Proposition 5.2 Suppose that Assumptions A.2 to A.6 (for h̃t replacing ht and Eθ0 denotes

the expectation with respect to the stationary distribution of Yt), A.9, and A.11 hold. Let

KT be the kernel estimator of K with kernel ω and bandwidth ST satisfying the conditions

of Proposition 3.3. Then,

√
T
(
θ̃T − θ0

)
L→ N

(
0, (1 + ζ)

(〈
Eθ0 (�θh) , E

θ0 (�θh)
〉

K

)−1
)

as T and T ν/(2ν+1)α
5/4
T go to infinity and αT goes to zero.

It should be noted that the variance of θ̃T can be made as close as possible to that of θ̂T

in Proposition 3.2 by letting T/J(T ) go to 0. Because of the autocorrelations, the estimation

of the optimal weighting operator K is burdensome. To simplify this computation we could

use the covariance operator that ignores the autocorrelations but the resulting estimator

would be less efficient. Its variance is given by Proposition 4.3 for the non-simulated case.

The variance of the C-SMM estimator is again equal to (1 + ζ) times the variance obtained

in the non-simulated context.
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6 Monte-Carlo Study

The purpose of this section is to evaluate the performance of the CF-GMM estimator via

Monte-Carlo analysis. We consider several term-structure models, which have conditional

a CF in closed-form. First, in order to show that our method is on par with others, we

compare its performance with that of MLE, QMLE, and EMM on the example of the CIR,

or square-root, process. We then proceed with an example of a scalar jump-diffusion, for

which MLE is not available, and EMM implementation would involve considerable numerical

difficulties. Finally, we report performance of the estimator for a three-factor affine diffusions

model, which was previously handled by EMM (Dai and Singleton, 2000) and QMLE (Duffee,

2002).

In all three cases, when we perform computations of the objective function, we select

the standard normal density as the p.d.f. π, which defines the inner product. Numerical

integration is performed over the real line truncated from -5 to +5. The value of αT has

been chosen equal to 0.02 in all the experiments and sample sizes.

6.1 A Scalar Diffusion (CIR)

The work horse of term structure models is the CIR square-root process:

drt = (θ − κrt) dt+ σ
√
rtdWt (6.1)

which has the following conditional characteristic function (see e.g. Singleton, 2001):

ψ(τ |rt) =

(
1 − iτ

c

)−2θ/σ2

exp

{
iτσ2e−κ

1 − iτ
c

rt

}
(6.2)

c =
2κ

σ2(1 − e−κ)

This specification is rejected by many studies for term structure pricing, but found to model

the short rate quite reasonably. Therefore, we will use this model as an example. When

κ, θ and σ are all strictly positive and σ2 ≤ 2θ then the square root process has a unique

fundamental solution and its marginal density is Gamma and its transition density is a type

I Bessel function distribution or noncentral χ2 with a fractional order (see e.g. Cox et al.,
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1985). Hence the ML is well defined as a closed form solution for the transition density is

available.

The simulation design is identical to Zhou (2001). This is done on purpose as it allows

us to compare our results with the MLE, QMLE and EMM results reported in Zhou (2001).

Two sample sizes are considered, namely T = 500, and T = 1500 with a weekly sampling

frequency in mind.

We consider the two scenarios Zhou reports in detail. The first picks an empirically

plausible process and considers the parameter estimates obtained from Gallant and Tauchen

(1998), namely drt = (0.02491 − 0.00285rt)dt + 0.0275
√
rtdWt. This process exhibits the

near-unit root behavior that matches the data and has a small unconditional variance. As a

result, the conditional density of the process looks almost Gaussian.

Zhou (2001) considers other cases where one would expect moment-based estimators

to do relatively poorly, among them we consider the worst scenario (i.e. “Scenario 8” in

Zhou (2001)). It is a scenario with rich conditional volatility dynamics and non-Gaussian

innovations with the process drt = (2.491− 0.285rt)dt+ 1.1
√
rtdWt. It is not an empirically

plausible process, but a challenge for moment-based procedures.

Table 1 reports the results for 1000 iterations for the two scenarios with sample sizes

T = 500, 1500. We report the Mean Bias, Median Bias and Root Mean Squared Error of the

following estimators: MLE, QMLE, EMM , CF-GMM without instruments, i.e. m(τ,Xt) ≡

1, and finally CF-GMM using optimal DI-instruments (4.2). The first three estimators

appeared in Zhou (2001) and we report his results only for the purpose of comparison.

Panel A of Table 1 covers the first parameter setting taken from Gallant and Tauchen.

The performance of CF-GMM with and without optimal instruments for θ and κ is compa-

rable to MLE and vastly better than QMLE and EMM. However, performance of CF-GMM

is worse for σ, especially when compared to MLE and QMLE. Still, the underperformance of

CF-GMM for σ is marginal compared to that of EMM. In Panel B of Table 1 we report the

more challenging scenario. The CF-GMM with optimal instruments is again close to MLE,

particularly in the larger sample. The same patterns as in Panel A reappear.
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6.2 A Scalar Jump-Diffusion (Vasicek with exponential jumps)

Even if one considers affine jump-diffusion models, there are not many of them which possess

a closed-form characteristic function: most of them require numerical solution of the ODEs.

One notable exception is a model proposed by Das and Foresi (1996). The diffusion part

of their model is represented by the Vasicek, or Ornstein-Uhlenbeck, process and the jump

component has an exponentially distributed absolute value of jump size with a sign of the

jump determined by a Bernoulli variable:

drt = (θ − κrt)dt+ σdWt + JtdNt (6.3)

|Jt| ∼ EXP (α)

sign(Jt) ∼ BIN(β)

Nt ∼ POI(λ)

Das and Foresi (1996) derive the characteristic function for this process:

ψ(τ |rt) = exp (A(τ) +B(τ)rt) (6.4)

A(τ) =
iτθ

κ

(
1 − e−κ

)
− τ 2σ2

4κ

(
1 − e−2κ

)
+

iλ(1 − 2β)

κ

[
arctan

(
ταe−κ

)
− arctan (τα)

]
+

λ

2κ
log

(
1 + τ 2α2e−2κ

1 + τ 2α2

)
B(τ) = iτe−κ

The presence of parameter β allows for negative and positive jumps and controls skewness

of the interest rates. For simplicity we set β = 1, i.e. we evaluate a simplified version of the

model with positive jumps only.

In order to be consistent with the previous subsection, we take parameter values from

Gallant and Tauchen (1998). They estimate a Vasicek model drt = (0.02949−0.00283rt)dt+

0.09802dWt. We make up parameters for the jump part: λ = 0.09615, which corresponds to

five jumps a year, and α = 0.005, which corresponds to five basis points change in interest

rate.

This model does not have an analytic likelihood, so we can not compare it with this

efficiency benchmark. We are not aware of any frequentist methodology, which would be

able to handle this model. The exceptions are method of moments based approaches, such
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as GMM, EMM, and our CF-based method. Clearly, GMM with a finite set of moments

conditions will be less efficient than our method. EMM produces an objective function,

which is very jagged in the jump intensity parameter. As a result estimation is very difficult:

one either has to approximate a jump component by a diffusive component as in Andersen,

Benzoni, and Lund (2002) or profile the intensity parameter as in Chernov, Gallant, Ghysels,

and Tauchen (2002). As a result, we will not be able to contrast our methodology with any

benchmark.

Table 2 reports the results for 1000 iterations with sample sizes T = 500, 1500. As in

the previous section, we report the Mean Bias, Median Bias and Root Mean Squared Error.

The results are fairly straightforward to summarize. Without optimal instruments, the CF-

GMM estimator has considerable bias and is also inefficient. For example, the parameter κ

with a true value of 0.00283, has a mean bias of 7.3483. When the optimal instruments are

used this bias is completely eliminated. The other parameters have less severe bias without

optimal instruments, which is again eliminated with optimal instruments. This includes the

jump intensity, a parameter typically difficult to estimate. The same observations apply to

efficiency. The RMSE of κ is disastrous without instruments. Optimal instruments reduce

the RMSE dramatically for all the parameters.

6.3 A Vector Diffusion (Three-factor affine model)

In this section we consider an affine model estimated by Duffee (2002) who uses a Gaussian

density involving analytic expressions for the first and second conditional moments. In

particular, we consider the three factor affine model appearing in equations (19a-d) of Duffee

(2002) with empirical results reported in his Table V. For the purpose of the exercise, we

simulate the state process that determines zero coupon bonds via a linear transformation,

i.e., we simulate equation (using Duffee’s notation):
dXt,1

dXt,2

dXt,3

 =




0

(Kθ)2

(Kθ)3

 +


k11 k12 k13

k21 k22 k23

k31 k32 k33




Xt,1

Xt,2

Xt,3


 dt+ StdWt
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where St is a diagonal matrix with elements St(ii) =
√
αi + (βi1 βi2 βi3)Xt for i = 1, 2 and

3. The parameter values corresponding to the empirical estimates of Duffee (2002) are: Kθ2

= 0.222, Kθ3 = -2.299, k11 = 0.172, k12 = -0.295, k21 = -0.197, k22 = 0.406, k31 = 0.564, k32

= -1.669, k33 = 1.721 and all elements of the diagonal matrices St zero, except α3 = β11 =

β22 = β32 = 1.

