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E�cient R&D Delegation

Abstract

This paper constructs a model of R&D delegation, in which several �rms may outsource

new technology from the same for-pro�t laboratory. When R&D costs are uncertain at the con-

tracting stage, necessary and su�cient conditions are provided that characterize Nash equilibria

in the laboratory's outputs and the �rms' non-negative transfer payments. A subset of these

equilibria is identi�ed in which �rms' payments truthfully re
ect their valuation of all possible

alternatives vis-�a-vis the expected net pro�ts. These truthful Nash equilibria implement the

�rst-best outcome when the support of the stochastic parameter is \not too large", in which

case �rms' net payo�s do not depend on the stochastic component and are undominated. When

externalities impact the nature of competition among �rms, both on the intermediate market

for R&D services and the �nal market for goods, su�cient conditions are given for the labora-

tory to earn positive bene�ts or not, and for �rms to choose either to cooperate horizontally or

to acquire the laboratory. The latter two options are shown not to impact the R&D outputs

supplied by the laboratory, nor the joint pro�ts earnt by �rms. A �rst policy implication is

that no new regulatory tool is needed for aligning �rms' interests with a social welfare objective.

The results also support legal environments which do not prevent �rms to include discrimina-

tory clauses in their R&D contracts on the intermediate market for new knowledge, including

in highly concentrated industries. This laissez faire message does not extend to �nal-market

antitrust considerations.

JEL Classi�cation: C72; D72.
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1 Introduction

Firms increasingly outsource new technology by delegating the production of R&D services to

independent laboratories.1 This phenomenon is documented by recent empirical data. The Na-

tional Science Foundation (2006) indicates that \[t]he average annual growth rate of contracted-

out R&D from 1993 to 2003 (9.4%) was about double the growth rate of in-house company-

funded R&D (4.9%)".2 The chemical industry leads this trend, as it reports the largest expen-

ditures of all industries, with more than 15% of the total in all three years. In this sector, a

fragmented set of small specialized for-pro�t laboratories { i.e., new biotechnology �rms (NBFs)

{ is serving large established �rms that control distribution channels of pharmaceutical, agri-

cultural, or other chemical products. In many instances, the same laboratory signs bilateral

contractual agreements with a set of �rms which compete on a vertically related �nal market.

For example, Symyx (a U.S.-based private laboratory) uses a proprietary high-speed combina-

torial technology { including instrumentation, software, and methods { to provide R&D services

to Eli Lilly, Merck, and P�zer, among others. Over the last two decades, business analyses have

documented many changes that occurred in that sector on the intermediate market for R&D.

While some �rms substituted contracted out R&D for in-house projects, other players integrated

backward by acquiring existing laboratories. More recently, horizontal mergers have increased

the concentration of the downstream stage of the market.3

The objective of this paper is (i) to investigate the distribution of pro�ts between a set

of �rms and an independent supplier of R&D services, (ii) to unveil �rms' incentives either to

coordinate their payment strategies on the intermediate market for R&D, or to integrate the

R&D supplier, and (iii) to draw policy implications. To do that, we construct a model in which

several �rms may either rely on internal facilities or delegate the production of speci�ed multi-

dimensional R&D services to a pro�t-maximizing laboratory in exchange of positive payments.

Beyond particularities of all kinds, we focus on situations in which R&D operations are
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inherently uncertain, in the sense that di�culties may arise in a laboratory that were not antic-

ipated in preparatory studies on the feasibility of an aimed outcome. The descriptive literature

on the organization of R&D has frequently pointed to the uncertain character of R&D projects.

An early example is Hamberg (1963), who emphasizes the gap between the theoretical design

of a new product or process and successful experimentation in the laboratory, on the grounds

that \unforeseen problems commonly arise that were not seen in preliminary investigations in-

dicating the invention to be technically feasible" (p. 101). However, only a few sources evoke

R&D contracts. An evergreen example is a text by Mowery and Rosenberg (1989), who claim

that \[t]he e�ectiveness of contracts in the provision of research is undermined by the highly

uncertain nature of the research enterprise", and more precisely by the \imperfect character of

knowledge about a given project" (p. 85). Projects of unknown di�culty occur when R&D

objectives { i.e., the subject-matter of an R&D contract { impose the laboratory to experiment

new research strategies, and not only to develop applications by following existing avenues. To

realistically capture the fact that R&D projects are inherently uncertain for all parties { i.e. the

contracting �rms and the independent laboratory altogether { we assume that R&D contracts

are written ex ante, that is before the laboratory tests technological options and thereby dis-

covers the realization of a stochastic parameter. This is grounded on the observation that R&D

contracts frequently refer to a preliminary stage of operations that consists in probing, screening,

and experimenting possible protocols to assess the di�culty of a given project. Accordingly, the

timing of events in our formal setup is borrowed from a well-known analysis of the production of

innovations by Holmstrom (1989), we consider as a starting point. The latter paper is seminal

in that it describes the production of innovations as a principal-agent problem for the �rst time.

The speci�cation that the agent in charge of a single innovation project with uncertain payo�

\has no superior information about project returns before acting" is quali�ed as a \reasonable

assumption if we are at the initial stages of a research undertaking" (p. 310, original emphasis).

In what follows, the situation in which a single principal { i.e., a �rm { contracts with an agent
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{ we call a laboratory { is considered as a benchmark case. On this we build by turning to the

case in which several �rms are interested in contracting with the same laboratory in order to

save on internal resources, transfer risks to an outside party, or bene�t from economies of scale

and/or scope.

The main features of our delegated R&D common agency game appear clearly when com-

pared with related contributions to the literature on the organization of R&D. The assumption

that �rms and the laboratory contract for the production of speci�ed R&D services, before

the laboratory may observe the realization of its costs, contrasts with the speci�cations of two

related contributions by Aghion and Tirole (1994) and Ambec and Poitevin (2001). Both pa-

pers focus on the impact of the non-deterministic character of R&D on the relative e�ciency

of a separated governance structure (in which a user buys an innovation from an independent

unit) and an integrated structure (in which the user sources R&D internally). However, they

fundamentally di�er in their theoretical use of uncertainty. The �rst one emphasizes the non-

contractibility of R&D outcome, which is assumed to be \ill de�ned ex ante" so that \parties

cannot contract for delivery of a speci�c innovation" (p. 1186). The second paper stresses an

informational problem as attached to the risky nature of R&D operations, which makes sense

when the research unit has \more information about the cost of bringing the innovation to the

market" (p. 2).

The present paper is complementary to the latter two contributions, in the sense that it

captures the uncertain nature of R&D in a new way.

Firstly, we consider �rm-speci�c R&D contracts which describe the nature of the activity to

be conducted by the laboratory. The subject-matter of these contracts is the delivery of new but

clearly identi�ed tailor-made process or product technologies. This follows the general obser-

vation by innovation experts that, in the pharmaceutical industry, �rms \contract out speci�c

research tasks to an independent laboratory" (Tapon, 1989, p. 198, added emphasis). Indeed,
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examples of available contracts are many in which the client's objectives (say, the purchase of

a new drug candidate with targeted biochemical parameters for the cure of a given pathology)

are well speci�ed.4 This di�ers sharply from Aghion and Tirole (1994), in which the R&D con-

tract is assumed to specify the allocation of property rights \on any forthcoming innovation"

(p. 1186).

Moreover, we focus on situations in which all parties { including the agent in charge of

R&D activities { are unaware of the true cost of an R&D program before it starts. This echoes

quotations from researchers in the biotechnology sector, as reproduced by Tapon and Cadsby

(1996, p. 389), according to whom \[y]ou're always going to have things that happen that

nobody really foresaw" in the laboratory before getting hands dirty (added emphasis). In more

technical terms, this is captured by the assumption that some unknown parameter is observed

only in the course of R&D operations. This contrasts with Ambec and Poitevin (2001, p. 2),

who assume that \the innovation quality is private information" when the research unit and the

user reach the contracting stage toward a subsequent development phase.5

To summarize, the problem we consider is a purely organizational one, since the choice

to outsource R&D services, and not to rely on proprietary resources, is not motivated by a

relatively limited expertise of buyers vis-�a-vis a technology provider. We seek a characterization

of the distribution of pro�ts between a set of �rms and a common laboratory on a decentralized

market for new knowledge, in which contracts are signed ex ante, and to compare them with the

gains obtained in alternative market structures. This comes as a complement to the analysis

of situations in which R&D activities are either non contractible or sourced from an a priori

superiorly informed entity.

On the technical side, we construct a model in which several principals simultaneously ad-

dress monetary transfers to an agent in order to in
uence its choice of an action, in the spirit

of Bernheim and Whinston (1986a)'s framework of delegated common agency. A main result
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of this seminal contribution, in which information is complete and preferences are quasi-linear,

is that a subset of Nash equilibria { referred to as \truthful" { induce an e�cient choice, i.e.

maximize the total payo�s of all principals and the agent. Our model, is an adverse selection

variation of the same framework, with uncertainty at the contracting stage. More precisely, this

is done by extending on several important fronts an existing setup by Laussel and Le Breton

(1998). In their paper, principals o�er transfer payments to in
uence the private provision of a

public good by a common agent. The latter agent's production cost is impacted by a stochastic

coe�cient, which is unknown by all parties at the contracting stage. We extend the analysis on

several important fronts for the analysis of a larger class of situations in which 1) the agent's

output needs not be limited to a public good, 2) no speci�c form is introduced that limits the

way the stochastic parameter relates to the agent's �xed or variable costs, and 3) externalities

impact the nature of competition among principals for the use of the agent's resources.6 In

addition, we introduce a limited liability constraint on transfer payments. (This speci�cation

is motivated by the observation that independent specialized laboratories usually lack �nancial

support, whereas �rms that outsource R&D do not.)

The main theoretical results are as follows. We �rst unveil necessary and su�cient conditions

that characterize Nash equilibria in the agent's choices and the principals' transfer payments.

Then we characterize a subset of these equilibria in which principals' payments re
ect their

valuation of all possible alternatives vis-�a-vis the expected net payo�s, that is an extension of

the truthfulness re�nement to our model with uncertainty. When the support of the stochastic

parameter is \not too large", it is found that truthful Nash equilibria implement the �rst-best

outcome. That is, e�ciency is preserved ex post, in the sense that the agent's equilibrium choice

and principals' non-negative transfers maximize the net total bene�ts of all parties, and for any

realization of the random parameter. Moreover, for this subset of equilibria, principals' net

equilibrium payo�s do not depend on the stochastic component and are undominated. This says

that the agent only { not principals { bears the cost of uncertainty.
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Eventually, we exploit the theoretical �ndings to investigate �rms' incentives to coordinate

their payment strategies (which can be achieved by merging horizontally), or to integrate the

external laboratory. It is found that, when anti-complementarities dominate in the production of

R&D services, delegating �rms have strategic incentives to cooperate horizontally in their choices

of payment schemes as addressed to the laboratory. Horizontal cooperation reduces competition

on the market for R&D services, and thus drains up the laboratory's source of pro�ts. On the

other hand, by acquiring the laboratory a �rm is entitled to ask outsiders a premium for the

negative externalities it imposes by receiving R&D services. However, when complementarities

dominate, delegating �rms have no strategic incentive to shift to a more integrated structure,

because they already appropriate all pro�ts. This clear-cut opposition holds in the absence of

e�ciency gains or transaction costs, as speci�cally associated to particular governance structures.

In substance, incentives to merge vertically with the laboratory, or horizontally with a rival

�rm, are rooted in the simultaneous impact of two types of externalities on the nature of �rm

interactions. Externalities are of the indirect type when the laboratory's costs are not additively

separable across users. If the cost of satisfying a �rm's requirements depends on the level of e�orts

provided to meet another �rm's needs, then �rms interact through their respective speci�cations

and associated payments. Externalities can be also of the direct type if each �rm's gross pro�t

function depends not only on the R&D services it receives, but also on the services received

by another �rm. This occurs, for example, when R&D results are not fully appropriable by

users, and give rise to inter-�rm spillovers.7 Intuitively, negative externalities make competition

tougher, whereas positive externalities make it softer, on the market for R&D services. Whether

competition is relatively tough or soft is re
ected by each �rm's payment o�ers, and thus drives

the distribution of innovation bene�ts between the laboratory and �rms. In turn, the distribution

of bene�ts impacts �rms' incentives to merge horizontally, or to acquire the laboratory.

The remainder of the paper is organized as follows. In section 2, we construct a delegated

R&D common agency game. In section 3, the uncertain character of R&D is introduced. In
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section 4, we o�er a characterization of Nash equilibria. In section 5, examples illustrate the

potential of the model. In section 6, the truthfulness re�nement is introduced and truthful

Nash equilibria are characterized. In section 7, su�cient conditions are given for the (non)

appropriability of (some share of) total net equilibrium bene�ts by the laboratory. In section 8,

situations are identi�ed in which �rms have an incentive to acquire the laboratory or to merge

with another �rm. Section 9 concludes the paper. Detailed proofs are in the Appendix.

2 The Model

In this section, we �rst present general speci�cations. Then evoking the taxation principle to

justify the contractual form on which we focus. We also construct the contracting process as a

delegated common agency situation. Eventually we examine the speci�c nature of uncertainty

as introduced in this model.

2.1 General Speci�cations

Risk-neutral independent laboratories supply cost-reducing or/and demand-enhancing knowl-

edge, i.e. R&D services, which are produced and delivered at some cost. These services may

be used by risk-neutral pro�t-maximizing �rms, we index by i 2 N . These �rms may choose

either to operate in-house R&D operations, or to delegate the production of R&D services. In

the latter case, each �rm may tap R&D services from a dedicated laboratory, a situation we

consider as a benchmark case. We focus on another situation in which �rms may outsource

R&D from the same independent laboratory { we identify by L { in order, say, to bene�t from

economies of scale or scope.

Uncertainty in the production of new knowledge implies that R&D costs cannot be known

before some experimentation and tests are conducted. In slightly more general terms, the

environment in which the laboratory operates can be impacted by stochastic events. We thus

assume that the laboratory's technology is parametrized by a stochastic element � in a (possibly
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multi-dimensional) set �. As the �rms may rely on proprietary state-of-the-art R&D resources,

they are not a priori asymmetrically informed vis-�a-vis the laboratory. Therefore the distribution

of the stochastic parameter is described by a probability measure � which is common knowledge

to �rms and L. This means that, before the laboratory initiates R&D operations, all parties are

equally aware of the di�culty of conducting R&D projects. The laboratory may learn more on

the costs of R&D tasks, through the realization of the stochastic parameter, only by doing. The

stochastic parameter is an argument of a function rS(�;x) : 2N ���X ! <+, which represents

the cost in monetary units born by a laboratory when it accepts to contract with �rms in S in

2N (which includes the empty set), in any state of nature, for the delivery of R&D services x in

X � Rm�n+ , where m is the number of service dimensions, and n is the number of �rms.

R&D costs may include �xed and variable components. The level of �xed costs may depend

on the number of �rms with which the laboratory accepts to contract, and with their identity.

We denote by fSi (�;x) the incremental costs the laboratory must incur if it chooses to serve �rm

i in addition to other �rms in Snfig. Formally, let

fSi (�;x) = r
S (�;x)� rSnfig (�;x) ; (1)

with fSi (�;x) � 0 if i =2 S, by convention. Remark that all �xed and variable cost components are

possibly impacted by the stochastic parameter. (In the particular context of the pharmaceutical

sector, the �xed costs associated to a given R&D project, e.g. for biochemical and cell-based

assays, are likely to be very high and a priori uncertain.)

The speci�cation of a multi-dimensional R&D output renders possible the contractual re-

quirement by �rms of speci�cally designed services. Each �rm i is interested in controlling the

selection by the laboratory of an xi =
�
x1i ; : : : ; x

m
i

�
in x = (x1; : : : ; xn) that �ts its own needs.

However, each �rm's gross pro�t function depends not only on what it receives, but also on what

the other �rms receive. This is because contracting �rms may be competitors on the same �nal

product markets. We thus denote by gi : X ! <+ the gross monetary payo�s received by �rm
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i.

To capture the fact that a laboratory has less bargaining power than �rms, we assume that

the latter write contracts. This is a consequence of the structural conditions of the markets

for R&D services we consider here. Veugelers (1997) remarks that when in-house facilities are

available, as is typically the case in the pharmaceutical industry, the capacity to go for it alone

increases a �rm's bargaining power in negotiating with an external laboratory. Lerner and

Merges (1998) evoke the �nancial constraints faced by specialized laboratories on the interme-

diate market for biotechnology, where R&D buyers are large pharmaceutical, agribusiness, or

chemical �rms. Argyres and Liebskind (2002), also in the context of the biotechnology sector,

refer to a high rate of entry on the supply side, as opposed to a small set of established companies

on the demand side.

We also assume that each �rm i's transfer be a function not only of xi but also of xj , all

j 6= i.8 This is motivated by the observation that real-world contracts commonly feature com-

plex clauses which elaborate a �ne tuning between the received R&D services of �rms in an

industry and the exact payments of a given client. For example, in the late 1990s Tularik { a

Californian independent laboratory that specializes in the research and development of therapeu-

tic pharmaceutical products based on a proprietary technology { has signed a series of bilateral

multi-annual contracts for the delivery of �rm-speci�c and nevertheless technologically related

R&D services to a set of American, Japanese, and European �rms. The latter include Merck,

Sumitomo Pharmaceuticals, and Roche Bioscience, which are potential rivals on �nal markets

for pharmaceutical products. In publicly available contracts (see http://contracts.onecle.com),

one reads clauses that explicitly acknowledge the existing contractual links which were signed

in the past by the laboratory and third parties. Some other clauses also stipulate that, in the

future, Tularik may not transfer any R&D output resulting from the contractual agreement

without the prior written consent of the �rm that originated it. In some cases, and in exchange

of some speci�ed payments, the �rm has an option to purchase the rights to some particular
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R&D output for a certain period of time from the date of the result. After expiration of this

period, if the option is not exercised, the laboratory is under no further obligation to the �rm

with respect to the submitted R&D output.

2.2 The Delegation Principle

We also assume that, although transfers can be made contingent on the R&D outcome, they

cannot depend on the state of nature � 2 �, which is unobservable by �rms. Formally, a strategy

for each �rm i is a function ti : X ! <+, which describes a single incentive contract. It takes

the simple form of transfer payment o�ers that are contingent on the laboratory's deliveries. We

denote the vector of strategies by t = (t1; : : : ; tn).

Unlike x and t, the parameter � which describes the state of nature is observable exclusively

by the laboratory at the R&D operations stage. It cannot be observed by �rms nor veri�ed by

a third party, and therefore cannot be contracted upon. This does not mean that �rms will not

organize for limiting the laboratory's ability to bene�t from this informational asymmetry at

their expenses. There is evidence that real-world �rms do rely on a large variety of sophisticated

communication mechanisms to keep control on the actions chosen after the contracting stage by

an external laboratory. R&D contracts typically organize the formation of a research committee

in which parties exchange information for an on-going monitoring of operations and a possible

adjustment of payment schemes. These observed communication practices can be viewed through

economic lenses as means to reveal the laboratory's ability to deliver a targeted outcome, i.e.

its type �. The laboratory's type may relate not only to technological skills, but also to some

exogenous state of nature, together with the set of contractual opportunities other �rms may

o�er.

We see two possible ways of modelling the communication devices one observes on R&D

markets. A �rst one would consist in de�ning the message sets available to each �rm and

the laboratory in the most general way, before specifying the mechanisms chosen by �rms in
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their attempts to control the laboratory's decisions. Then it would be possible to capitalize

on Epstein and Peters (1999). They establish the existence of a \universal types space" that

renders possible the use the revelation principle in a multi-principal context, the same way as in a

standard single-principal problem. Although conceptually attractive, this approach is weakened

in practice by the di�cult identi�cation of the nature of the universal types space in a particular

environment.9

Another more tractable approach, we follow, consists in imposing relevant restrictions on

competition among �rms. In a very general common agency setup, which encompasses our

model, Peters (2001) demonstrates that all equilibrium allocations that can be supported with

any negotiation mechanism available to the principles can also be supported by imposing princi-

pals to o�er the agent a menu of contracts that associate actions (e.g., transfer payments) by the

principal with observable choices by the single agent.10 More speci�cally, the latter property still

holds good in the present model in which each principal's strategy is restricted to the simplest

possible menu, that is exactly one incentive scheme. Indeed, in our model the principals and the

agent have symmetric information at the contracting stage, each principal's gains depend only

on her own strategy and the agent's choices, and the agent's objective function is monotone in

the payments he may receive from principals. In this case, we know from Peters (2003) that all

equilibrium allocations that can be supported with a menu of contracts can also be supported as

equilibria when each principal's strategy is restricted to a single transfer payment conditioned

on the agent's choice.11 In addition, we know again from Peters (2003) that the equilibria in sin-

gle payment schemes we consider are robust to the possibility that principals might o�er richer

menus. This means that the equilibria we characterize in the following pages are also equilibria

in a more realistic setup in which more sophisticated communication means are available to

principals.

Consequently, in our delegated common agency setup, there is no loss of generality in im-

posing that principals compete only in single non-linear payment schemes. To anticipate, it
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will also be made apparent later that the contracts we consider are optimal, so that there is no

restriction in focusing on them.

2.3 The Delegated R&D Common Agency Game

For each x it delivers to a subset S of �rms exclusively, the laboratory L obtains a net bene�t

given by the function

vSL (�; t;x) =
X
i2S

ti(x)� rS(�;x): (2)

For each �rm i, net pro�ts are given by the function

vi (ti;x) = gi(x)� ti(x): (3)

In substance, we have a procurement market for R&D, in which the laboratory is an agent,

and �rms are principals. There is competition among �rms, which are interrelated in their

attempt to command the use of the laboratory's resources through transfer payments, that is

incentive schemes. This constitutes an R&D common agency game. We specify the following

timing.

- Stage 1: Proposed contracts.

Firms consider all possible R&D outcomes to simultaneously and non-cooperatively pro-

pose contracts to the laboratory. As already mentioned, the state of nature � is assumed to

be unobservable by the �rms. We assume that transfers depend only on L's delivered R&D

outcome. Firm i's contract is thus a commitment to transfer ti (x) ; for any realization of

� (and for any possible choice of x by the laboratory), that is part of the set

Ti = fti(x) � 0 j x 2 Xg: (4)

This limited liability constraint on transfer payments re
ects the observation that special-

ized laboratories typically lack �nancial support. The pro�le of a �rm's payment function
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is left open, as it may for example include a �xed component, or be linear in the dimensions

of R&D vectors.

- Stage 2: Accepted contracts.

Given transfer payment proposals t and the probability measure �, the laboratory considers

its expected bene�ts to decide whether to accept or not each �rm's proposed contract. This

leads to de�ne a subset, we denote by A, which exclusively includes the �rms with which

the laboratory accepts to contract. The laboratory signs at most n R&D contracts. If the

laboratory chooses not to sign with any �rm, it does not receive any payment. Formally,

a rationality condition writes

E�

�
max
x2X

�
vAL (�; t;x)

��
� sup

�
vL; E�

�
max
x2X

�
vSL(�; t;x)

���
; (5)

for all S � N , where vL represents the value of an outside option to L. Obviously,

since transfer payments are supposed to be non-negative, there is no loss in generality in

assuming that the set A extends to the whole set N at equilibrium, possibly with some

\null contracts", i.e. �rms o�ering transfers that are equal to zero for all equilibrium

outcome. However, the very fact that the agent may refuse some contracts guarantees

that �rms cannot have a free lunch with R&D services. It is the manifestation of the

laboratory bargaining power.

- Stage 3: R&D operations.

Eventually, given transfer proposals t and the set of accepted contracts A, the laboratory

learns the realization of the stochastic variable �. Then it produces the services x that

maximize its net bene�ts, that is the di�erence between the transfer payments stipulated

in the set of accepted contracts and the costs of R&D operations. The vectors x and t,

which constitute the subject-matter of the contracts, are both observable and veri�able by

a Court. This means that a �rm i may not decide not to transfer the proposed payment
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ti in response to the laboratory's chosen x, and also that the laboratory cannot consider

not to deliver the contractually agreed upon services in a state of nature that implies a

negative bene�t for any possible choice in X.12

Remark 1: intrinsic vs. delegated common agency. Bernheim and Whinston (1986b) distin-

guish two categories of common agency games. In an \intrinsic" common agency framework,

the agent may either accept or refuse all contracts. In \delegated" common agency games, the

agent may decide to accept or refuse any subset of the proposed contracts, as in the present

case. We thus refer hereafter to a delegated R&D common agency game.

Remark 2: contracting and decision stages. In the �rst stage, each strategy ti is based on

�rm i's expectation over L's possible R&D outcomes, which depend on the possible realizations

of the stochastic parameter and the induced choices by the laboratory. By the same token, in the

second stage, the laboratory's decision is based on its expectation over the possible realizations of

the stochastic variable. For a clear understanding of the game, it is important to emphasize the

distinction between these two former contracting stages, where decisions are based on expected

payo�s, and the �nal R&D operations stage, where decisions are based on the speci�c realization

of the stochastic variable.