The results are reported in Table 3, again considering the two sample sizes T = 500, 1500.

We observe a picture qualitatively very similar to the one in the previous section. It is clear,

despite the absence of the efficiency benchmark, that CF-GMM with optimal instrument

provides a very accurate estimator even in fairly small (T = 500) samples.

Conclusion

This paper showed how to construct maximum likelihood efficient estimators in the settings

where the maximum likelihood estimation itself is not feasible. The solution is to use GMM

and to select moment functions, which are based on characteristic functions, and optimal

instruments, which form a basis spanning the unknown likelihood score. The efficiency is

achieved by using the whole continuum of possible moment conditions resulting from this

approach. We provide practical results allowing to construct such an estimator as well as

auxiliary results pertaining to the cases when data are not Markov (estimation based on the

joint characteristic function) and when characteristic functions are not available in analytical

form (simulated method of moments estimation). The method is especially attractive for

term structure models, where typically there are more data than underlying factors, and

for mixture models, such as jump-diffusions, where likelihood could be unbounded even if

available in analytic form. Our Monte-Carlo study shows that the method indeed performs

on par with MLE, and fares better than other methods. We also provide favorable finite-

sample evidence for the cases where MLE is not feasible.

The methodology is applicable to estimation of a wide range of non-linear time series

models. It has particular relevance for empirical work in finance. Asset pricing models

are frequently formulated in terms of stochastic differential equations, which have no closed

form solution for the conditional density based on discrete-time observations. Motivated by
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these avenues of application, the future work will have to refine our results on estimation

of non-Markovian processes and latent states as well as develop statistical inference in the

framework of characteristic function based continuum of moment conditions.
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A Regularity Conditions

Assumption A.1 The stochastic process Xt is a p×1-vector of random variables. Xt is stationary and

α−mixing with coefficients αj that satisfy
∑∞

j=1 j
2αj < ∞. The distribution of (X1, X2, X3, ...) is indexed

by a finite dimensional parameter θ ∈ Θ ⊂ Rq and Θ is compact.

The condition on the mixing numbers is satisfied if Xt is α−mixing of size -3.24 Sufficient conditions for

ρ− and β− mixing (and, therefore, α−mixing) of univariate diffusions can be found in Chen et al. (1999).

For subordinated diffusions, they can be found in Carrasco et al. (1999) with many examples.

For illustration, consider a stationary scalar diffusion process with drift coefficient, µ, and diffusion coef-

ficient σ2. Then a sufficient condition for xt to be β−mixing with geometric decay (and therefore α−mixing

with geometric decay) is that (µ/σ + 0.5 (∂σ/∂x)) is negative at the right boundary and positive at the left

boundary. Weaker conditions on µ and σ permit to establish β−mixing with polynomial decay rate. The

condition in Assumption A.1 is relatively weak and is expected to be satisfied for a large class of processes.

The following assumption introduces the Hilbert space of reference.

Assumption A.2 π is the p.d.f. of a distribution that is absolutely continuous with respect to Lebesgue

measure on Rd. π (τ) > 0 for all τ ∈ Rd. L2 (π) is the Hilbert space of complex-valued functions that are

square integrable with respect to π :

L
2 (π) =

{
g : R

d → C |
∫

|g (τ)|2 π (τ) dτ <∞
}

Denote 〈., .〉 and ‖ . ‖ the inner product and the norm defined on L2 (π). The inner product is 〈f, g〉 =∫
f (τ) g (τ)π (τ) dτ where g (τ) denotes the complex conjugate of g (τ) . If f = (f1, ..., fm)′ and g =

(g1, ..., gm)′ are vectors of functions of L
2 (π), we denote 〈f, g〉 the m × m−matrix with (i, j) element∫

fi (τ) gj (τ)π (τ) dτ.

We also have to define a Hilbert-space analogue of a random variable:

Definition A.1 An L2 (π)− valued random element g has a Gaussian distribution on L2 (π) with co-

variance operator K if, for all f ∈ L2 (π) , the real-valued random variable 〈g, f〉 has a Gaussian distribution

24Note that a size -2 (instead of -3) is sufficient to establish the asymptotic normality of the estima-

tor (Proposition 3.2). However we need a stronger condition (weaker dependency structure) to show the

consistency of covariance operator estimate, KT (Proposition 3.3).
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on R with variance 〈Kf, f〉.25

We assume that the moment conditions (3.1) identify all the parameters of interest:

Assumption A.3 The equation

Eθ0 (ht (τ ; θ)) = 0 for all τ ∈ R
d, π − almost everywhere

has a unique solution θ0 which is an interior point of Θ. Eθ0 denotes the expectation with respect to the

distribution of Yt for θ = θ0.

{ht(θ0)} is supposed to satisfy the set of assumptions:

Assumption A.4 (i) h is a measurable function from Rd × Rdim(Y ) × Θ into C.

(ii) ht (τ ; θ) is continuously differentiable with respect to θ and ht (τ ; θ) ∈ L∞
(
π ⊗ P θ

)
where

L∞
(
π ⊗ P θ

)
is the set of measurable bounded functions of (τ, Yt).

(iii) supθ∈Θ

∥∥∥ĥT (θ) − Eθ0ht (θ)
∥∥∥ = Op

(
1√
T

)
supθ∈Θ

∥∥∥∇θĥT (θ) − Eθ0∇θht (θ)
∥∥∥ = Op

(
1√
T

)
, where ∇θ denotes the derivative with respect to θ.

Note that we do not try to provide minimal assumptions and that A.4(ii) could certainly be relaxed.

However, as our moment conditions are based on the conditional CF and on the joint CF, they will be

necessarily bounded. We will check later that all our assumptions are satisfied in the context of CF-GMM.

The following assumption about the moment function ht is required for establishing the properties of

the optimal C-GMM estimator:

Assumption A.5 Let K be the asymptotic covariance operator of
√
T ĥT (θ0) . The null space of K :

N (K) =
{
f ∈ L2 (π) : Kf = 0

}
= {0} . Eθ0ht (θ) ∈ H (K) for all θ ∈ Θ and Eθ0∇θht (θ) ∈ H (K) for all

θ ∈ Θ.

The kernel ω, used in construction of the estimator of the covariance kernel, satisfies the following

conditions:

25Background material on the Hilbert space - valued random elements can be found in, for instance, Chen

and White (1998).
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Assumption A.6 (i) The kernel ω satisfies ω : R → [−1, 1], ω (0) = 1, ω (x) = ω (−x), x ∈ R,∫
ω2 (x) dx <∞,

∫
|ω (x)| dx <∞. ω is continuous at 0 and at all but a finite number of points.

(ii) For each τ ∈ Rd, Eθ0 supθ∈Θ ‖∇θht (τ ; θ)‖2
E < ∞ and Eθ0 supθ∈Θ ‖∇θθht (τ ; θ)‖2

E < ∞ where

∇θθht (τ ; θ) denotes the q× q matrix of second derivatives of ht (τ ; θ) and ‖.‖E denotes the Euclidean norm.

The following assumption is needed in Section 4.1. to use the condition characteristic function in the

markovian case.

Assumption A.7 The stochastic process Xt, is a p × 1–vector of random variables. Xtis stationary,

Markov, and α−mixing with
∑∞

j=1 j
2αj < ∞. The conditional pdf of Xt+1 given Xt, fθ (xt+1|xt; θ) , is

indexed by a parameter θ ∈ Θ ⊂ Rq and Θ, is compact. fθ (xt+1|xt; θ) is continuously differentiable w.r. to

θ. fθ (xt+1|xt; θ0) is denoted fθ (xt+1|xt) .

Now, we elaborate on the conditions to implement the efficient C-GMM estimator. Some of the assump-

tions, e.g. Assumption A.5, might seem to be difficult to verify. We can check these conditions using the

properties of the RKHS (see Appendix B). Below, we give a set of primitive assumptions under which the

general Assumptions A.1, A.5, A.4 to A.6(ii) are satisfied.

Assumption A.8 (i) fθ (xt+1|xt; θ) <∞ for all θ ∈ Θ and

Eθ0

[
∇θfθ (xt+1|xt)∇θfθ (xt+1|xt)

′

fθ0 (xt+1|xt)

]
<∞

for all θ ∈ Θ. ψθ is differentiable and
∫

supθ∈Θ |∇θψθ (s|xt)| ds <∞.

(ii) ψθ (s|Xt; θ) is twice continuously differentiable in θ. Eθ0 ‖∇θψθ (.|Xt; θ)‖2+δ
< ∞ for some δ > 0

and
∑∞

j=1 α
δ/(2+δ)
j <∞.

(iii) For each s ∈ R�, Eθ0 supθ∈Θ ‖∇θψθ (s|Xt; θ)‖2
E <∞ and Eθ0 supθ∈Θ ‖∇θθψθ (s|Xt; θ)‖2

E <∞.