Remark 3: conditional transfer payments. This speci�cation contrasts with many contribu-

tions to the common agency literature which typically present theoretical results in the usual

context of a market for consumer goods, in which each principal is described as a supplier of some

(possibly di�erentiated) good and the common agent is a retailer or a consumer (e.g., Gal-Or

(1991), Stole (1991), Martimort (1996), Bernheim and Whinston (1998), Calzolari and Scarpa

(2004), Martimort and Stole (2004), inter alia). It is assumed in these papers that a given prin-

cipal may not condition contracts on the agent's decision to accept another principal's contract,

and a fortiori on the exact quantity supplied by another principal to the common agent. This
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assumption makes sense when contractual agreements between, say several suppliers and a given

retailer, are concluded secretly, and thus not observable by third parties. The assumption is also

well justi�ed on institutional grounds, since the crux of contractual relationships that govern

product market transactions is subject to no-discrimination rules. However, these considerations

do not extend naturally to the context of the present paper. Indeed, independent laboratories

usually advertise the contractual agreements they conclude with established �rms in order to

signal their expertise to potential clients. Moreover, antitrust rules toward R&D contractual

agreements of all kinds clearly less stringent than the legal safeguards that prevail on product

markets. In the US institutional context, Martin (2001, p. 464) evokes a \permissive attitude"

in reference to the National Cooperative Research Act (NCRA) of 1984, which can be seen as a

means to reduce legal disincentives to participate in contractual R&D agreements on all \prop-

erly de�ned, relevant research and development markets", including on the markets for R&D

services we focus on in this paper.13 Firms thus frequently exploit this favorable informational

and institutional environment to tap R&D services from independent laboratories in exchange of

payment schemes in connection to complex non-compete clauses or exclusivity conditions which

explicitly refer to actual or potential rivals. Therefore our delegated R&D common agency game

is of the public kind.14

2.4 Uncertainty in R&D

A interesting feature of the model is that uncertainty is introduced in a very general way. In

particular, the state space � may be �nite or in�nite. Moreover, no monotonicity assumption

is introduced that would restrict the nature of the impact of the stochastic parameter � on the

agent's costs. This parameter may appear in �xed and/or variable cost components.

To produce results, the only restriction we need introducing is that \radical uncertainty" is

ruled out. This means that we focus on situations in which principals never face limited liability

problems, in the sense that the liability constraint we (realistically) introduce may bind only
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with probability zero. Formally, this is done by introducing the set

I�
�
fx (�)g�2�

�
= f(v1; : : : ; vn) j 8i 2 N , gi (x (�)) � vi, almost all �g . (6)

If fx (�)g�2� describes the agent's choices as a function of the stochastic parameter �, the

assumption that the vector of principals' net payo� v = (v1; : : : ; vN ) is in I�
�
fx (�)g�2�

�
is

equivalent to saying that each principal is almost always able to induce the agent to supply

services that generate an amount of realized revenues bounded from below by vi, all i. In other

words, each principal's gross realized payo� must always be higher than the net expected payo�.

Naturally, this does not say anything about the realized net payo�. However, it guaranties that

a principal i is always able to pay the agent up to vi. Loosely speaking, the constraint in (6) is a

\deep pocket" condition. We introduce it in order to reduce the occurrence of a limited liability

problem on the principals' side. Conversely, the condition can be considered as describing an

upper bound on each principal's expected net payo� vi, given the set of agent choices fx (�)g�2� :

This condition on gi (x (�)) obviously holds good when uncertainty is absent. If the agent's costs

are relatively high (as compared with gross payo�s), which is a quite reasonable conjecture in

an R&D context, the condition still holds true even with \quite a big amount" of uncertainty.

We thus see it as a natural bound on the support of the stochastic parameter that leads us to

concentrate on a delineated set of situations for any possible modelling of the problem under

scrutiny.

The uncertain nature of R&D, in the present model, does not relate to situations in which

the outcome of scientists inside the laboratory is unknown a priori. We focus on situations in

which the R&D output is a clearly identi�ed new process or product, that can be user-speci�c.

What is unknown is the cost of obtaining that target. The model does not relate either to real-

world instances asymetrically distributed knowledge at the contracting stage. We concentrate

on situations in which �rms and an external laboratory are endowed with the same (lack of)

expertise ex ante.
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3 Characterization of Nash Equilibria

In order to focus on the theoretical bones of the situation under scrutiny, in this section we

describe the delegated R&D common agency game in the standard terminology of the theory of

incentives. Then we de�ne the Nash equilibrium solution concept of the game, before charac-

terizing equilibria.

At the contracting stages, the parameter � is unknown not only to the principals (�rms) but

also to the agent (laboratory). Principals thus face an adverse selection problem with ex ante

uncertainty. An incentive compatible contract satis�es the following incentive and participation

constraints.

(IC) For all �, and given principals' strategies t, the agent's choices xo (�) are such that:

vAL (�; t;x
o (�)) � vAL (�; t;x); (7)

for all x 2X. This says that for given principals' strategies ti, and for all realizations of

the stochastic parameter, the agent maximizes its individual bene�ts in equilibrium.

(PC) For all principals i 2 A; given strategies to�i as chosen by principals in Nnfig, principal

i's strategy toi is such that

E�

h
toi (x

o (�)) + fAi (�;x
o (�)) + v

Anfig
L (�; t;xo (�))

i
� sup

n
0; E�

h
max
x
vSL(�; t;x)

io
;

(8)

for all S � Nn fig. This says that the agent should earn at least as much expected bene�ts

by serving principal i (in addition to the others) as by serving any other set principals but

principal i.

Principal i takes into account the incentive constraint (7) together with its speci�cally related

participation constraint in (8) to solve the maximization program

max
ti(:)2Ti

fE� [vi(ti;xo (�))]g � max
ti(:)2Ti

fE� [gi (xo (�))� ti (xo (�))]g : (9)
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Of course, the optimal contract ftoi (�) ;xo (�)g�2� o�ered by principal i depends on the strategies

(that is, transfer payments) chosen by all other principals in Nn fig. This leads us to introduce

the Nash equilibrium as a solution concept.

Remark 4: agent participation constraints. In contrast to the (unique) incentive constraint

(7), in which all principals play the same role, there is a particular participation constraint (8)

associated to each principal-agent relationship. The latter constraint is equivalent to saying that

transfer payments toi are such that it is in the agent's interest to participate in the game with

principal i (that is to accept the contract o�ered by i). Observe however that both categories

of constraints describe a strategic interaction among principals, since the choices made by the

common agent are in
uenced by the transfers o�ered by all principals.

Remark 5: principals' participation constraint. Although not mentioned explicitly in the

characterization of the Nash equilibria given above, the participation of a principal is also con-

strained by vi � vi. In the present context, this minimum payo� vi can be interpreted as a

reservation payo� obtained either by sourcing substitutable services from another independent

and exclusive agent, or by relying on proprietary assets.

De�nition 1 (De�nition of the Nash equilibrium of a common agency game): The

pair (to;xo (�)), where to and xo denote principals' strategies and the agent's choice, respectively,

is a Nash equilibrium (NE) of the game if

i) xo (�) 2 X(�; to) � argmaxx vL (�; to;x);

ii) A � argmaxS
�
E�
�
maxx v

S
L (�; t

o;x)
�	
;

iii) there is no i 2 N , no eti 2 T , no eA � argmaxS �E� �maxx vSL ��; eti; to�i;x��	 and no ex (�) 2
Xo(�; eti; to�i) � argmaxx v eAL ��; ti; to�i;x�, such that

E�
�
vi
�eti; ex (�)�� > E� [vi (toi ;xo (�))] :
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Assuming that the liability constraint t � 0 is not binding, we are now able characterize the

Nash equilibria of the game, as follows.

Theorem 1 (Characterization of the Nash equilibria): A triplet (to; Ao; fxo (�)g) is a

Nash Equilibrium of the delegated common game � if and only if:

(1) the action xo (�) is in:

Xo (�) = argmax
x2X

vA
o

L (�; t
o;x) for almost all �

(2) for all principals i in Ao:

E�
�
vA

o

L (�; to;xo (�))
�
= sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
;

(3) for all principals i in Ao:

Xo (�) � argmax
x2X

h
gi (x)� fA

o

i (�;x) + v
Aonfig
L

�
�; to�i;x

�i
for almost all �;

(with the convention fA
o

i (�;x) � 0 if i =2 Ao)

(4a) for all principals i in Ao:

E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

� sup

�
0; E�

�
max
x2X

�
gi (x)� fS[figi (�;x) + vSL

�
�; to�i;x

����
all S � Nn fig ;

and

E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

� sup
�
0; E�

�
gi (x

o
S (�)) + v

S
L
�
�; to�i;x

o
S (�)

��	
all S � Nn fig ;

with xoS (�) = argmaxx2X v
S
L(�; t

o
�i;x):

21



(4b) for all principals i in NnAo:

E�
��
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
���

� sup

�
0; E�

�
max
x2X

�
gi (x)� fS[figi (�;x) + vSL

�
�; to�i;x

����
all S � Nn fig .

This proposition gives four conditions which, when all satis�ed, characterize a Nash equilib-

rium in the principals' strategies and the agent's output. The �rst condition says that the agent

maximizes its individual bene�ts for given non-negative transfers as proposed by the principals.

The second condition says that all participation constraints are exactly binding. More precisely,

either the agent's expected rent is zero, or it is strictly positive. However, in the latter case, the

contractual relationship with principal i does not increase the agent's expected rent, as obtained

by contracting exclusively with principals in Nn fig. The third condition states that, for almost

all �, the equilibrium choices maximize the joint-payo� of the agent L and principal i, any i.

In other words, the bilateral contractual relationships between the principals and the agent are

e�cient. The fourth condition states that, given the incremental costs fA
o

i (�;x), the contracting

set Ao is e�cient, in that it maximizes the joint payo�s of the agent and all the contracting

principals.

It is well-known that, in the standard (one) principal-agent setup, when the agent is risk-

neutral, uncertainty at the contracting stage does not forbid the �rst-best to be achieved (See

Harris and Raviv (1979)). In other words, when there is only one principal, optimal contracts

are Pareto-e�cient and maximize the joint payo� of the agent and the principal. This holds

true also if one introduces risk aversion on the principal's side. This result however follows from

the assumption that the agent may not breach the contract when the states of nature are such

that it would have been in the agent's interest not to contract with the principal. In practice,

there is often a limit on the maximum loss the agent can be forced to bear as a consequence

of contracting with the principal. In this paper, for obvious scope of realism, we assume such

limits to exist and introduce the limited liability constraint t � 0: However, in order to focus on
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the strategic implications of the multi-principal setup (as opposed to the single principal case),

all results are obtained by assuming that the latter constraint is not binding. We evidence

afterward the conditions under which this is indeed the case.

Remark 6: liability constraints. A limited liability constraint may be of two types. It can

either bear on the ex post level of the agent's utility (bene�ts), a case one would adopt to capture,

say, bankruptcy laws. Alternatively, the limited liability may apply to the transfers from (to)

the principal, a limit that re
ects an upper bound on the rewards (�nes) that may be imposed to

the agent. We know from Sappington (1983) that, when a limited liability constraint is imposed

on the agent's ex post utility level, and if this constraint is binding, then ex post Pareto e�ciency

no more holds. The optimal contract as o�ered by the principal thus does not require the agent

to choose an e�cient action. Similarly, a limited liability constraint that bears on transfers may

forbid e�ciency. Although the distortions introduced by both types of liability constraints highly

di�er (see La�ont and Martimort, chap. 3, pp. 118-121), there is an interesting link between

them. Assuming t � 0 implies indeed that vAL (�) � �minx2X rA(�;x). The limited liability

constraint imposed on transfers is thus equivalent to introducing a boundary condition on the

agent's bene�ts, which is (possibly) state-dependent.

4 Examples

In this section, we add 
esh to the analysis by constructing a pair of simple and contrasted

examples. The objective is to illustrate the large possibilities of outcomes that can be obtained

from the delegated R&D common agency model in equilibrium.

For simplicity, suppose that the stochastic parameter can take values in a discrete set f�; �g

with equiprobability, and that the possible R&D outcomes are in the �nite set X = f0; y; zg2.

Denote by Y = f0; yg2 (resp. by Z = f0; zg2) the subset that does not include z (resp. y).

There are only two �rms, that is n = 2. We now turn to two speci�cations for each �rm's gross
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pro�t function and for the laboratory's costs.

� Example 1: On the laboratory's side, let

rS (�;x) =

8>>>>><>>>>>:
f if x = (0; 0)

~r + fSi (�) if x 2 X [ Y n(0; 0)

2r otherwise;

and rS
�
�;x
�
=

8>>>>><>>>>>:
f if x = (0; 0)

~r + fS
�
�
�
if x 2 X [ Y n(0; 0)

2r otherwise;

where 0 � f � ~r � r � r � ~g � (r � ~r) and

fNi (�) = r � ~r; fNi
�
�
�
= r � ~r; fSi (�) = 0 otherwise.

R&D costs increase with the number of �rms served by the laboratory. They also increase

from a state of nature to the other. For simplicity, we assume however that providing services to

only one �rm induces a cost ~r with no uncertainty. Incremental costs fSi (�) make it clear that

providing the same services to the two �rms is more costly than serving a single �rm. This may

be the result, say, of a capacity investment. Supplying di�erent services y and z simultaneously

to the two �rms costs more than 2~r, the cost of providing services to a single �rm. This is a

case of diseconomies of scope in R&D. On the �rms' side, let

g1(x) =

8><>: ~g if x1 = y;

0 otherwise;

and g2(x) =

8><>: ~g if x2 = z;

0 otherwise;

where ~g > 0. In words, �rms are interested in receiving a speci�c R&D services, namely y (resp.

z) for �rm 1 (resp. 2), otherwise they do not bene�t from the laboratory's output. The 3-tuple

(to;Ao;xo) as de�ned by

to1 (y; �) = to2 (�; z) = r + r � ~r and toi (x) = 0 otherwise;

Ao = f1; 2g ;

xo (�) = (y; z) ; all �;
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satis�es the four conditions displayed in Theorem 3. In this Nash equilibrium, each �rm receives

its most valuable option and earns a net pro�t equal to ~g � (r + r � ~r). By contrast, the lab-

oratory's net equilibrium bene�ts depend on the state of nature. It earns 2 (r � ~r) in the �rst

state, and only 2 (r � ~r) in the second state. Moreover, there is no other equilibrium that would

guarantee to the principals as much as what they earn in this Nash equilibrium. �

� Example 2: Assume that the laboratory's cost function is

r(�;x) =

8><>: ~r if x 2 X;

+1 otherwise;

and r(�;x) =

8><>: ~r if x 2 Y ;

+1 otherwise;

where ~r � 0. That is, in the �rst (resp., second) state of nature, the cost of supplying y (resp., z)

to any of the two �rms or both is positive, whereas the cost of supplying z (resp. y) is prohibitive.

Firms' gross pro�t functions are

g1(x) =

8>>>>><>>>>>:
g if x1 = y;

g if x1 = z;

0 otherwise;

and g2(x) =

8>>>>><>>>>>:
g if x2 = z;

g if x2 = y;

0 otherwise;

where g and g are positive parameters. Without loss of generality we assume that g � g. In

addition, let

g + g > ~r and g � ~r;

which means that the production of R&D services is pro�table at the industry level, although no

�rm may a�ord it on its own. Moreover, we impose

g � g < ~r=2;

which can be viewed as an upper limit on the impact of uncertainty on wealth creation. Remark

that both �rms are interested in receiving either a or b, but valuate the two services asymmetri-

cally.
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The 3-tuple (to;Ao;xo) as de�ned in the �rst state of nature (i.e., � = �) by

to (xo (�)) =
�
g � �

�
g + g � ~r

�
; g � (1� �)

�
g + g � ~r

��
;

Ao = f1; 2g ;

xo (�) = (y; y) ;

and in the second state of nature (i.e., � = �) by

to
�
xo
�
�
��
=
�
g � �

�
g + g � ~r

�
; g � (1� �)

�
g + g � ~r

��
;

Ao = f1; 2g ;

xo
�
�
�
= (z; z) ;

with � in [0; 1], satis�es the four conditions displayed in Theorem 3. In equilibrium the two �rms

receive the same R&D services, that is y in the �rst state, and z in the other state. Both �rms

earn a constant net pro�t in the two cases, namely �(g+g� ~r) for �rm 1, and (1� �) (g+g� ~r)

for �rm 2. Here the number of equilibria is in�nite, as it is driven by the value taken by the

continuous parameter �. In all equilibria the laboratory earns a net bene�t equal to zero, for all

states of nature. �

5 Truthful Equilibria

By choosing transfer payments, principals make strategic considerations in order to in
uence

the agent's choice toward the production of an output that maximizes their own individual

payo�. In this section, we compare the equilibrium strategies of this non-cooperative game with

the strategies that would naturally emerge in a cooperative context, i.e. if the objective were

to maximize the joint pro�ts of the agent and all principals. To do that, we introduce the

truthfulness concept, show that best responses in transfer payment o�ers can be truthful, and

characterize equilibria in which all principals adopt truthful strategies.
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5.1 Best Replies Do Not Exclude Truthfulness

De�nition 1 A strategy ti (:) is truthful if there exists some v
o
i � 0 such that:

ti(x) = supf0; gi(x)� voi g: (10)

Clearly, by transferring to the agent all gains in excess of a value voi , each principal makes

the agent a residual claimant of the individual bene�ts that accrue from received services. In a

cooperative context, truthful strategies are natural instruments in that they convey the informa-

tion the agent needs to behave as an e�ciency maximizer. Of more interest is a non-cooperative

context, in which the agent is not aware of the impact of his own decisions on each principal's

gross payo�. This is the situation considered by Bernheim and Winston (1986). In a delegated

common agency game where the agent \is poorly informed" (p. 2), they show that each prin-

cipal's best-reply correspondence contains a strategy which re
ects her marginal preferences,

i.e. is truthful. However, this does not come that much as a surprise, because principals are

assumed to have complete information, and thereby may share knowledge with the common

agent without loosing control over his choices.

By contrast, when the knowledge of some parameter value is not shared by all players, as in

the present model, it is well known that informed parties may �nd it pro�table not to disclose

private elements of information. More speci�cally, at �rst glance there is no reason to believe

that principals will o�er transfer payments which exactly re
ect their marginal preferences to an

agent who, beyond the contracting stage, is the only one to observe the realization of his type

and has full control over the choice of x.15 Indeed, once principals have transferred incentive

schemes, in the action stage they may only leave the agent freely make decisions, possibly at

their expenses.

This makes salient the following result.
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Proposition 1 For any i, and any vector of strategies t�i chosen by other principals in Nnfig,

principal i's best-reply correspondence contains a truthful strategy if and only if

gi (x
o (�)) � voi for almost all �, (11)

where xo (�) is the induced agent's output, and

voi = E�

h
gi (x

o (�)) + fAi (�;x
o (�)) + v

Anfig
L (�; t;xo (�))

i
�sup

�
0; max
S�Nnfig

E�

h
max
x
vSL(�; t;x)

i�
.

This result establishes two necessary and su�cient conditions for a principal's truthful strat-

egy to be a best response to the given strategies of all other players. The �rst condition in (11)

describes a 
oor case, as it imposes that the principal's lowest possible gross payo� resulting

from the agent's choice xo (�) is not lower than the net payo� voi she earns in equilibrium (the

inequality may be violated only for subsets of � with zero measure). The second condition in

(11) stipulates that the net equilibrium payo� voi is the highest value the principal may retain

without violating the agent's participation constraint.16 When the two conditions of proposition

5:1 hold, no limited liability constraint binds and no principal i lets the agent extract any rent

from the speci�c bilateral contract if o�ers on top of what is earned from all other principals in

N . Consequently, if the agent obtains a positive rent from its contractual relationship with prin-

cipals in Nnfig, it is left with exactly the same expected rent E�
h
maxx

�
v
Nnfig
L (�; t;x)

�i
> 0

by contracting also with i. Otherwise the agent obtains no rent at all. Observe that situations

in which the agent makes some positive rent by contracting with the other principals should

not be excluded a priori. The delegated common agency setup is a non-cooperative game in

which principals may possibly concede a positive rent to the agent by vying for the control of

the latter's decision.

Remark 7: implementation. Condition (11) is an implementability condition on the agent's

output that must be satis�ed in all states of nature. This deserves some comments. Firstly,

we conceive it as a natural condition. In the extreme situation in which uncertainty is absent,
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the condition boils down to specifying that a principal's gross payo� must be higher than the

net payo�. This (usually implicit) assumption guarantees that the contractual relationship

is bene�cial to all parties by eliminating the trivial no-contract equilibrium. Secondly, the

implementability condition makes more precise the role of uncertainty in the present model.

Roughly, as long as the uncertain value taken by the stochastic parameter is limited to cases in

which each principal i's gross bene�ts are higher than equilibrium net payo�s, then all principals

can rely on truthful strategies to maximize their gains. Intuitively, the higher the �xed costs

incurred by the agent, the more the principals must pay to satisfy the agent's participation

constraint, and the lower the value of each principal's net payo�. This means that, for given

downstream conditions (as captured by principals' gross pro�t functions), the implementability

condition is easily satis�ed when the agent's technology is characterized by high �xed costs, which

is very likely to be the case in most real-world R&D situations. Thirdly, the implementability

condition amounts to imposing boundaries to the support of the stochastic parameter (without

any limitation on its distribution). The size of this support increases with the magnitude of the

�xed component of the costs the agent must incur to serve the principal(s) with which it has

contracted. This is because these costs are sunk only after bilateral agreements have been made,

that is when the agent has commited to produce contractually agreed upon actions in exchange

of payments. By accepting contract(s), the agent anticipates it must deliver a su�ciently high

level of output to cover �xed costs and satisfy the rationality constraint (5). While it makes

sense to assume that these �xed costs can be (close to) zero in the usual context of a market for

consumer products or standardized services, it is reasonable to suppose they are relatively high

in the case of R&D services.

5.2 Characterization of Truthful Nash Equilibria

Proposition 5:1 o�ers (implicit) necessary and su�cient conditions under which there is no loss

of generality in assuming that a principal chooses a truthful strategy, for any given strategies
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as chosen by all other principals. Although of interest for the understanding of the bilateral

strategic interactions at play in the common agency game, in this claim the characterization of a

given player's equilibrium action remains conditional on the choices made by other principals. A

more complete characterization of truthful equilibria would refer to all strategies in equilibrium.

Toward this aim, we �rst introduce the notation

�S �

24�; X; F; rS (:)� X
i2NnS

ti (:) ; fgi (:)gi2S

35 ;
all S � N . Remark that our common agency game is fully speci�ed by �N . Then we de�ne the

joint payo� function

�S(�;x) =
X
i2S

gi(x)� rS(�;x); (12)

for any subset S of N including the empty set, and any realization of the stochastic variable

�. Given S and �, the maximum of this function is denoted by �S(�) = maxx2X �S(�;x), and

a maximizer is denoted by x�S (�), an element of X
�
S (�). If the agent does not contract with

any principal, its expected bene�ts are E�
�
�;(�)

�
, we normalize to zero, whereas principals

receive only a reservation payo� vi. If the agent contracts with at least one principal, we need

identifying the possible distributions of net payo�s received by all principals in equilibrium.

Now, for any given action pro�le fx (�)g�2�, we de�ne the following set

V�
�
fx (�)g�2�

�
=

(
(v1; : : : ; vn) j 8S � N ,

X
i2S

vi � E�
�
�N (�;x (�))��NnS (�;x (�))

�)
,

which describes all payo� distributions v = (v1; : : : ; vn) for which no subset S obtains more than

its contribution to the expected joint payo�s of all principals in N . If a vector of equilibrium

payo�s vo is in the Pareto frontier of the distribution set V�
�
fx (�)g�2�

�
, we denote by V�, then

there exists no �vo in V�
�
fx (�)g�2�

�
such that �vo � vo. In what follows the Pareto frontier of

V �� � V�(fx� (�)g�2�) is denoted by V��.

If voi � 0 is a component of vo in the implementation set I�
�
fxo (�)g�2�

�
, then recall

from (6) that the limited liability constraint is not binding when principal i adopts the related
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truthful strategy toi that induces the pro�le of choices fxo (�)g�2�.17 When the agent's output

is in X�
N (�), we write I

�
� � I�

�
fx� (�)g�2�

�
.

Assuming that all principals adopt truthful strategies, we are now able to characterize the

corresponding (subset of) Nash equilibria:

Theorem 2 (Characterization of Truthful Nash Equilibria): In all games �N :

1. if (to;xo (�)) is a truthful Nash equilibrium, then xo (�) is in X�
N (�) for almost all �, and

(vo1; : : : ; v
o
n) is in I

�
� \ V��;

2. if a payo� vector (v1; : : : ; vn) is in I
�
� \ V��, then it can be supported by a truthful Nash

equilibrium.

There are two claims in Theorem 2. In words, the �rst one says that truthful strategies

are optimal (i.e. they lead the agent to produce an output that maximizes the joint payo�s of

the agent and all principals), and also that truthful equilibria are Pareto optimal (i.e. there

is no alternative equilibrium payo� distribution that can make all principals better-o�). The

second claim establishes that if a payo� distribution is both in the implementation set I�� and

the Pareto frontier V�� of the distribution set V �� , then it can be decentralized by the means of

a truthful Nash equilibrium.

In addition to an extension of a result in the complete information case by Bernheim and

Whinston (1986), Theorem 2 may be considered a minima as a generalization to the multi-

principal case of a well-known result in the standard single principal-agent setup: e�ciency

is preserved when uncertainty is introduced at the contracting stage in the absence of limited

liability concerns (see La�ont and Martimort, 2002, pp. 57-58). However, more is o�ered here

since we establish that this result holds goods when principals' strategies are restricted to be

truthful.
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Strategy of Proof: For the sake of clarity, the proof developed in the appendix is de-

composed into four distinct results. We �rst establish in Proposition A2 that the output xo (�)

produced by the agent is such that no coalition of principals can obtain more at equilibrium

than its marginal contribution, that is (vo1; ::; v
o
n) 2 V �� � V�(fx� (�)g�2�). Then in Proposition

A3, we claim that e�cient outputs and equilibrium outputs coincide, that is xo (�) 2 X� (�)

and x� (�) 2 Xo (�). We demonstrate further that the principals' equilibrium payo�s are in

the Pareto frontier of V �� (Lemma A2 and Proposition A4) and, reciprocally, that any element

of the Pareto frontier of V �� such that the liability constraint is almost never binding (i.e.,

(v1; : : : ; vn) 2 I�� � I�
�
fx� (�)g�2�

�
) can be supported by a truthful Nash equilibrium (Lemma

A3 and Proposition A5).