Proposition A.1 Assumption A.7 implies Assumption A.1. If Assumption A.7 is satisfied and ht is

defined by

h (τ, Yt; θ) = eirXt
(
eisXt+1 − ψθ (s|Xt)

)
, (A.1)

with τ = (r, s)′ ∈ R
2p then Assumption A.8 implies Assumptions A.4, A.5, and A.6(ii).

The proof is provided in Appendix D.

In the section on the simulated method of moments, our starting point is the following model.
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Assumption A.9 Xt satisfies

Xt+1 = H (Xt, εt, θ)

for some measurable transition function H : Rp × RN × Θ for some N > 0. εt is an i.i.d. sequence of

RN−valued random variables independent of Xt with a known distribution that does not depend on θ.

We will need an assumption, which corresponds to Assumption A.8(ii) and (iii) for the particular mo-

ments h̃J
t used in the conditional simulation case of the simulated method of moments (section 5.1).

Assumption A.10 (i) H is twice continuously differentiable in θ.

(ii) Eθ0Eε ‖∇θH (Xt, εt, θ)‖2+δ
E <∞ for some δ > 0 and

∑∞
j=1 α

δ/(2+δ)
j <∞. Eε denotes the expectation

with respect to the distribution of εt.

(iii) Eθ0Eε supθ∈Θ ‖∇θH (Xt, εt, θ)‖2
E <∞ and Eθ0Eε supθ∈Θ ‖∇θθH (Xt, εt, θ)‖2

E <∞.

The following assumption is required for the proof of asymptotic properties of the simulated estimator

in case of path simulation (section 5.2).

Assumption A.11 Xt is geometrically ergodic and Eθ0 supθ∈Θ

[
∇θe

iτ Ỹj

]
<∞. Eθ0 denotes the expec-

tation with respect to the stationary distribution of Yt.

B Norm in a RKHS

To verify whether Assumption A.5 is satisfies, we need to be able to compute ‖g‖2
K , the norm of g in the

RKHS associated with K. This section gives results on the norm in a RKHS that appear in Parzen (1970)

and are further discussed in Carrasco and Florens (2002).

Let K be the covariance operator

K : L
2 (π) → L

2 (π)

f → g (τ) =
∫
k (τ, τ2) f (τ2)π (dτ2) .

k (., .) defines an inner product:

k(τ1, τ2) = 〈h (τ1) , h (τ2)〉H0 .

If {ht} is a martingale difference sequence, we have

〈h (τ1) , h (τ2)〉H0 = Eθ0

(
ht (τ1) ht (τ2)

)
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where h (τ2) denotes the complex conjugate of h (τ2) . If {ht} depends on some Yt = (Xt, Xt+1, ..., Xt+L)′

which is autocorrelated, we may have

〈h (τ1) , h (τ2)〉H0 =
∞∑

j=−∞
Eθ0

(
h (τ1, Y0)h (τ2, Yj)

)
.

The question of interest is to compute ‖g‖K for a specific g ∈ H(K). Let

C (g) =
{
G : g (τ) = 〈G, h (τ)〉H0 ∀τ ∈ Rd

}
. (B.1)

Proposition B.1 The norm in H (K) satisfies

‖g‖2
K = min

G∈C(g)
‖G‖2

H0 .

Note that for the purpose of computing ‖g‖2
K and because ‖g‖2

K = ‖ḡ‖2
K , it is same whether one defines

C (g) as in (B.1) or as follows

C (g) =
{
G : g (τ) = 〈h (τ) , G〉H0 ∀τ ∈ Rd

}
. (B.2)

If g is a L−vector, then G is also a L−vector and the equation is C (g) becomes gj (τ) = 〈h (τ) , Gj〉H0 for

j = 1, ..., L.

C On the Computation of the C-GMM Objective Func-

tion

This appendix discusses the computation of the matrix C and the vector v in the simplified C-GMM objective

function (3.10). Let yt = (xt+1, xt), τ = (r, s), and π̂ is the Fourier transform of π defined as

π̂ (xt, xt+1) =
∫
ei(rxt+sxt+1)π (τ) dτ. (C.1)

Assuming r and s to be independent,

π (τ) = π (r, s) = πr (r) πs (s) (C.2)

If π is the p.d.f. of the bivariate normal variable y with zero mean and variance Σ, then π̂ (y) =

exp[−(y′Σy/2)] where Σ is diagonal. Consider the moments of the type:

h (yt+1, τ ; θ) =
(
eisxt+1 − ψθ (s|xt)

)
eirxt . (C.3)
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An element of v is computed as follows:

vt (θ) =
1
T

∑
j

∫
h
(
yt, τ ; θ̂1T

)
h (yj , τ ; θ) π (τ) dτ

=
1
T

∑
j

∫ (
eisxt+1 − ψθ̂1

T
(s|xt)

)
eirxt

(
eisxj+1 − ψθ (s|xj)

)
eirxjπ (τ) dτ

=
1
T

∑
j

∫
eis(xj+1−xt+1)eir(xj−xt)π (τ) dτ

− 1
T

∑
j

∫
ei(sxj+1+r(xj−xt))ψθ̂1

T
(−s|xt)π (τ) dτ

− 1
T

∑
j

∫
ei(−sxt+1+r(xj−xt))ψθ (s|xj)π (τ) dτ

+
1
T

∑
j

∫
ψθ̂1

T
(−s|xt)ψθ (s|xj) eir(xj−xt)π (τ) dτ.

The first term is equal to 1/T
∑

j π̂ (xj − xt, xj+1 − xt+1) . Given (C.2), the other terms involve:

Ir ≡
∫
eir(xj−xt)πr(r)dr = π̂ (xj − xt, 0) . (C.4)

Therefore, the second and third terms have the form:

I1 = Ir ·
∫
e−isvψθ (s|w) πs (s) ds. (C.5)

with opposite signs, and the last term is equal to:

I2 = Ir ·
∫
ψθ̂1

T
(−s|xt)ψθ (s|xj)πs (s) ds (C.6)

The remaining integrals, which have to be evaluated numerically, can be characterized as multidimen-

sional integrals over infinite integration regions with a Gaussian weight function π. Evaluation of such

integrals represents an important problem in the evaluation of quantum-mechanical matrix elements with

gaussian wave functions in atomic and molecular, nuclear, and particle physics as well as in other fields.

Hence a plethora of fast and accurate numerical methods have been developed, see e.g. Genz and Keister

(1996).

Note that integral I1 in (C.5) evaluated at (v, w) = (xt+1, xt) looks very similar to the Fourier inverse

of the CF used in Singleton (2001, Equation (14)) to construct conditional density for MLE estimation.

Presence of the density π turns out to be critical in the simplification of the numerical integration task.

Figure 1 compares the integrand used in Singleton with I1 and I2. It is clear that π dampens off all the

oscillating behavior of the integrand needed for MLE.

The elements of the matrix C can be computed similarly by replacing θ by θ̂1T .
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D Proofs

Proof of Lemma 3.1. To prove this result, we need a functional central limit theorem for weakly dependent

process. We use the results of Politis and Romano (1994). By Assumptions A.1 and A.4(i), {ht} is stationary

α−mixing with
∑∞

j=1 j
2αj < ∞. Moreover by Assumption A.4(ii), {ht} is bounded with probability one.

The result follows directly from Theorem 2.2 of Politis and Romano (1994). Note that Politis and Romano

require that the α coefficient of {ht} satisfies
∑j

i=1 i
2α (i) ≤ Kjµ for all 1 ≤ j ≤ T and some µ< 3/2 which

is satisfied.

Note that K is an integral operator with kernel k defined in Equation (3.6). An operator K : L2 (π) →

L
2 (π) with kernel k is an operator of Hilbert Schmidt if∫ ∫

|k (τ1, τ2)|2 π (τ1)π (τ2) dτ1dτ2 <∞.

As π is a pdf, it is enough to show that k (τ1, τ2) < ∞. As k (τ1, τ2) is the long-run covariance of {ht}, it

is well-known (see e.g. Politis and Romano, 1994) that a sufficient condition for k to be finite is that {ht}

is bounded with probability one and the α-coefficients of {ht} are summable i.e.
∑

j α (j) < ∞. These two

conditions are satisfied under our assumptions. Hence K is a Hilbert-Schmidt operator.

Proof of Proposition 3.1. The proof of Proposition 3.1(1) is similar to that of Theorem 2 in Carrasco

and Florens (2000a) and is not repeated here. The optimality argument follows from the proof of Theorem

8 in Carrasco and Florens (2000a).

Proof of Proposition 3.2. We need as preliminary result the following lemma. It generalizes Theorem

7 of Carrasco and Florens (2000a) to the case whereKT has typically a slower rate of convergence than T−1/2.

Its proof is given after that of Proposition 3.2.

Lemma D.1 Assume KT is such that ‖KT −K‖ = Op (T−a), (KαT

T )−1 =
(
K2

T + αT I
)−1

KT , and αT

goes to zero. We have

∥∥∥(KαT

T )−1/2 − (KαT )−1/2
∥∥∥ = Op

(
1

T aα
3/4
T

)
.