Although Proposition 5:1 makes it clear that, under well-de�ned conditions, a principal

makes no strategic loss in adopting a truthful strategy, there is no reason to assume that it

will always do so. A further argument in favour of the truthfulness re�nement consists in

demonstrating that truthful Nash equilibria are coalition-proof, i.e. stable to credible threats of

deviations by subsets of principals. By \credible threat", it is meant that a deviating subset of

principals is itself immune from the threat of deviations of a subset of players.18 More formally:

De�nition 2: Coalition-proof Nash equilibrium

1. In all games �N with a single principal (n = 1), the pair (to;xo) is a strictly coalition-proof

Nash equilibrium if it is a Nash equilibrium.

2. In all games �N with several principals (n > 1), the pair (to;xo) is a strictly coalition-proof

Nash equilibrium if it is strictly self-enforcing and it is not Pareto dominated by another

strictly self-enforcing pair (�to; �xo).

3. In all games �N with several principals (n > 1), the pair (to;xo) is a strictly self-enforcing

pro�le of strategies if it is a strictly coalition-proof Nash equilibrium of the restricted game
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�S, all S � N .

Remark that coalition-proof Nash equilibria are de�ned recursively. A Nash equilibrium is

coalition-proof if there is no subset S of players that can deviate by choosing alternative strategies

resulting in a higher payo� for each of them (for unchanged strategies as chosen by outsiders in

NnS), where these alternative strategies also constitute a coalition-proof equilibrium, i.e. are

immune to deviations by a subset T � S, and so on.

Theorem 3 (Equivalence between truthful Nash equilibria and coalition-proof Nash

equilibria): Consider a common agency game �. Then all truthful Nash equilibria are (strictly)

coalition-proof. All (strictly) coalition-proof Nash equilibria with payo�s in I�� can be supported

by a truthful Nash equilibrium.

Interestingly, this says that, although the agent is more informed than principals when time

comes to produce an output, in all circumstances in which the limited liability constraints are

not binding the set of truthful Nash equilibria coincides with the set of coalition-proof Nash

equilibria. This robustness result o�ers a justi�cation for the use of truthful strategies in a

delegated common agency set up in which the agent's type is uncertain at the contracting

stage.19

Strategy of Proof: The proof of Theorem 3 is adapted from Konishi et al. (1999). We

�rst need results for any restricted common agency game �S. That is, we consider a subset

S � N and take as given the strategies chosen by principals in NnS. We demonstrate that a

maximizer of the agent's bene�t function is also a joint maximizing action for the agent and

the coalition S of principals (Proposition ???). Then we show that any truthful Nash equilib-

rium gives a vector of payo�s for principals in S in the Pareto frontier V S� (�;x
� (�)) of the set

V S� (�;x
� (�)) of all coalition-proof payo� distributions when the action is chosen by the agent.

This implies that no subset of S has any incentive to redistribute the joint-payo� di�erently
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(Proposition 7). The proof of Theorem 3 then proceeds by induction on the number of principals

n.

6 Distribution of Equilibrium Payo�s

In what follows, we capitalize on the results displayed in the previous session to focus on truthful

Nash equilibria (TNE). An important property of these equilibria is that equilibrium actions

maximize the expected joint payo�s of the agent and all principals, that is E� [�N (�)]. It follows

that, as far as the aggregate payo� is concerned, the equilibrium outcome of this non-cooperative

game is identical to the outcome of a cooperative game in which all individuals participate in

the grand coalition in equilibrium. This motivates the use of cooperative TU game theory to

characterize the distribution of payo�s. Toward this aim, we introduce a characteristic function

� : 2N ! <+ which describes the expected maximum joint-payo� of the set of principals in S

together with the agent:

� (S) = E�

�
max
x2X

f�S (�;x)g
�
= E�

"
max
x2X

(X
i2S

gi(x)� rS(�;x)
)#

.

We denote by voL the agent's expected net equilibrium pro�ts. The next two propositions gener-

alize two results by Laussel and Le Breton (2001) to the present setup, i.e. to situations in which

the agent type is uncertain at the contracting stage. They demonstrate that the distribution of

equilibrium payo�s is rooted in simple structural properties of the characteristic function.

Proposition 3 In all games �N , if �(:) is strongly subadditive, that is �(N) � �(S) �

�(T )��(S \ T ) for all S; T 2 2N such that S [ T = N , then there is a unique TNE in which

the agent obtains a rent voL > 0, and principals' equilibrium payo�s are

voi = �(N)��(Nnfig), all i 2 N .
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Proposition 4 In all games �N , if �(:) is convex, that is �(T[fig)��(T ) � �(S[fig)��(S)

for all S; T 2 2N , i 2 N with S � T , and i =2 T , then in all TNE the agent exactly breaks even,

i.e. voL = 0, and all vectors of principals' equilibrium payo�s are such that

X
i2N

voi = �(N).

An intuitive interpretation of the two propositions consists in relating the structural prop-

erties of the characteristic function to the net impact of various kinds of externalities on the

nature of competition between principals, for the control of the agent's output. These external-

ities can be of the direct type if each principal's gross payo� function depends not only on the

output it receives, but also on the output received by another principal, a case of spill-overs.

Externalities are of the indirect type when the agent's costs are not additively separable across

principals. This means that the agent's cost of satisfying a principal's demand depends on the

output supplied to meet another principal's needs.

To illustrate, let the set Xi = f0; 1g represent the R&D outputs the laboratory may serve

to each �rm i = 1; 2. Consider the situation in which � can take only values in f�; �g with

equiprobability. R&D costs r (�;x) are

x2 = 0 x2 = 1

x1 = 0 r0 r1

x1 = 1 r1 r2

with 0 � r0 � r1 � r2. Firms' gross pro�ts gi(x) write also in matrix form as

x2 = 0 x2 = 1

x1 = 0 (0; 0) (l; h)

x1 = 1 (h; l) (b; b)

where the �rst (second) payo� in each cell refers to �rm 1 (�rm 2). We assume that b � 0, and

l � h. This says that 1) the two �rms obtain more pro�ts when they both receive services from
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the laboratory than when no R&D is produced, and 2) each �rm is better o� when it is the only

bene�ciary of R&D services. Remark that, in the latter matrix, the choice of x is made by the

laboratory (which then decides to di�use or not R&D services to �rms 1 and/or 2), while the

payo�s relate to �rms.20 Then consider the following two cases.

� Example 3: The R&D technology is characterized by a phenomenon of congestion, so

that E� (r2) > 2E� (r1). In addition, a �rm's gross payo� is lowered when the rival bene�ts from

R&D services, that is l � 0 and b � h. These inequalities are satis�ed for the following scalar

values, where the �rst two payo�s in each cell refer to the �rms while the third value refers to

the laboratory's gross payo� (i.e. �r (�;x)):

� x2 = 0 x2 = 1

x1 = 0 (0; 0; 0) (�1; 12;�1)

x1 = 1 (12;�1;�1) (9; 9;�4)

� x2 = 0 x2 = 1

x1 = 0 (0; 0; 0) (�1; 12;�3)

x1 = 1 (12;�1;�3) (9; 9;�8)

In the two states of nature, the joint pro�ts of the laboratory and the two �rms (the sum of

gross payo�s) are maximized when the two �rms receive R&D services, that is if x = (1; 1). In

that case, and for the �rst state of nature, total pro�ts are 14; as opposed to 10 if exactly one

�rm receives R&D, and 0 otherwise. In the second state of nature, the total pro�ts are 10, 8,

and 0, respectively. In both states, �rm 1 will make no positive transfer on (0; 1), nor �rm 2

on (1; 0). To avoid being refused access to the laboratory's expertise, a case of negative gross

pro�ts, �rms compete frontally in transfer payments. To drive the direction of R&D services

to their individual advantage, each �rm must bid over the rival's proposal until both meet their

budget constraint (i.e. the gross payo�s they receive), or until additional increments in payments

only in
ate the laboratory's revenues, without inducing any change in the direction of its R&D
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e�orts. Firms' transfer functions toi (x) are represented by

x2 = 0 x2 = 1

x1 = 0 (0; 0) (0; 10)

x1 = 1 (10; 0) (7; 7)

where the �rst (second) value in each cell refers to �rm 1 (�rm 2)'s transfers. Together with

Ao = f1; 2g, xo (�) = xo
�
�
�
= (1; 1), transfers toi de�ne a 3-tuple (t

o;Ao;xo) that satis�es the

four conditions displayed in Theorem 3. In equilibrium both �rms receive R&D services and earn

a constant net pro�t in the two states of nature, namely vo1 = v
o
2 = 2. The laboratory receives a

state-dependent net payo�. Its expected bene�ts are voL = 8: This strictly positive equilibrium gain

results from the anti-complementarities that characterizes the functional form of this example.

It is straightforward to show that, in this example, each �rm has an incentive to cooperate with

the other �rm, or to acquire the laboratory. Indeed, an horizontal cooperation would turn the

structure of the model into the simpler situation of a single entity (a joint-venture of the two

�rms) { which writes contracts { and a single laboratory. A transfer schedule t1+2(x) = 6

if x = (1; 1) and t1+2(x) = 0 otherwise would exactly satisfy the laboratory's participation

constraint, and lead each party to the cooperative agreement to gain 6 as a net payo�. Moreover,

by acquiring the laboratory, a �rm could bene�t from exclusive R&D resources to guarantee itself

an expected net payo� of 10. In addition, by selling R&D outputs to the other �rm, the integrated

entity may improve on its bene�ts up to 13 (the expected joint-pro�ts minus the { negative {

reservation pro�ts of the non-integrated �rm). �

� Example 4: There are economies of scope in the production of R&D services, so that

E� (r2) < 2E� (r1). Each �rm's gross payo� increases if the other �rm bene�ts from R&D

services also, so that l � 0 and b� l � h. Again, these inequalities are satis�ed for the following
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scalar values:

� x2 = 0 x2 = 1

x1 = 0 (0; 0;�1) (1; 9;�2)

x1 = 1 (9; 1;�2) (12; 12;�3)

� x2 = 0 x2 = 1

x1 = 0 (0; 0;�1) (1; 9;�4)

x1 = 1 (9; 1;�4) (12; 12;�5)

As in the previous example, in the two states of nature the unique e�cient laboratory output

is x� = (1; 1), which yields an expected joint pro�t of 20 as opposed to 8 if exactly one �rm

receives R&D, and 0 otherwise (both states of nature are given the same probability). Here no

�rm is interested in being the sole buyer of the laboratory's output, since it bene�ts indirectly

from economies of scope in the production of R&D, and also directly from the other �rm's

received services. This means that, in the two states of nature, t1(x) = t2(x) = 0 unless x =

(1; 1). In the latter case only, a Nash equilibrium in transfer payments is obtained for any pair

(t1(1; 1); t2(1; 1)) which satis�es the participation constraint, that is

to1(1; 1) + t
o
2(1; 1) = 4:

There is a continuum of equilibria which are such that

voL = 0 and v
o
1 + v

o
2 = 20:

In addition, recall that each �rm i's expected equilibrium pro�ts are bounded from below by

�(fig), so that voi � gi(1; 1)�E� (r (�; 1; 1)) = 8. Even when � = �, in which case the laboratory's

realized pro�ts are negative, the latter has no incentive not to serve the two �rms. In this set-up,

unless we introduce an informational asymmetry or some new distribution of bargaining power

because of a change in the structure of the market, �rms do not have any incentive to cooperate

nor to acquire the laboratory. �

These two examples illustrate the impact of various speci�cations of indirect (i.e., through the

agent's costs) and direct (i.e., through principals' gross payo�s) externalities on the distribution

of bene�ts, and the related incentives to integrate.
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Direct and indirect externalities can be negative or positive. Proposition 3 refers to cases

in which negative externalities dominate. The strict subadditivity of �(:) implies decreasing

returns in the size of the set of principals. Consequently, each principal is interested in limiting

the number of other players. Competition for the control of the agent's output is tough, a

situation from which the agent obtains bene�ts. Proposition 4 characterizes situations in which

positive externalities prevail. The convexity of �(:) implies increasing returns in the number of

principals. In that case, each principal is interested in seeing the other players contract also.

Competition for the control of the agent's choice is soft, which is unfavorable to the agent.

In the latter case, truthful Nash equilibria are strong Nash equilibria, i.e. are stable to any

deviation by a coalition of players.21 More formally:

De�nition 3: Strong Nash equilibria The pair (to;xo (�)) is a strong Nash equilibrium of

the game if it is a Nash equilibrium and there exists no coalition S � N , strategy pro�le �toS �

f�toi gi2S, output �xo (�) in Xo
�
�;X(�;�toS ; t

o
NnS);

�
such that E� [vi(�t

o
i ; �x

o (�))] � E� [vi(toi ;xo (�))]

for all principals in S with strict inequality for at least one of them, given toNnS � ft
o
i gi2NnS .

In words, a Nash equilibrium is strong if there is no coalition of principals who can deviate

by choosing alternative strategies that result in a higher payo� for each of them, for unchanged

strategies as chosen by other principals.

Theorem 4 (Equivalence between TNE and strong NE) In all games � where �(:) is

convex, all truthful Nash equilibria with payo�s are strong Nash equilibria.

This claim can be seen as a further argument in favour of the truthfulness re�nement, on top

of Theorem 3, since the strong Nash equilibrium concept describes a superior degree of stability.

Indeed, strong Nash equilibria { whenever they exist { form a subset of coalition-proof Nash

equilibria. However, this stability property applies only to a subclass of characteristic functions
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that capture situations of positive externalities.

7 Su�cient Conditions

We now provide a simple generalization of two existing results in common agency theory (Ville-

meur and Versaevel, 2003). (The extension to the ex ante contracting setting proceeds by

considering the expected version of expressions in proofs). They o�er conditions on rS(�;x) and

gi(x) which are su�cient for � (:) to be strictly subadditive, or convex.

Proposition 5 In all games �N , if gi(xi;x
0
j) � gi(xi;xj), all x0j � xj, and rS(�;x) is strictly

supermodular in x, then �(:) is strictly subadditive.

In this proposition, the condition on gi describes negative direct externalities, and the condi-

tion on rS(�;x) describes negative indirect externalities. The supermodularity condition formal-

izes a case of decreasing returns in the dimensions of x on the laboratory's side. Supplying more

R&D services to one �rm makes it more costly to serve the other �rms. This can be interpreted

as a phenomenon of congestion. A variation on Proposition 7 is obtained by observing that when

the monotonicity property of gi in xj holds true, and r
S(�;x) is additive separable across �rms

(so that indirect externalities are nil), then it is su�cient to verify that gi is strictly submodular

in x, all i, to conclude again that � (:) is strictly subadditive.if � (:).22 The latter property,

combined with Theorem 3.1 in Laussel and Le Breton (2003, p. 102), leads to the conclusion

that the laboratory obtains positive bene�ts in all equilibria. When strict subadditivity and

strong subadditivity coincide, as in the case #N = 2, then it remains to evoke Proposition 6 to

compute the equilibrium payo�s of all game participants.

� Example 5: N = f1; 2g, and x = (x1; x2) describes the di�usion possibilities of a patent

attached to some process R&D output, with a \winner-take-all" feature, with Xi = f0; 1g. The

stochastic parameter � can be either � or � with probability 1=2. R&D cost are rS(�;x) = 0 if
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x1 = x2 = 0, rS(�;x) = � if x1 + x2 = 1, and rS(�;x) = +1 otherwise, a cost speci�cation

borrowed from Laussel and Le Breton (2001). The function rS is strictly supermodular in x. Each

�rm i's unit production cost is a positive constant ci(xi), with ci(0) = cH and ci(1) = cL < cH .

The two �rms produce a homogeneous good, compete in prices, and total demand is q = 1 � p.

We obtain gi(x) = (cH � cL) (1 � cH) > 0 if xi = 1 and xj = 0, and gi(x) = 0 otherwise.

Clearly, gi(xi; x
0) � gi(xi; xj), all x

0
j � xj. In equilibrium, the laboratory maximizes bene�ts

by contracting with one �rm only (say, �rm 1, indi�erently), so that Ao = f1g. Firm 1 then

receives xo1 (�) = 1 in exchange of to1 ((1; 0)) = g1((1; 0)) > 0, and vo1 = 0. Firm 2 receives

xo2 (�) = 0 in exchange of to2 ((1; 0)) = g2((1; 0)) = 0, and vo1 = 0 also. The laboratory earns

(cH � cL) (1� cH)�
�
� + �

�
=2 > 0.�

Proposition 6 In all games �N , if gi(xi;x
0
j) � gi(xi;xj), all x0j � xj, rS(�;x) is submodular

in x, and gi(x) is supermodular in x, all i, then �(:) is convex.

Here the monotonicity condition on gi captures a case of positive direct externalities. This

condition is not su�cient to obtain a characterization of � (:). We need complementarities on

the �rms' side, as described by the supermodularity condition on gi, and also on the laboratory's

side, as captured by the submodularity of rS(�;x) in x. The latter property is a case positive

indirect externalities. This means that delivering more to a given �rm makes it less costly to

satisfy the other �rms. When speci�c algebraic expressions satisfy the conditions displayed in

Proposition 7, it remains to refer to Proposition 6 to conclude that voL = 0 and
X
i2N

voi = �(N).

� Example 6: N = f1; 2g, and the laboratory's costs are rS(�;x) = x1 + x2 � �, with

xi 2 Xi = f0; 1g, and � can be either � or � with probability 1=2. Each �rm i's variable costs

are normalized to zero, and demand is qi(p;x) = 1=(1+ 
)� 1=(1� 
2)pi+ 
=(1� 
2)pj, where

the degree of substitutability 
 is a function of x, as in Lambertini and Rossini (1998), that

is 
 � 
(x) 2 [0; 1]. R&D aims at enhancing symmetric horizontal di�erentiation that occurs
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only if the two �rms buy services from the laboratory. Formally, let 
(x) = 0 if x1x2 > 0, and


(x) ! 1 otherwise. Non-cooperative pro�t maximization in prices in the market stage yields

gi(xi; xj) = (1� 
) =
�
(1 + 
) (2� 
)2

�
, and one �nds gi(xi; x

0
j) � gi(xi; xj), all x

0
j � xj, and

gi(x) is supermodular in x. In equilibrium, the laboratory maximizes bene�ts by contracting with

the two �rms, so that Ao = f1; 2g. Each �rm receives xoi (�) = 1 in exchange of toi ((1; 1)) =

gi((1; 1)) > 0, and v
o
1 + v

o
2 = � � 3=2. The laboratory's expected bene�ts are zero. �

8 Incentives to Cooperate and Integrate on the Market for Tech-

nology

In this section we exploit the properties of the common agency game to investigate the incentives

�rms face to coordinate their decisions to purchase R&D services, or to integrate vertically by

acquiring the external laboratory. Toward this aim, we assume that no e�ciency gain obtains,

in the sense that �rms do not upgrade their expertise by cooperating in R&D choices with a

rival, nor by acquiring the external laboratory.

Consider �rst the extreme situation in which �rms and the laboratory all participate in

some form of coordination mechanism. This occurs if all n �rms share the ownership of the

laboratory and control it as a joint venture. There is no gain in joint pro�ts to be obtained in

this scenario. To see that, recall that equilibrium R&D outcomes x� belong to the set of e�orts

which yield the highest joint pro�ts for all parties (the joint pro�ts maximization property). The

net residual share of joint pro�ts accruing to each buyer of another �rm's equity would thus not

improve on the amount of net pro�ts received at equilibrium in the delegated R&D common

agency game. Indeed, complete forward integration (i.e., all �rms become subsidiaries) would

imply the payment of voi by the laboratory to the owners of downstream assets. By the same

token, backward integration (i.e., the laboratory becomes a joint venture) would require the

total payment of voL by �rms for the ownership of R&D assets. The equality v
o
L+
P
N v

o
i = �(N)

holds in all cases, unless further assumptions are introduced (e.g., costs or gross bene�ts depend
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on the governance structure).

If, in an alternative scenario, all �rms and the laboratory merge (i.e., �rms merge horizontally

also), then gross pro�ts increase because �rms become divisions of a n-product monopolist

and thereby internalize downstream competition. This e�ect is orthogonal to the concern of

this paper, since it is a consequence of a change in the �nal market structure only, not in

the upstream conditions of delivery of R&D services. Henceforth we assume that �rms may

contractually commit on the transfer payments they o�er to the laboratory only, or choose to

integrate the external laboratory, but may not coordiante their decisions on the �nal market

for goods.23. This allows us to focus on the impact on the distribution of R&D bene�ts of the

participation of any subset of �rms (including N) in such a horizontal coordination mechanism,

or of the shift to a more vertically integrated structure that leads any subset of �rms (excluding

N) to control the laboratory.

We demonstrate that the existence of strategic incentives for more horizontal of vertical

coordination depends essentially on the nature of competition on the market for R&D services,

i.e. on the existence of anti-complementarities vs. complementarities, in the sense of Propositions

3 and 4.

8.1 Cases of anti-complementarities

We focus in this section on all cases characterized by anti-complementarities in the production

or use of R&D services, as described in Proposition 3.

Horizontal cooperation Consider �rst the impact of a horizontal agreement on the dis-

tribution of R&D bene�ts. For all n � 2, suppose that two �rms cooperate in their choices of

transfer payment o�ers to the independent laboratory. This leaves the structure of the delegated

R&D common agency game unchanged, although the distribution of pro�ts does change to the

advantage of the cooperating parties.
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To see that, recall that precise results on the distribution of bene�ts depend on the structural

properties of �. If anti-complementarities dominate, so that the characteristic function is strongly

subadditive, we know that there is a unique TNE, and that �rm i's (expected) pro�ts are

voi = �(N) � �(Nnfig), all i. Without any loss of generality, assume that �rms 1 and 2

coordinate their choices, as if they were a uni�ed entity, we denote by a subscript u. It follows

that the joint equilibrium pro�ts are vou = �(N) � �(Nn f1; 2g). The gains from coordination

are thus given by the di�erence

vou � (vo1 + vo2) = � (Nn f1g) + � (Nn f2g)��(Nn f1; 2g)��(N) ;

which is positive as a consequence of the strong subadditivity of �. Therefore �rms have strategic

incentives to cooperate horizontally on the intermediate market for technology in the case of

anti-complementarities in the production and use of R&D services. Now recall that �rm i's

equilibrium pro�ts voi remain equal, all i � 3, in the absence of post-coordination e�ciency

gains. As a result, the laboratory contemplates a reduction in its individual equilibrium pro�ts.

A limit case is n = 2 (a situation illustrated by Figure 1).24 If the two �rms coordinate their

strategies, everything happens as if there were only one player left on the intermediate market

for technology. As a principal, this player writes contracts in order to make the agent exactly

break even, so that voL = 0.

[insert Figure 1 here]

Vertical integration Consider now the impact of (partial) vertical integration, where the

laboratory merges with only one out of n users, say �rm 1 (without loss of generality). The

assumption that �rms can choose to source R&D services internally, by relying on proprietary

resources, leads to discuss two possible cases.25 Assume �rst that �rm 1 is endowed with su-

perior capabilities, that is v1 > �(f1g). Then the participation constraint on the �rm's side,

which imposes vo1 � v1, leads to v
o
1 = �(N) � �(Nnf1g) � �(f1g), which contradicts the
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strict subadditivity property. We can thus assume that the alternative case holds, in which the

laboratory is endowed with superior capabilities, that is v1 � �(f1g). In other words, when

anti-complementarities dominate, a �rm delegates the production of R&D services to a special-

ized laboratory only if the latter can compensate for diseconomies in the number of contracting

users by o�ering a su�ciently high level of expertise.

In this context, consider the situation in which the merged entity does not contract with

any other potential user of R&D services we label j, a case of foreclosure (see Figure 2 in the

case n = 2). This choice does not make parties to the merger appropriate a higher level of joint

pro�ts than earned without integrating. To see that, note that the merged entity which does

not sell R&D services to other �rms earns maxx
�
g1(x)� rf1g(x)

�
� �(f1g). Then recall from

Theorem 2 that
P
j2Nnf1g v

o
j � �(N) � �(f1g) (principals' payo� vector is in V �� ) and also

that voL + v
o
1 = �(N)�

P
j2Nnf1g v

o
j (Pareto e�ciency). It follows that �(f1g) � voL + vo1. It is

therefore not possible for the laboratory and a given �rm to receive more than the reservation

values voL and v
o
1, respectively, by simply merging vertically and not serving outsiders with R&D

services.