Let f and fT be such that ‖fT − f‖ = O
(
1/

√
T
)
. Then, for f ∈ H (K) + H (K)⊥, we have

∥∥∥(KαT

T )−1/2
fT −K−1/2f

∥∥∥ = Op

(
1

T aα
3/4
T

)
.

Although in the standard GMM framework, the proof of the rate of convergence is not needed prior to

proving asymptotic normality, here the
√
T−rate of convergence of the estimator is required for a reason
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that will become clear later. First we prove consistency, second we compute the rate of convergence, third

we prove normality.

Consistency. The consistency follows from Theorem 3.4. of White (1994) under the following three

conditions.

(a) QT (θ) = −
∥∥∥(KαT

T )−1/2
ĥT (θ)

∥∥∥2

is a continuous function of θ for all finite T .

(b) QT (θ) P→ Q (θ) = −
∥∥∥(K)−1/2Eθ0ht (θ)

∥∥∥2

uniformly on Θ.

(c) Q (θ) has a unique maximizer θ0 on Θ.

We check successively (a), (b), and (c). (a) hT (θ) is continuous in θ by Assumption A.4 (ii). For T

finite, (KαT

T )−1/2 is a bounded operator (because αT > 0) and therefore
∥∥∥(KαT

T )−1/2
ĥT (θ)

∥∥∥2

is a continuous

function of θ.

(b) The uniform convergence as T and T aα
3/4
T go to infinity follows from A.4 and Lemma D.1.

(c) Assumption A.5 implies that K is a positive definite operator.. By the property of the norm, we

have
∥∥Eθ0h (θ)

∥∥2

K
= 0 ⇒ Eθ0h (θ) = 0 which implies θ = θ0 by Assumption A.3.

Rate of convergence. To establish that
√
T θ̂T = Op (1) , we apply Theorem 3.2.5 of van der Vaart

and Wellner (1996). Note that this theorem does not assume that the data are iid and does not impose any

specific form on Q. We need to check that the following two conditions hold:

(a) Q (θ) −Q (θ0) ≤ −C ‖θ − θ0‖2
.

(b) For every T and sufficiently small δ, we have

Eθ0 sup
‖θ−θ0‖<δ

|(QT −Q) (θ) − (QT −Q) (θ0)| ≤
Cδ√
T

where C is some positive constant.

We prove successively (a) and (b).

(a) Using the mean value theorem around θ0 of Eθ0h (θ), we get

Q (θ) = Q (θ0)

−2 (θ − θ0)
′ 〈
Eθ0∇θh

(
θ
)
, Eθ0h (θ0)

〉
K

− (θ − θ0)
′ 〈Eθ0∇θh

(
θ
)
, Eθ0∇θht

(
θ
)〉

K
(θ − θ0)

for some mean value θ. The result of (a) follows from Eθ0h (θ0) = 0 and
〈
Eθ0∇θht

(
θ
)
, Eθ0∇θht

(
θ
)〉

K
<∞

and nonsingular by Assumption A.5.
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(b) Here again we use the mean value theorem around θ0 of Eθ0h (θ).

(QT −Q) (θ) − (QT −Q) (θ0)

= −2 (θ − θ0)
′
〈

1
T

∑
∇θht

(
θ
)
, ĥT (θ0)

〉
K

αT
T

− (θ − θ0)
′
{〈

1
T

∑
∇θht

(
θ
)
,

1
T

∑
∇θht

(
θ
)〉

K
αT
T

−
〈
Eθ0∇θh

(
θ
)
, Eθ0∇θh

(
θ
)〉

K

}
(θ − θ0)

for some mean value θ. We have〈
1
T

∑
∇θht

(
θ
)
, ĥT (θ0)

〉
K

αT
T

=
〈

1
T

∑
∇θht

(
θ
)
− Eθ0∇θh

(
θ
)
, ĥT (θ0)

〉
K

αT
T

+
〈
Eθ0∇θh

(
θ
)
, ĥT (θ0)

〉
K

αT
T

≤
∥∥∥∥ 1
T

∑
∇θht

(
θ
)
− Eθ0∇θh

(
θ
)∥∥∥∥

K
αT
T

∥∥∥ĥT (θ0)
∥∥∥

K
αT
T

+
〈
Eθ0∇θh

(
θ
)
, ĥT (θ0)

〉
K

αT
T

.

By Lemma D.1,
∥∥ 1

T

∑
∇θht

(
θ
)
− Eθ0∇θh

(
θ
)∥∥

K
αT
T

= Op

(
T aα

3/4
T

)
, and by Lemma 3.1,

∥∥∥ĥT (θ0)
∥∥∥

K
αT
T

=

Op

(
1/

√
T
)

and
〈
Eθ0∇θh

(
θ
)
, ĥT (θ0)

〉
K

αT
T

= Op

(
1/

√
T
)
.Moreover Lemma D.1 implies

〈
1
T

∑
∇θht

(
θ
)
,

1
T

∑
∇θht

(
θ
)〉

K
αT
T

−
〈
Eθ0∇θh

(
θ
)
, Eθ0∇θh

(
θ
)〉

K
= Op

(
T aα

3/4
T

)
.

Hence

sup
‖θ−θ0‖<δ

|(QT −Q) (θ) − (QT −Q) (θ0)| ≤
C1δ√
T

+
C2δ

2

T aα
3/4
T

.

For δ small enough (take δ < T aα
3/4
T /

√
T ), the second term is negligeable with respect to the first term on

the right hand side. The result of (b) follows.

Asymptotic Normality. Using a Taylor expansion of the first order condition〈
∇θĥT

(
θ̂T

)
, ĥT

(
θ̂T

)〉
K

αT
T

= 0

around θ0, we obtain

√
T
(
θ̂T − θ0

)
= −

[〈
∇θĥT

(
θ̂T

)
,∇θĥT

(
θ̄
)〉

K
αT
T

]−1

×
〈
∇θĥT

(
θ̂T

)
,
√
T ĥT (θ0)

〉
K

αT
T

where θ̄ is a mean value. We need to establish:

N1 -
〈
∇θĥT

(
θ̂T

)
,∇θĥT

(
θ̄
)〉

K
αT
T

P→
〈
Eθ0∇θht (θ0) , Eθ0∇θht (θ0)

〉
K
.

N2 -
〈
∇θĥT

(
θ̂T

)
,
√
T ĥT (θ0)

〉
K

αT
T

L→ N
(
0,
〈
Eθ0∇θht (θ0) , Eθ0∇θht (θ0)

〉
K

)
.
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N1 - First we have Eθ0∇θht (θ) ∈ H (K) by Assumption A.5. Second, we have
∥∥∥∇θĥT (θ)

∥∥∥2

K
αT
T

converges

in probability to
∥∥Eθ0∇θht (θ)

∥∥2

K
uniformly in θ as T and T aα

3/4
T go to infinity by A.4 and Lemma D.1.

Hence the result N1 follows.

N2 - We have

〈
(KαT

T )−1/2 ∇θĥT

(
θ̂T

)
, (KαT

T )−1/2
√
T ĥT (θ0)

〉
=

〈
(KαT

T )−1/2 ∇θĥT

(
θ̂T

)
−K−1/2Eθ0∇θht (θ0) , (KαT

T )−1/2
√
T ĥT (θ0)

〉
(D.1)

+
〈
K−1/2Eθ0∇θht (θ0) , (KαT

T )−1/2
√
T ĥT (θ0)

〉
(D.2)

(D.1) ≤
∥∥∥(KαT

T )−1/2 ∇θĥT

(
θ̂T

)
−K−1/2Eθ0∇θht (θ0)

∥∥∥∥∥∥(KαT

T )−1/2
∥∥∥∥∥∥√T ĥT (θ0)

∥∥∥ .
Using the fact that θ̂T converges at the

√
T−rate, we have

∥∥∥∇θĥT

(
θ̂T

)
− Eθ0∇θht (θ0)

∥∥∥ = Op

(
1/

√
T
)

and

by Lemma D.1, we have∥∥∥(KαT

T )−1/2 ∇θĥT

(
θ̂T

)
−K−1/2Eθ0∇θht (θ0)

∥∥∥ = Op

(
1/

(
T aα

3/4
T

))
,∥∥∥(KαT

T )−1/2
∥∥∥ = Op

(
1/α1/2

T

)
.

The term (D.1) is Op

(
1/

(
T aα

5/4
T

))
= op (1) as T aα

5/4
T goes to infinity by assumption.

The term (D.2) can be decomposed as〈
K−1/2Eθ0∇θht (θ0) , (KαT

T )−1/2
√
T ĥT (θ0)

〉
=

〈
K−1/2Eθ0∇θht (θ0) ,

(
(KαT

T )−1/2 − (KαT )−1/2
)√

T ĥT (θ0)
〉

(D.3)

+
〈
K−1/2Eθ0∇θht (θ0) , (KαT )−1/2

√
T ĥT (θ0)

〉
. (D.4)

We have

(D.3) ≤
∥∥∥K−1/2Eθ0∇θht (θ0)

∥∥∥∥∥∥(KαT

T )−1/2 − (KαT )−1/2
∥∥∥∥∥∥√T ĥT (θ0)

∥∥∥
= Op

(
1

T aα
3/4
T

)
by Lemma D.1. It remains to show that (D.4) is asymptotically normal. Denote (λj , φj : j = 1, 2...) the

eigenvalues and eigenfunctions of K.

(D.4) =
T∑

t=1

∞∑
j=1

1√
T

1√
λ2

j + αT

〈
Eθ0∇θht, φj

〉
〈ht, φj〉

≡ 1√
T

T∑
t=1

ZTt.
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where θ0 is dropped to simplify the notation. By Theorem A.3.7. of White (1994), we have

1
σT

T∑
t=1

ZTt
L→ N (0, 1)

if the following assumptions are satisfied:

(a) Eθ0 (|ZTt|µ) ≤ ∆ <∞ for some µ> 2

(b) ZTt is near epoch dependent on {Vt} of size -1 where {Vt} is mixing of size -2µ/(µ− 2).

(c) σ2
T ≡ var

(∑T
t=1 ZTt

)
satisfies σ−2

T = O
(
T−1

)
.

We verify Conditions (a) to (c) successively. (a) is satisfied for all µ because ZTt is bounded with

probability one. Indeed, we have

ZTt =
∞∑

j=1

1√
λ2

j + αT

〈
Eθ0∇θh, φj

〉
〈ht, φj〉

≤

 ∞∑
j=1

1
λ2

j + αT

∣∣〈Eθ0∇θh, φj

〉∣∣21/2  ∞∑
j=1

|〈ht, φj〉|2
1/2

by Cauchy-Schwartz inequality. As µ2
j + αT ≥ µ2

j and

∞∑
j=1

1
λ2

j

∣∣〈Eθ0∇θh, φj

〉∣∣2 =
〈
Eθ0∇θh,E

θ0∇θh
〉

K
,

∞∑
j=1

|〈ht, φj〉|2 = ‖ht‖2
.

We have

ZTt ≤
〈
Eθ0∇θh,E

θ0∇θh
〉

K
‖ht‖2 ≤ ∆ <∞

with probability one. (b) It is easy to verify that ZTt is near epoch dependent on {ht} of arbitrary size. (c)

We have

1
T
var

(
T∑

t=1

ZTt

)

= var


∞∑

j=1

1√
λ2

j + αT

〈
Eθ0∇θh, φj

〉 〈√
T ĥT , φj

〉
=

∞∑
j=1

1√
λ2

j + αT

∣∣〈Eθ0∇θh, φj

〉∣∣2 var (〈√T ĥT , φj

〉)
+
∑
i�=j

1√
λ2

i + αT

√
λ2

j + αT

〈
Eθ0∇θh, φi

〉
〈Eθ0∇θh, φj〉cov

(〈√
T ĥT , φi

〉
,
〈√

T ĥT , φj

〉)
.

Using as before λ2
j + αT ≥ λ2

j , both sums can be bounded by a term that does not depend on T , therefore

we may, in passing at the limit as T → ∞, interchange the limit and the summation. By Lemma 3.1, we
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have
√
T ĥT

L→ N (0,K) and hence

lim
T→∞

cov
(〈√

T ĥT , φi

〉
,
〈√

T ĥT , φj

〉)
= 〈Kφi, φj〉 =

 λj if i = j

0 otherwise
.

Therefore

1
T
var

(
T∑

t=1

ZTt

)
→

∑
j

1
λj

∣∣〈Eθ0 �θ h, φj

〉∣∣2 =
〈
Eθ0 �θ h,E

θ0 �θ h
〉

K

as T → ∞ proving that σ−2
T = O

(
T−1

)
.

Hence, we have

(D.4) L→ N
(
0,
〈
Eθ0 �θ h,E

θ0 �θ h
〉

K

)
.

This completes the proof.

Proof of Lemma D.1. Note that∥∥∥(KαT

T )−1/2 − (KαT )−1/2
∥∥∥

=
∥∥∥(αT +K2

T

)−1/2
K

1/2
T −

(
αT +K2

)−1/2
K1/2

∥∥∥
=

∥∥∥(αT +K2
T

)−1/2
K

1/2
T −

(
αT +K2

T

)−1/2
K1/2

∥∥∥
+
∥∥∥(αT +K2

T

)−1/2
K1/2 −

(
αT +K2

)−1/2
K1/2

∥∥∥
≤

∥∥∥(αT +K2
T

)−1/2
∥∥∥︸ ︷︷ ︸

≤α
−1/2
T

∥∥∥K1/2
T −K1/2

∥∥∥︸ ︷︷ ︸
=Op(T−a)

(D.5)

+
∥∥∥[(αT +K2

T

)−1/2 −
(
αT +K2

)−1/2
]
K1/2

∥∥∥ (D.6)

Using A−1/2 −B−1/2 = A−1/2
[
B1/2 −A1/2

]
B−1/2, we get

(D.6)

=
∥∥∥(αT +K2

T

)−1/2
[(
αT +K2

T

)1/2 −
(
αT +K2

)1/2
] (
αT +K2

)−1/2
K1/2

∥∥∥
≤

∥∥∥(αT +K2
T

)−1/2
∥∥∥︸ ︷︷ ︸

≤α
−1/2
T

∥∥∥(αT +K2
T

)1/2 −
(
αT +K2

)1/2
∥∥∥︸ ︷︷ ︸

=Op(T−a)

∥∥∥(αT +K2
)−1/4

∥∥∥︸ ︷︷ ︸
≤α

−1/4
T

∥∥∥(αT +K2
)−1/4

K1/2
∥∥∥︸ ︷︷ ︸

≤1

.

Hence (D.6) = Op

(
T−aα

−3/4
T

)
. The first equality of Lemma D.1 follows from the fact that (D.5) is neglige-

able with respect to (D.6). The second equality can be proved similarly using Theorem 7 of Carrasco and

Florens (2000a).

Proof of Proposition 3.3. Let ‖A‖HS denote the Hilbert Schmidt norm of the operatorA (see Dautray

and Lions, 1988, for a definition and the properties of the Hilbert-Schmidt norm). If ‖A‖ denotes the usual

operator norm, ‖A‖ ≤ ‖A‖HS . We have

‖KT −K‖2
HS =

∫ ∫ ∣∣∣k̂T (τ1, τ2) − k (τ1, τ2)
∣∣∣2 π (τ1)π (τ2) dτ1dτ2.
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Next we use the following result. If XT ≥ 0 is such that EXT = O (1) then XT = Op (1). This result is

proved in Darolles, Florens, and Renault (2000, footnote 12). We have

Eθ0 ‖KT −K‖2
HS =

∫ ∫
Eθ0

∣∣∣k̂T (τ1, τ2) − Eθ0 k̂T (τ1, τ2)
∣∣∣2 π (τ1)π (τ2) dτ1dτ2

+
∫ ∫ ∣∣∣Eθ0

T k̂T (τ1, τ2) − k (τ1, τ2)
∣∣∣2 π (τ1)π (τ2) dτ1dτ2.

Parzen (1957) and Andrews (1991) consider kernel estimators of the covariance of real-valued random vari-

ables. Here, we have complex-valued ht but their results remain valid. From Parzen (1957) and Andrews

(1991), we have

Sq
T

(
Eθ0

T k̂T (τ1, τ2) − k (τ1, τ2)
)

= −2πωνf
(ν),

T

ST
Eθ0

∣∣∣k̂T (τ1, τ2) − Eθ0
T k̂T (τ1, τ2)

∣∣∣2 = π2f2

∫
ω2 (x) dx.

Hence if S2ν+1
T /T → γ, we have:

T

ST
Eθ0 ‖KT −K‖2

HS = 4π2

(
ω2

νf
(ν)2

γ
+ 2f2

∫
ω2 (x) dx

)
.

and therefore, Eθ0 ‖KT −K‖2
HS = O

(
T−2ν/(2ν+1)

)
. This yields the result.

Proof of Proposition 3.4. The C-GMM estimator is solution of:

θ̂T = argmin
θ

∥∥∥(KαT

T )−1/2
hT (θ)

∥∥∥2

⇐⇒ θ̂T = argmin
θ

〈
(KαT

T )−1
ĥT (.; θ) , ĥT (.; θ)

〉
(D.7)

Let g = (KαT

T )−1 ĥT (θ) so that g satisfies:

(
αT IT +K2

T

)
g = KT ĥT (θ)

αT g (τ) +
1

(T − q)2

T∑
t,l=1

ht

(
τ ; θ̂1

)
ctlβl =

1
T − q

T∑
t=1

ht

(
τ ; θ̂1

)
vt (θ) (D.8)

with

βl =
∫
Uhl

(
τ ; θ̂1

)
g (τ) π (τ) dτ.