[insert Figure 2 here]

Assume now that, although anti-complementarities dominate, the merged entity does sell

R&D services to other �rms. In this case the structure of the game changes, since non-merging

parties may not write contracts and address them on a take-it or leave-it basis to the merged

entity. This is because the latter combines the R&D capabilities of the laboratory with the

�rm's bargaining position. We see this as a situation of bilateral bargaining for the choice of x

between the integrated party L+ 1 on the one side, and each outsider j in Nnf1g on the other

side. The payo� function of the merged unit is given by g1(x)� rf1g(x)+ tj (x), while the payo�

function of a separate �rm j remains unchanged, that is gj(x) � tj (x). Given the lump-sum

transferability of payments, Pareto optimality of the bargaining process induces e�ciency of the
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bargaining equilibria. Formally,

~vL+1 +
X

j2Nnf1g
~vj = max

x2X

0@X
j2N

gj(x)� rN (x)

1A � �(N);

where ~vL+1 and ~vj denote the pro�ts of the merged pair and each outsider, respectively, in

all bargaining equilibria. Moreover, the disagreement point is (vL+1;vj), where vL+1 is the

minimum level of expected pro�ts the merged entity may obtain by choosing to behave as an

agent (and thereby not to use �rm 1's bargaining power), and vj is the vector of outsiders'

reservation pro�ts. By de�nition, vL+1 is equal to the joint expected pro�ts minus the sum of

expected pro�ts earned by all �rms j in Nnf1g in the unique TNE of the truncated delegated

R&D common agency game �Nnf1g. Since �(N) and voj = �(N)��(Nn fjg) remain the same

in the latter game as in the pre-merger setup �N , we have

vL+1 = v
o
L + v

o
1:

This implies in turn that, in all equilibria ~x of the bargaining game, related pro�ts ~vL+1 and ~vj

are such that

~vL+1 = g1(~x)� rf1g(~x) + tj (~x) � voL + vo1 and ~vj � vj ;

all j, j 6= 1.

As a result, the vertically integrated entity cannot be worse-o� post integration, including in

the very extreme situation in which it has no bargaining power with respect to other �rms. Note

that the latter claim implies that foreclosure is always a dominated choice for the integrated

structure.

The following proposition summarizes the discussion.

Proposition 7 In all delegated R&D common agency games �N , with n � 2, if �(:) is

strongly subadditive then in all TNE �rms have strategic incentives either to coordinate their

transfer payment strategies or to acquire the laboratory.
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8.2 Cases of complementarities

We focus hereafter on all cases in which complementarities dominate. In that case, recall from

Proposition 4 that, although potential users of R&D services compete through monetary o�ers,

which truly re
ect their needs, the laboratory exactly breaks even.

Horizontal cooperation Suppose now that �rms 1 and 2 (without loss of generality)

may coordinate their transfer payment strategies, in which case they behave as a uni�ed entity

on the market for R&D services.

In the absence of cooperation, we know from Proposition 4 that the sum of the two �rms'

expected pro�ts is the di�erence �(N) �
P
j2Nnf1;2g v

o
j , and from Theorem 2 that no �rm can

get more than its marginal contribution to the coalition payo� (vo is in V �� ), implying that

�
P
j2Nnf1;2g v

o
j � �(f1; 2g) � �(N). In equilibrium, the two �rms they may thus not earn

less than the joint level of expected pro�ts v̂1;2 = �(f1; 2g). Recalling that v1 and v2 denote

reservation pro�ts, it follows that the total expected equilibrium pro�ts of the two �rms are

bounded from below by

v1;2 = sup fv1 + v2; v̂1;2g :

Remark now that, in the absence of e�ciency gain, or in the nature of competition on the �nal

market for goods, the cooperation of �rms 1 and 2 has no impact on � (N) nor on any outsider's

marginal contribution � (N)��(Nn fjg), for all j in Nnf1; 2g. It follows that the lowest value

of the set of the cooperating parties' joint expected equilibrium pro�ts vu remains the same as

in the absence of cooperation, or more formally that

vu = v1;2:

We may also identify an upper bound for the interval of expected pro�ts as earned by the

two �rms if they do not cooperate. To see that, recall from Theorem 2 again that the sum of
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the two �rms' expected equilibrium pro�ts are bounded from above by the sum of their marginal

contribution, that is

v1;2 = 2� (N)��(Nn f1g)��(Nn f2g) :

Next, if �rms 1 and 2 cooperate, and thus behave as a uni�ed entity, the latter's expected

equilibrium pro�ts may not exceed the marginal contribution

vu = �(N)��(Nn f1; 2g) ;

all other �rms' individual expected pro�ts remaining the same. A simple comparison of the

latter two displayed expressions leads to

vu � v1;2 =
�
�(Nn f2g)��(Nn f1; 2g)

�
�
�
�(N)��(Nn f1g)

�
< 0;

where the negative sign results from the convexity of �. To conclude, horizontal coordination

leads the ordered set of joint equilibrium pro�ts, as available to cooperating �rms, to be truncated

from above. Firms have thus no strategic incentives to cooperate horizontally on the intermediate

market for R&D in the case of complementarities.

Vertical integration We know from Proposition 4 that the convexity of � leads to

voi = �(N) �
P
j2Nnfig v

o
j , and from Theorem 2 that no �rm can get more than its marginal

contribution to the coalition payo� (vo is in V �� ), implying that �
P
j2Nnfig v

o
j � �(fig)��(N).

It follows that voi � �(fig), which implies that �rm i's expected equilibrium pro�ts are bounded

from below by

supfvi;�(fig)g.

Toward the identi�cation of an upper bound to the set of expected equilibrium pro�ts, recall

that the participation constraints of individual �rms in Nnfig imposes that voj � vj , and from

Theorem 2 again that in all equilibria of the delegated R&D common agency game voi = �(N)�
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P
j2Nnfig v

o
j (e�ciency property). It follows that v

o
i is bounded from above by

�(N)�
X

j2Nnfig
vj :

Suppose now that the laboratory is acquired by, say, �rm 1, so that the uni�ed entity may

bene�t from the R&D capabilities of the laboratory together with the �rm's bargaining power.26

Since outsiders may not address take-it or leave-it contracts to the integrated party, again we

turn to a situation of bilateral bargaining for the choice of x between the uni�ed entity which

receives g1(x)� rf1g(x) + tj (x), and each outsider j which obtains gj(x)� tj (x).

Consider �rst the situation of foreclosure in which the vertically integrated entity does not

transact with any outsider. The integrated entity may either choose to use the laboratory's

facilities, in which case it earns an expected pro�t equal to voL+1 = �(f1g), or decide to close

down the laboratory and obtain voL+1 = v1. This says that the integrated entity may guarantee

for itself the disagreement value supfv1;�(f1g)g.

Now consider the situation in which the vertically integrated structure does sell R&D services

to any separate �rm j. In all equilibria of the bargaining game, we know that e�ciency holds

(in the sense of joint pro�ts maximization), so that voL+1 +
P
j2Nnf1g v

o
j = �(N). Since each

outsider's disagreement pro�t is vj , the merged entity's expected pro�ts may not exceed �(N)�P
j2Nnf1g vj .

Eventually, both in the bargaining and agency games, we have

supfv1;�(f1g)g � vo1 � �(N)�
X

j2Nnf1g
vj .

The set of equilibria in the common agency game is thus identical to the set of equilibria

in the bargaining game. This leads to the conclusion that, unless some additional re�nement

is introduced that justi�es the selection of distinct equilibria in the two games, �rms have no

incentive to integrate vertically.

The next proposition concludes the discussion.
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Proposition 8 In all delegated R&D common agency games �N , with n � 2, if �(:) is convex

then in all TNE �rms have no strategic incentive either to cooperate or to acquire the laboratory.

9 Policy implications

The discussion in the previous paragraphs, as summarized in Propositions 7 and 8, establishes a

relationship between the distribution of total pro�ts { as earned by all �rms and the laboratory

{ and alternative structures or collaborative patterns on the intermediate market for R&D

services. Depending on structural properties of the characteristic function �, which re
ect a

combination of factors { including the laboratory's technology, and direct externalities that

impact �rms' gross payo�s { �rms may �nd in individually pro�table or not to coordinate their

choices of payment schemes, or to acquire the laboratory, all other things remaining equal.

We �nd that neither the coordination of transfer payments nor the acquisition of the laboratory

impact the equilibrium levels of R&D outputs received by �rms. Indeed, we know from Theorem

2 that �rms' truthful strategies lead the laboratory to produce a multidimensional output that

maximizes total pro�ts, and also that there is no alternative distribution of equilibrium pro�ts

that can make all �rms more pro�table. Summarizing:

Proposition 9 In all delegated R&D common agency games �N , with n � 2, R&D outputs

and joint pro�ts do not depend on �rms' decision either to cooperate horizontally or to acquire

the laboratory.

We now whish to examine policy implications. A �rst interesting point is that the latter

result is clearly supportive of legal environments that do not inhibit �rms either to conclude

R&D cooperative agreements with rivals, or to integrate a specialized laboratory, including in

highly concentrated industries. Recall also that, in our model, each �rm may relate its payments

to the laboratory to the exact amount of R&D received by other �rms. This comes in favour of
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a legal environment that allows parties to include discriminatory clauses in the R&D contracts

that govern their outsourcing practices.

Second, the preservation of joint-pro�t maximization property gives no theoretical reason

to forge new regulatory tools that are speci�c to the delegation of R&D by independent �rms

to a for-pro�t independent laboratory. This is because, although R&D costs are uncertain to

all parties at the contracting stage, and �rms design payment schemes non-cooperatively, the

equilibrium R&D outputs we obtain coincide with the ones an integrated entity { a joint venture

{ would choose. Note however that R&D outputs, as driven by private incentives, may fall short

of their social value. Therefore existing considerations on the relevant incentives for a monopolist

to invest in R&D, as �rst investigated by Arrow (1962), are still valid when applied to all �rms

considered as a whole.

The problem faced by a regulator, or a competition authority, remains thus to align the

incentives to invest in R&D { as faced here by all �rms and the laboratory { with a social

welfare objective. This policy issue is also the object of a series of theoretical studies from which

we may draw interesting lessons, as they compare easily with the present analysis. The most

commented contributions to this literature (e.g., d'Aspremont and Jacquemin (1988), Kamien,

Muller, and Zang (1992), Suzumura (1992)) o�er models which have in common the assumption

that information is complete, and �rms �rst engage in R&D by relying on proprietary resources

(i.e., there is no R&D delegation), before competing on a product market. The most relevant

benchmark is Leahy and Neary (1997), in which the model speci�cations encompass most of the

previous settings. It leads to a ranking of welfare levels, as obtained in several scenarios, including

some government intervention in the form of a per unit subsidy to R&D. Some conditions are

unveiled which, when satis�ed, lead to a higher welfare level when �rms are assumed to cooperate

in R&D than when they conduct R&D non-cooperatively. This clearly applies to a particular

version of our delegated R&D common agency game, as obtained by specifying that R&D costs,

together with gross pro�t expressions, adopt the relevant algebraic forms. In that case, our
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optimality result implies that welfare outcomes coincide with the ones that can be obtained in a

counterpart model �a la Leahy and Neary where �rms tap new technology in-house and cooperate

horizontally in R&D choices to maximize joint pro�ts. More can be said by

It follows that in the present model, as in all models of R&D cooperation mentioned above,

R&D levels depend on the nature of competition on the �nal market. Although equilibrium

R&D outputs on the intermediate market for new technology maximize total pro�ts, a change

in �nal market conditions will result in a change in R&D levels. For example, an increase in

the concentration of the industry, or the entry of new competitors, will motivate �rms to adapt

their payment strategies, and thus lead the laboratory to deliver adjusted outputs. This in turn

will impact �rms' pro�ts, the consumer surplus, and welfare. In other words, the �nal market

structure conditions �rms' ability to drive upstream R&D operations by the means of transfer

payments through the laboratory. The technology of the latter, and resulting R&D outputs, in

turn impact the bene�ts �rms earn by selling goods to consumers. This implies that policies

of all kinds, including subsidies and antitrust intervention, when they focus on product market

conditions only, leaving aside the intermediate market for R&D, may result in harmful welfare

consequences.

To illustrate the latter point, we construct and compare two speci�c examples which exploit

the fact that our model speci�cations may represent a large spectrum of intermediate and �nal

market conditions. In each of them, the set Xi = [0; c), where c < 1, represents the range of

cost-reducing R&D outputs the laboratory may deliver at some cost rS (�;x) to a subset S of

identical �rms, with S � N . The stochastic parameter � takes values in [�; �]. Firms compete

over two periods. In the �rst one, they compete in transfer payment o�ers on the intermediate

market for R&D, by participating in the delegated R&D common agency game �N . In the

second period, they compete in quantities to sell a homogeneous product on a �nal market, �a

la Cournot. Each �rm i's marginal production cost c � xi is decreasing in the R&D service it

receives from the laboratory, and there is a �xed cost component f . The inverse �nal market
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demand is P = 1�
P
i2N qi. Toward subgame-perfection, we consider the two periods backward.

By computing the Cournot-Nash equilibrium of the second period, one obtains each �rm's gross

pro�t function of x, that is

gi(x) =

0@1� c+ nxi �X
j 6=i

xj

1A2 = (1 + n)2 � f:
Given the latter expression, �rms' equilibrium payo�s depend on the R&D outputs supplied in

the �rst period. We consider now two variations, which relate to alternative cost conditions

inside the laboratory.