First, we compute βl, l = 1, ..., T. We premultiply (D.8) by Uhk

(
τ ; θ̂1

)
π (τ) and integrate with respect to τ

to obtain:

αTβk +
1

(T − q)2

T∑
t,l=1

cktctlβl =
1

T − q

T∑
t=1

cktvt (θ) . (D.9)

Using the matrix notation, (D.9) can be rewritten

[
αT IT + C2

]
β = Cv (θ) .
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where β = [β1, ..., βT ]′ . Solving in β, we get

β =
[
αT IT + C2

]−1
Cv (θ) . (D.10)

Now we want to compute 〈g, hT (θ)〉 that appears in (D.7). To do so, we multiply all terms of (D.8) with

ĥT (τ ; θ)π (τ) and integrate with respect to τ :

αT

〈
g, ĥT (θ)

〉
+

1
(T − q)2

T∑
t,l=1

wt (θ) ctlβl =
1

T − q

T∑
t=1

wt (θ) vt (θ) .

So that

〈g, hT (θ)〉 =
1

αT (T − q)
[
w′ (θ) v (θ) − w′ (θ)Cβ

]
and using (D.10), we obtain

〈g, hT (θ)〉 =
1

αT (T − q)
w′ (θ)

[
IT − C

[
αT IT + C2

]−1
C
]
v (θ) .

This yields the result.

Proof of Proposition 3.5. The proof is very similar to that of 3.4 and is not repeated here. The

consistency follows from Lemma D.1.

Proof of Proposition A.1. Assumption A.7 ⇒ Assumption A.1 is obvious. We check successively the

conditions of Assumption A.4.

A.4(i) and (ii):

|ht| =
∣∣∣ei(sxt+1+rxt) − ψθ (s|xt) eirxt+1

∣∣∣
≤

∣∣∣ei(sxt+1+rxt)
∣∣∣ +

∣∣ψθ (s|xt) eirxt+1
∣∣

≤ 2

as |ψθ (s|xt)| ≤ 1 for all s. ht is continuously differentiable by A.8(ii).

A.4(iii): The same way as we proved Lemma 3.1, we can prove that
√
T
(
ĥT (θ) − Eθ0ht (θ)

)
converges

weakly to a Gaussian process with mean zero. Hence
∥∥∥ĥT (θ) − Eθ0ht (θ)

∥∥∥ = Op

(
1/

√
T
)
. As ht (θ) is

bounded, the convergence is uniform by Ranga Rao (1962). Now, we turn to the term involving ∇θĥT (θ) . By

Politis and Romano (1994, Theorem 2.3(i)),
√
T
(
∇θĥT (θ) − Eθ0∇θht (θ)

)
converges weakly to a Gaussian

process with mean zero under the Assumptions A.8(ii). Hence
∥∥∥∇θĥT (θ) − Eθ0∇θht (θ)

∥∥∥ = Op

(
1/

√
T
)
.

By Ranga Rao (1962), the convergence is uniform under the extra assumption: there is some function

b (s, xt) > 0 such that |∇θψθ (s|xt)| ≤ b (s, xt) for all θ ∈ Θ and Eθ0b (s,Xt) < ∞. This last assumption is

satisfied under the stronger condition A.8(iii).
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A.5: First we check that Eθ0ht (θ) ∈ H (K) for all θ ∈ Θ. Note that

Eθ0ht (θ) = Eθ0
[
eirXt (ψθ0 (s|Xt) − ψθ (s|Xt))

]
≡ g (r, s) (D.11)

We apply Proposition B.1 to compute ‖g‖2
K . We need to find G such that

g (r, s) = Eθ0

[(
ei(sXt+1+rXt) − ψθ (s|Xt) eirXt+1

)
G (Xt, Xt+1)

]
= Eθ0

[
ei(sXt+1+rXt)

{
G (Xt, Xt+1) − Eθ0 [G (Xt, Xt+1) |Xt]

}]
.

Let us denote G̃ = G− Eθ0 [G|Xt] . We want to solve in G̃ the equation

g (τ) =
∫
ei(sxt+1+rxt)G̃ (xt, xt+1) fθ0 (xt+1|xt) fθ0 (xt) dxt+1dxt.

Applying twice the Fourier inversion formula, we obtain a unique solution

G̃ (xt, xt+1) =
1

(2π)2

∫ ∫
g (r, s) e−i(sxt+1+rxt)

fθ0 (xt+1|xt) fθ0 (xt)
dsdr. (D.12)

We now replace g (r, s) by its expression (D.11) into (D.12) to calculate G̃. Applying the Fourier inversion

formula, we have

1
2π

∫
e−irxt

(∫
eiruψθ (s|u) fθ0 (u) du

)
dr = ψθ (s|xt) fθ0 (xt) ,

1
2π

∫
ψθ (s|xt) e−isxt+1ds = fθ (xt+1|xt) .

Hence we have

G̃ (xt, xt+1) =
fθ0 (xt+1|xt) − fθ (xt+1|xt)

fθ0 (xt+1|xt)

and ‖g‖2
K = Eθ0G̃2 <∞ if and only if∫ ∫ [

fθ0 (xt+1|xt) − fθ (xt+1|xt)
fθ0 (xt+1|xt)

]2

fθ0 (xt, xt+1) dxtdxt+1 <∞

for all θ ∈ Θ. We recognize the chi-square distance, it is finite as long as fθ (xt+1|xt) < ∞ for all θ ∈ Θ.

Now, we check that Eθ0∇θht (θ) ∈ H (K) for all θ ∈ Θ. We replace g (r, s) by

g (r, s) ≡ Eθ0∇θht (θ) = −Eθ0
[
eirXt∇θψθ (s|Xt)

]
in Equation (D.12) to calculate G̃. We again apply the Fourier inversion formula to obtain

1
2π

∫
e−irxt

(∫
eiru∇θψθ (s|u) fθ0 (u)du

)
dr = ∇θψθ (s|xt) fθ0 (xt) ,

1
2π

∫
∇θψθ (s|xt) e−isxt+1ds =

1
2π

∇θ

∫
ψθ (s|xt) e−isxt+1ds (D.13)

= ∇θfθ (xt+1|xt) .
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We are allowed to interchange the order of integration and derivation in (D.13) because of
∫

supθ∈Θ |∇θψθ (s|xt)| ds <
∞ and by Lemma 3.6 of Newey and McFadden (1994). Hence we have

G̃ = −∇θfθ (xt+1|xt)
fθ0 (xt+1|xt)

and

∥∥Eθ0∇θht (θ)
∥∥2

K
= Eθ0G̃G̃′

= Eθ0

[
∇θfθ (xt+1|xt)
fθ0 (xt+1|xt)

(
∇θfθ (xt+1|xt)
fθ0 (xt+1|xt)

)′]
(D.14)

which is finite by assumption. When θ = θ0, the term in (D.14) coincides with the information matrix Iθ0

which proves the ML-efficiency without using Proposition 3.6.

Assumption A.6(ii) follows from A.8(iii) because

‖∇θht (θ)‖2 =
∫ ∣∣eirXt∇θψθ (s|Xt)

∣∣2 ds
≤

∫
|∇θψθ (s|Xt)|2 ds

= ‖∇θψθ (.|Xt)‖2

and similarly ‖∇θθht (θ)‖2 ≤ ‖∇θθψθ (.|Xt)‖2 .

Proof of Proposition 4.1. The asymptotic distribution of θ̂T follows from Propositions 3.2 and A.1.

The asymptotic efficiency follows from Equation (D.14).

Proof of Proposition 4.3. To simplify the notation, we omit θ0 also all the terms in this proof are

taken at θ0. Recall that the variance of θ̃T is given by J−1ΣJ−1 with

J = Eθ0 (∇θθ ln fθ (Y0)) = −Eθ0
[
∇θ ln fθ (Y0) (∇θ ln fθ (Y0))

′]
,

Σ =
∞∑

j=−∞
Eθ0

[
∇θ ln fθ (Y0) (∇θ ln fθ (Yj))

′] .

The asymptotic variance of θ̂T is given by Theorem 2 in Carrasco and Florens (2000a) by replacing B

by K̃−1/2 :

V =
(
‖g‖2

K̃

)−1 (
K̃−1g,KK̃−1g

)(
‖g‖2

K̃

)−1

where g = Eθ0 (∇θh) .Theorem 2 assumes that B is a bounded operator, here B is not bounded but a proof

similar to that of Theorem 8 of Carrasco and Florens (2000a) would show that the result is also valid for

K̃−1/2.

a - Calculation of ‖g‖2
K̃ :
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We apply results from Proposition B.1. First we check that

G0 = ∇θ ln fθ (Yt)

belongs to C (g) that is

∇θψθ (τ) =
∫

∇θ ln fθ (yt)
(
eiτyt − ψθ (τ)

)
fθ (yt) dyt

=
∫

∇θfθ (yt)
(
eiτyt − ψθ (τ)

)
dyt

=
∫

∇θfθ (yt) eiτytdyt

= ∇θ

∫
fθ (yt) eiτytdyt.

Now consider a general solution G = G0 +G1. The condition G ∈ C (g) implies∫
G1 (yt)

(
eiτyt − ψθ (τ)

)
fθ (yt) dyt = 0 ∀τ

⇔
∫

(G1 (yt) − EG1) eiτytfθ (Yt) dYt = 0 ∀τ

⇒ G1 − EG1 = 0

⇒ Eθ0 (G0G1) = 0.

This shows that the element of C (g) with minimal norm is G0. Hence we have

‖g‖2
K̃ = Eθ0 (G0G

′
0) = Eθ0

[
(∇θ ln fθ (Yt)) (∇θ ln fθ (Yt))

′] .

b - Calculation of K̃−1g : We verify that g = K̃ω with

ω (τ) =
∫
e−iτv∇θ ln fθ (v) dv

where v is a L−vector and fθ denotes the joint likelihood of Yt. Because Yt is assumed to be stationary, fθ

does not depend on t. We have(
K̃ω

)
(τ1) =

∫
(ψθ (τ1 + τ2) − ψθ(τ1)ψθ(τ2))

∫
e−iτ2v∇θ ln fθ (v) dvdτ2

=
∫
ψθ (τ1 + τ2)

∫
e−iτ2v∇θ ln fθ (v) dvdτ2 − ψθ(τ1)

∫
∇θfθ (v) dv

=
∫
eiτ1y

[∫
eiτ2ye−iτ2v∇θ ln fθ (v) dvdτ2

]
fθ (y) dy

=
∫
eiτ1y∇θ ln fθ (y) fθ (y) dy = g (τ1) .

The fourth equality follows from a property of the Fourier transform, see Theorem 4.11.12. in Debnath and

Mikusinsky (1999).

c - Calculation of
(
K̃−1g,KK̃−1g

)
:
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Note that
(
K̃−1g,KK̃−1g

)
= (ω,Kω) . The kernel of K is given by

k (τ1, τ2) =
∞∑

j=−∞

[
Eθ0

(
ei(τ1Y0+τ2Yj)

)
− ψθ(τ1)ψθ(τ2)

]
≡

∞∑
j=−∞

kj (τ1, τ2) .

Let us denote Kj the operator with kernel kj (τ1, τ2).

(Kjω) (τ1) =
∫
Eθ0

(
ei(τ1Y0+τ2Yj)

)∫
e−iτ2v∇θ ln fθ (v) dvdτ2

because the second term equals zero.

(Kjω) (τ1) =
∫
eiτ1y0

[∫ ∫
eiτ2yje−iτ2v∇θ ln fθ (v) dvdτ2

]
fθ (y0, yj) dy0dyj

=
∫
eiτ1y0∇θ ln fθ (yj) fθ (y0, yj) dy0dyj .

We have

(ω,Kjω) =
∫ [∫ ∫

eiτ1y0e−iτ1v∇θ ln fθ (v) dvdτ1

]
∇θ ln fθ (yj)

′
fθ (y0, yj) dy0dyj

=
∫

∇θ ln fθ (y0)∇θ ln fθ (yj)
′
fθ (y0, yj) dy0dyj

= Eθ0
[
∇θ ln fθ (Y0) (∇θ ln fθ (Yj))

′]
.

It follows that

(ω,Kω) =
∞∑

j=−∞
(ω,Kjω) =

∞∑
j=−∞

Eθ0
[
∇θ ln fθ (Y0) (∇θ ln fθ (Yj))

′]
which finishes the proof.

Proof of Proposition 5.1. We wish to apply Proposition 3.2 on
{
h̃J

t

}
. To do this, we need to check

that the conditions of this proposition are satisfied for
{
h̃J

t

}
. The mixing properties of

{
h̃J

t

}
are the same

as those of {Xt}, moreover
{
h̃J

t

}
is a martingale difference sequence. Hence by Assumption A.7 and Politis

and Romano (1994), we have

√
T h̃J

t ⇒ N
(
0, K̃

)
as T → ∞ in L2 (π) where K̃ is the operator with kernel k̃ satisfying

k̃ (τ1, τ2) = cov
(
h̃J

t (τ1) , h̃J
t (τ2)

)
= E

[
cov

(
h̃J

t (τ1) , h̃J
t (τ2) |Yt

)]
+ cov

[
E
(
h̃J

t (τ1) |Yt

)
, E

(
h̃J

t (τ2) |Yt

)]
=

1
J
EY Eε

[(
h̃J (τ1) − h (τ1)

)(
h̃J (τ2) − h (τ2)

)
|Yt

]
+ cov (h (τ1) , h (τ2))

=
1
J
u (τ1, τ2) + k (τ1, τ2) .
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Note that we use E and cov for the expectation and covariance with respect to both εt and Yt. Therefore

K̃ = K + U/J. Note that U is a positive definite operator. Assumption A.5 is satisfied under Assumption

A.8(i) because

Eht (θ) = Eh̃J
t (θ) ,

E∇θht (θ) = E∇θh̃
J
t (θ) .

The second equality follows from

E
(
�θh̃t

)
= EY Eε

[
�θh̃t|Yt

]
= EY

[
�θEε

(
h̃t|Yt

)]
. (D.15)

The order of integration and differentiation in D.15 can be exchanged because the distribution of ε̃j,t does

not depend on θ and E supθ∈Θ |∇θH | <∞ which is true under A.10(iii). Therefore E
(
�θh̃

J
t

)
= E (�θh) .

Finally, using a proof very similar to that of Proposition A.1, we see that Assumptions A.4(iii) and A.6(ii)

are satisfied under Assumption A.10. It is enough to notice that

∣∣∣�θh̃
J
t

∣∣∣ =

∣∣∣∣∣∣ 1J
J∑

j=1

is�θ H (Xt, εj,t+1, θ) e
isXθj

t+1|t

∣∣∣∣∣∣
≤ 1

J

J∑
j=1

|�θH (Xt, εj,t+1, θ)|

and
∣∣∣�θθh̃

J
t

∣∣∣ ≤ 1
J

∑J
j=1 |�θθH (Xt, εj,t+1, θ)| . Hence, from Proposition 3.2, we have

√
T
(
θ̃T − θ0

) L→ N
(

0,
(〈
Eθ0

(
∇θh̃

J
)
, Eθ0

(
∇θh̃

J
)〉

K̃

)−1
)
.

We can rewrite the variance by using E
(
�θh̃

J
t

)
= E (�θh) .

Now, we show the inequality ‖g‖2
K̃ ≤ ‖g‖2

K for any function g in the range of K. For sake of simplicity,

we assume g scalar, the proof for g vector is very similar. Denote

f =
(
K +

1
J
U

)−1

g

l = K−1g.

We have ‖g‖2
K̃ = 〈f, g〉 and ‖g‖2

K = 〈l, g〉 . We want to show 〈l− f, g〉 ≥ 0.

〈l − f, g〉 ≥ 0

⇔ 〈K(l − f), g〉K ≥ 0

⇔
〈

1
J
Uf,Kf +

1
J
Uf

〉
K

≥ 0

⇔ 1
J
〈Uf, f〉 + ‖Uf‖2

K ≥ 0
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This last inequality is true because U is definite positive.

Proof of Proposition 5.2 The consistency holds under Assumptions A.2-A.4. By the geometric

ergodicity and the boundedness of eiτYt and eiτYj , the functional CLT of Chen and White (1998, Theorem

3.9) gives:

√
T

T

T∑
t=1

(
eiτYt − ψL

θ (τ)
)
⇒ N (0,K) ,

√
J (T )
J (T )

J(T )∑
j=1

(
eiτYj − ψL

θ (τ)
)
⇒ N (0,K) .

as T → ∞ in L
2 (π) . The asymptotic normality follows from

√
T h̃T (τ ; θ0) =

√
T

T

T∑
t=1

(
eiτYt − ψL

θ (τ)
)
−

√
T√

J (T )

√
J (T )
J (T )

J(T )∑
j=1

(
eiτYj − ψL

θ (τ)
)

L→ N (0, (1 + ζ)K)

because Yt and Ỹj are independent. Let K̃ = (1 + ζ)K. Minimizing
∥∥∥h̃T

∥∥∥
K

αT
T

is equivalent to minimizing∥∥∥h̃T

∥∥∥
K̃

αT
T

where K̃αT

T denote a regularized estimator of K̃. By Proposition 3.2, θ̃T is asymptotically normal

and the inverse of its variance is equal to〈
Eθ0

(
�θh̃t

)
, Eθ0

(
�θh̃t

)〉
K̃

=
1

(1 + ζ)

〈
Eθ0

(
�θh̃t

)
, Eθ0

(
�θh̃t

)〉
K
.

Now, we compute Eθ0

(
�θh̃t

)
. By Assumption A.11, we have:

Eθ0

(
�θh̃t

)
= −Eθ0

(
�θe

iτYj

)
= −�θ E

θ0

(
eiτYj

)
= −�θ ψ

L
θ (τ)

= Eθ0 (�θh) .
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Table 1 : Monte Carlo Comparison of Estimation Methods based on the CIR model of

interest rates

We report three measures of estimation method performance – Mean Bias, Median Bias, and Root Mean

Squared Error (RMSE) – for five different estimation methods: CF-GMM with the optimal DI instrument,

CF-GMM without an instrument (unity instrument), MLE, QMLE, and EMM (the results for the former

three methods are taken from Zhou, 2001). The simulations are performed based on the CIR model:

drt = (θ − κrt)dt+ σ
√
rtdWt

with two sets of parameter values. Panel A uses the estimated values from Gallant and Tauchen (1998).

Panel B uses the Zhou (2001) parameters, which represent a particularly challenging for estimation case. All

results are based on 1000 replications of samples with 500 and 1500 observations.

Panel A

Mean Bias Median Bias RMSE

True Value T = 500 T = 1500 T = 500 T = 1500 T = 500 T = 1500

CF-GMM with optimal instrument

θ = 0.02491 0.0012 0.0011 0.0009 0.0009 0.0101 0.0100

κ = 0.00285 0.0000 0.0001 0.0002 0.0001 0.0010 0.0008

σ = 0.02750 -0.0005 0.0004 -0.0006 -0.0005 0.0079 0.0077

CF-GMM without an instrument

θ = 0.02491 0.0009 -0.0014 -0.0005 -0.0018 0.0192 0.0210

κ = 0.00285 0.0000 0.0003 0.0002 0.0003 0.0017 0.0020

σ = 0.02750 -0.0016 -0.0021 -0.0017 -0.0019 0.0085 0.0084

MLE

θ = 0.02491 -0.0123 -0.0130 -0.0119 0.0215 0.0125 0.0131

κ = 0.00285 -0.0014 0.0015 -0.0014 0.0014 0.0014 0.0015

σ = 0.02750 -4.4e-5 2.5e-6 -4.6e-5 2.1e-5 0.0009 0.0005

QMLE

θ = 0.02491 0.0994 0.285 0.0803 0.0209 0.1343 0.0437

κ = 0.00285 -0.0113 -0.0033 -0.0091 -0.0025 0.0153 0.0050

σ = 0.02750 3.0e-5 1.2e-5 4.1e-5 1.9e-5 0.0009 0.0005

EMM

θ = 0.02491 0.0451 0.0407 2.6e-4 0.0085 0.1252 0.0944

κ = 0.00285 -0.0054 -0.0048 -8.1e-5 -0.0012 0.0149 0.0112

σ = 0.02750 -0.0015 -0.0003 -4.8e-6 -4.3e-7 0.0076 0.0041
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Table 1 (continued)

Panel B

Mean Bias Median Bias RMSE

True Value T = 500 T = 1500 T = 500 T = 1500 T = 500 T = 1500

CF-GMM with optimal instrument

θ = 2.491 -0.0928 -0.0788 -0.0813 -0.0689 0.2106 0.1014

κ = 0.285 0.0085 0.0066 0.0071 0.0013 0.0311 0.0188

σ = 1.1 0.0026 -0.0088 0.0065 0.0001 0.0448 0.0261

CF-GMM without an instrument

θ = 2.491 -0.1028 -0.0988 -0.0991 -0.0910 0.4008 0.1188

κ = 0.285 0.0111 0.0071 0.0063 0.0010 0.0507 0.0202

σ = 1.1 0.0098 0.0001 0.0059 0.0009 0.0488 0.0233

MLE

θ = 2.491 -0.0832 -0.0663 -0.0679 -0.0524 0.1337 0.0923

κ = 0.285 0.0085 0.0058 0.0029 0.0010 0.0251 0.0161

σ = 1.1 0.0024 -0.0016 0.0060 0.0000 0.0432 0.0263

QMLE

θ = 2.491 0.0742 0.0224 0.0022 0.0006 0.3613 0.0923

κ = 0.285 -0.0100 -0.0020 -0.0071 -0.0011 0.0448 0.0258

σ = 1.1 0.0023 0.0003 0.0015 -0.0001 0.0430 0.0246

EMM

θ = 2.491 0.1323 -0.0067 0.0433 -0.0173 0.4891 0.2000

κ = 0.285 -0.0310 -0.0022 -0.0199 -0.0000 0.0694 0.0257

σ = 1.1 -0.0218 -0.0137 -0.0091 -0.0122 0.0618 0.0296
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Table 2 : Monte Carlo Study of a Jump-Diffusion Model

This table focuses on the performance of CF-GMM in estimation of jump-diffusion models. The results are

based on the Vasicek model augmented by the exponential jump component:

drt = (θ − κrt)dt+ σdWt + JtdNt

Jt ∼ EXP (α)

Nt ∼ POI(λ)

Parameter values for the diffusion part are taken from Gallant and Tauchen (1998). All results are based on

1000 replications of samples with 500 and 1500 observations.

Mean Bias Median Bias RMSE

True Value T = 500 T = 1500 T = 500 T = 1500 T = 500 T = 1500

CF-GMM with optimal instrument

θ = 0.02949 0.0000 0.0000 0.0001 -0.0001 0.0008 0.0008

κ = 0.00283 -0.0006 0.0007 -0.0022 -0.0011 0.0122 0.0124

σ = 0.09802 0.0026 -0.0001 -0.0002 -0.0007 0.0283 0.0286

α = 0.00500 0.0002 0.0000 0.0004 0.0000 0.0014 0.0014

λ = 0.09615 0.0018 0.0004 0.0047 0.0012 0.0289 0.0281

CF-GMM without an instrument

θ = 0.02949 -0.4389 -0.3459 -0.0941 -0.0609 1.6010 4.2000

κ = 0.00283 7.3483 -23.0590 0.6440 0.4871 76.4663 1582.0000

σ = 0.09802 0.7026 0.6884 0.5781 0.6469 0.7683 0.8000

α = 0.00500 -0.0395 -0.0550 -0.0083 -0.0077 0.5248 0.6804

λ = 0.09615 -0.0216 -0.0418 -0.0014 -0.0015 1.0657 1.0006
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Table 3 : Empirical Estimation of Three-factor Affine Term Structure Models

This table evaluates the properties of CF-GMM in the estimation of multivariate diffusions. We use the

Duffee (2002) preferred specification with corresponding parameter values:
dXt,1

dXt,2

dXt,3

 =




0

(Kθ)2

(Kθ)3

 +


k11 k12 k13

k21 k22 k23

k31 k32 k33




Xt,1

Xt,2

Xt,3


 dt+ StdWt

where St is a diagonal matrix with elements St(ii) =
√
αi + (βi1 βi2 βi3)Xt for i = 1, 2 and 3 and all

elements of the diagonal matrices St zero, except α3 = β11 = β22 = β32 = 1. All results are based on 1000

replications of samples with 500 and 1500 observations.

Mean Bias Median Bias RMSE

True Value T = 500 T = 1500 T = 500 T = 1500 T = 500 T = 1500

CF-GMM with optimal instrument

Kθ2 = 0.222 0.0009 0.0002 0.0010 0.0004 0.0415 0.0091

Kθ3 = −2.299 0.0003 -0.0001 0.0005 0.0000 0.0167 0.0056

k11 = 0.172 0.0011 0.0000 0.0008 0.0001 0.0189 0.0109

k12 = −0.295 0.0014 0.0004 0.0011 0.0004 0.0216 0.0089

k21 = −0.197 0.0006 -0.0003 -0.0001 -0.0001 0.0196 0.0045

k22 = 0.406 0.0013 0.0007 0.0009 0.0002 0.0219 0.0111

k31 = 0.564 -0.0001 0.0001 0.0001 -0.0002 0.0089 0.0023

k32 = −1.669 0.0004 0.0002 0.0003 0.0000 0.0077 0.0012

k33 = 1.721 0.0007 -0.0001 0.0006 0.0002 0.0163 0.0071

CF-GMM without an instrument

Kθ2 = 0.222 0.0931 0.0337 0.0595 0.0541 0.1740 0.0682

Kθ3 = −2.299 0.1511 0.1065 0.1167 0.1072 0.1471 0.0416

k11 = 0.172 1.8919 0.1065 1.8218 1.6966 0.7074 0.3890

k12 = −0.295 1.1900 1.0555 1.1577 1.1006 0.3630 0.1723

k21 = −0.197 0.6225 0.7586 0.7574 0.7879 0.4299 0.0918

k22 = 0.406 1.4090 1.2634 1.3885 1.3043 0.4120 0.2323

k31 = 0.564 -0.0886 0.0299 0.0004 0.0268 0.3640 0.0385

k32 = −1.669 0.6022 0.5368 0.6018 0.5516 0.1822 0.1163

k33 = 1.721 0.6394 0.5306 0.5808 0.5615 0.3746 0.1402
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Figure 1. Plot of real parts of integrands for computing the MLE and C-GMM
estimators

We illustrate the degree of the numerical effort involved in computing the integrals necessary for the

MLE estimation based on the Fourier inverse technique described in Singleton (2001) and the C-GMM

estimation. The integrand is computed for the CIR model, studied in Section 6.1:

drt = (0.02491− 0.00285rt)dt+ 0.0275
√
rtdWt

and evaluated at the point (rt+1, rt) = (2θ, θ) = (0.04982, 0.02491). CGMM1 (CGMM2) denotes the
integrand I1 in (C.5) (I2 in (C.6)).
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