� Example 7:

The laboratory's costs are

rS (�;x) = (1� �) �
2

X
i2S

x2i + F;

where � 2 [0; 1] represents a government per-unit subsidy, and F is a �xed component. We

focus on symmetric interior solutions to the joint-pro�t maximization problemmaxx2X �N (�;x),

implying that the laboratory contracts with all �rms, so that Ao = N .27 Remark that R&D

costs are additive separable across �rms, and that gi(x) is strictly submodular in x, so

that �(:) is strictly subadditive (see comments below Proposition 7). It follows that, in

equilibrium, each �rm i receives xoi (�) = 2 (1� c) =
�
� (1� �) (1 + n)2 � 2

�
in exchange of

toi (x
o (�)) = gi(x

o (�))� voi , where voi = �(N)��(Nnfig), from Proposition 6. Note that

the R&D outputs are monotone increasing in �, and decreasing in n. It is easy to check

that both industry pro�ts � and the consumer surplus CS are increasing with �, and that

total welfare, net of subsidies, reaches a maximum at � = n= (n+ 2). On the other hand,

the impact on welfare of a change in the number of �rms is ambiguous, since

d�(N)=dn < 0;
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whereas the change in consumer surplus depends on the value of parameters, as

dCS=dn > 0 i� � (1� �) < 2(2n+ 1)= (1 + n)2 : (13)

This means that entry is bene�cial to consumers only if � is su�ciently high.

Remark that the speci�cations of Example 7 are a particular case of the linear set-up de-

scribed by Leahy and Neary (1997). More precisely, the additive separability of costs implies that

the symmetric R&D outcomes, total pro�ts, and consumer surplus we compute would also be ob-

tained if �rms were assumed to cooperate in R&D instead of delegating R&D non-cooperatively

to a common independent laboratory. We may thus appropriate the policy implications devel-

oped in the latter paper.

In the following example, we introduce anti-complementarities in the laboratory's R&D

production process, so that serving one �rm implies an increase in the costs of serving other

�rms.

� Example 8:

The laboratory's costs are

rS (�;x) = (1� �) �
2

 X
i

xi

!2
+ F;

with the same notation as in the previous example. The only di�erence is that R&D outputs

xi are now substitutable in the expression of r
S. Again, we focus on symmetric interior so-

lutions to the joint-pro�t maximization problem maxx2X �N (�; x), implying that A
o = N .28

Each �rm i's received equilibrium R&D service is xoi (�) = 2 (1� c) =
�
n� (1� �) (n+ 1)2 � 2

�
,

in exchange of payment toi (x
o (�)) = gi(x

o (�)) � voi , where voi = �(N) � �(Nnfig) from

Proposition 6. As in the previous example, both industry pro�ts and the consumer sur-

plus are increasing in �, and total welfare reaches a maximum at � = n= (n+ 2). Now,

although one still �nds

d�(N)=dn < 0;
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a change in the number of �rms will not always impact welfare in the same direction as

in the previous example. This is because the change in consumer surplus that results from

a rise in n is now positive only if � su�ciently low, as

dCS=dn > 0 if and only if � (1� �) > 2 (3n+ 2) =n (1 + n)2 : (14)

The comparison of the two examples leads to the conclusion that policy measures should

not be designed by considering product market conditions in isolation, that is by excluding

the intermediate market for R&D from the analysis. To see that, suppose �rst that R&D is not

subsidized (i.e., � = 0). Then examine the impact of greater rivalry { as captured by the number

of �rms { on welfare. In both examples, when the stochastic parameter takes values in a range

of �nite dimension, one �nds that policy intervention in favour of less concentration impacts

negatively industry pro�ts and positively the consumer surplus.29 However, if � is relatively

small (in the sense of (13)), then a rising number of �rms results in more consumer surplus in

Example 7 only. On the other hand, if � is relatively high (as in (14)), entry results in more

consumer surplus in Example 8 only.

These comments clearly echoe a recent analysis by Katz and Shelanski (2004) of the poten-

tially con
icting economic e�ects an increase in industry concentration might have on research

and development. They describe \the impact of innovation on economic welfare and the im-

pact of market structure on innovation" (p. 67), and encourage antitrust agencies to take into

account the industrial organization of R&D of merging parties in factual inquiries speci�c to a

given case. The comparison of Examples 7 and 8, in which product market conditions are iden-

tical, points to the same direction.30 In the two cases, a reduction in the number of �rms results

in higher R&D levels and more joint pro�ts. However, depending on R&D cost conditions inside

the external laboratory, the impact on consumer surplus can be negative in the �rst example

(when � is relatively small), and positive in the second one. A merger policy that retains focus

on product market concerns exclusively may therefore reach opposite welfare consequences when
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enforced in real world contexts represented by one or the other setting.

In addition, by introducing R&D subsidies a regulator may impact the relationship between

market concentration and the welfare components. The outcome will di�er across examples,

although �nal market conditions are symmetric. Indeed, suppose that parameter values are

such that entry is bene�cial to consumers in the two examples. This occurs if � is intermediate,

in the sense that it satis�es conditions (13) and (14). Then dCS=dn remains positive in Example

7 if � departs from 0 and rises, while its sign changes in Example 8 if � reaches a su�ciently

high value. For a speci�c example, let � = 1 and n = 2, and suppose that the R&D subsidies

parameter rises. Then in Example 7, in which R&D costs are additively separable across �rms,

the consumer surplus increases monotonically when n rises for all levels of �. In Example 8,

the consumer surplus increases as a result of entry only if � is less than 1=9 (which is lower

than the welfare maximizing level), and decreases otherwise. The same regulatory intervention

results in di�erent welfare consequences in the latter example only because of the existence of

anti-complementarities inside the laboratory.

56



10 References

1. Aghion, P. and Tirole, J. 1994. On the management of innovation. Quarterly Journal of

Economics 109, 1185-1209.

2. Ambec, S., and Poitevin, M. 2001. Organizational design of R&D activities. Working

Paper 38, CIRANO.

3. Argyres, N. S. and Liebeskind, J. P. 2002. Governance inseparability and the evolution of

US biotechnology industry. Journal of Economic Behavior and Organization 47, 197-219.

4. Armour, H. 0. and Teece, D. J. 1978. Vertical integration and technological innovation.

Review of Economics and Statistics 60, 470-474.

5. Arrow, K. 1962. Economic welfare and the allocation of resources for invention, in Nelson,

R. (ed.), The Rate and Direction of Incentive Activity: Economic and Social Factors,

Princeton University Press.

6. Bernheim, B. D. and Whinston, M. D. 1986a. Menu auctions, resource allocation, and

economic in
uence. Quarterly Journal of Economics 101, 1-31.

7. Bernheim, B. D. and Whinston, M. D. 1986b. Common agency. Econometrica 54, 923-942.

8. Bernheim, B. D. and Whinston, M. D. 1998. Exclusive dealing. Journal of Political

Economy 106, 64-103.

9. Bernheim, B.D., Peleg, B. and Whinston, M. D. 1987. Coalition-proof Nash equilibria: I

concepts. Journal of Economic Theory 42(1), pp. 1-12.

10. Billette de Villemeur, E. and Versaevel, B. 2003. From private to public common agency.

Journal of Economic Theory 111, 305-309.

57



11. Bousquet, A., H. Cr�emer, M. Ivaldi, and M. Wolkowicz, M. 1998. Risk sharing in licensing.

International Journal of Industrial Organization 16, 535-554.

12. Calzolari, G. and Scarpa, C. 2004. Non-intrinsic common agency. mimeo.

13. Cassiman, B. and Veugelers, R. 2000. External technology sources: embodied or disem-

bodied technology acquisition. DTEW, KULeuven, mimeo.

14. Cr�emer, J. and Riordan, M. H. 1987. On governing multilateral transactions with bilateral

contracts. RAND Journal of Economics 18, 436-451.

15. d'Aspremont, C. and Jacquemin, A. 1988. Cooperative and noncooperative R&D in

duopoly with spillovers. American Economic Review 78, 1133-1137.

16. Dobler, D. W. and Burt, D. N. 1996. Purchasing and Supply Management: Text and

Cases. 6th ed. McGraw-Hill, New-York.

17. Epstein, L. and Peters, M. 1999. A revelation principle for competing mechanisms. Journal

of Economic Theory 88, 119-160.

18. Gal-Or, E. 1991. A common agency with incomplete information. RAND Journal of

Economics 22, 274-286.

19. Hamberg, D. 1963. Invention in the industrial research laboratory. Journal of Political

Economy 61, 95-115.

20. Harris, M. and Raviv, A. 1979. Optimal incentive contracts with imperfect information.

Journal of Economic Theory 20, 231-259.

21. Helfat, C. E. 1994. Firm-speci�city in corporate applied R&D. Organization Science 5,

173-184.

22. Howells, J. 1999. Research and technology outsourcing. Technology Analysis and Strategic

Management 11, 17-29.

58



23. Jensen, R. 1992. Reputational spillovers, innovation, licensing, and entry. International

Journal of Industrial Organization 10, 193-212.

24. Jorde, T. and Teece, D. 1990. Innovation and cooperation: implications for competition

and antitrust. Journal of Economic Perspectives 4, 75-96.

25. Katz, M. L. and Shapiro, C. 1986. How to license intangible property. Quarterly Journal

of Economics 16, 504-520.

26. Katz, M. L. and Ordover, J. A. 1990. R&D cooperation and competition. Brookings

Papers: Microeconomics, 137-203.

27. Katz, M. L. and Shelanski, H. A. 2004. Merger policy and innovation: must enforcement

change to account for technological change? Working Paper 10710, NBER.

28. La�ont, J.-J. and Martimort, D. 1997. The �rm as a multicontract organization. Journal

of Economics and Management Strategy 6, 201-234.

29. Lambertini, L. and Rossini, G. 1998. Product homogeneity as a prisoner's dilemma in

duopoly with R&D. Economics Letters 58. 297-301.

30. Laussel, D. and Le Breton, M. 1998. E�cient private production of public goods under

common agency. Games and Economic Behavior 25, 194-218.

31. Laussel, D. and Le Breton, M. 2001. Con
ict and cooperation: the structure of equilibrium

payo�s in common agency. Journal of Economic Theory 100, 93-128.

32. Leahy, D. and Neary, J. P. 1997. Public policy towards R&D in oligopolistic industries.

American Economic Review 87, 642-662.

33. Leahy, D. and Neary, J. P. 2005. Symmetric research joint ventures: cooperative substi-

tutes and complements. International Journal of Industrial Organization 23, 381-397.

59



34. Majewski, S. 2004. How do consortia organize collaborative R&D?: evidence from the

national cooperative research act. Discussion Paper 483, Harvard Law School.

35. Martimort, D. 1992. Multi-principaux avec anti-s�election. Annales d'Economie et de

Statistiques 28, 1-38.

36. Martimort, D. 1996. Exclusive dealing, common agency, and multiprincipals incentive

theory. RAND Journal of Economics 27, 1-31.

37. Martimort, D. 2005. Multi-contracting mechanism design. mimeo.

38. Martimort, D. and Stole. L. 2001. Contractual externalities and common agency equilib-

ria. Advances in Theoretical Economics 3, Issue 1, Article 4. http://www.bepress.com/bejte.

39. Martimort, D. and Stole, L. 2002. The revelation and delegation principles in common

agency games. Econometrica 70, 1659-1673.

40. Martimort, D. and Stole, L. 2004. Market participation under delegated and intrinsic

common agency games. mimeo.

41. Martin, S. 2001. Advanced Industrial Economics. Blackwell.

42. Mowery, D. C. 1990. The development of industrial research in U.S. manufacturing. Amer-

ican Economic Review 80, 345-349.

43. Mowery, D. C. and Rosenberg, N. 1989. Technology and the Pursuit of Economic Growth.

Cambridge University Press, Cambridge.

44. Narula, R. 2001. Choosing between internal and non-internal R&D activities: some tech-

nological and economic factors. Technology Analysis & Strategic Management 13, 365-387.

45. National Science Foundation. 2006. Research and development funds and technology

linkage. Science and Engineering Indicators Arlington, VA, Chapter 4.

60



46. Oxley, J. 1997. Appropriability hazards and governance in strategic alliances: a transaction

cost approach. Journal of Law, Economics, and Organization 13, 387-411.

47. Peters, M. 2001. Common agency and the revelation principal. Econometrica 69(5), 1349-

1372.

48. Peters, M. 2003. Negotiation and take it or leave it in common agency. Journal of Eco-

nomic Theory 111, 88-109.

49. Pisano, G. 1989. Using equity to support exchange: evidence from the biotechnology

industry. Journal of Law, Economics, and Organization 5, 109-126.

50. Pisano, G. 1991. The governance of innovation: vertical integration and collaborative

arrangements in the biotechnology industry. Research Policy 20, 237-249.

51. Poyago-Theotoky, J. 1997. Research joint ventures and product innovation: some welfare

aspects. Economics of Innovation and New Technology 5, 51-73.

52. Poyago-Theotoky, J. 1999. A note on endogenous spillovers in a non-tournament R&D

duopoly. Review of Industrial Organization 13, 249-276.

53. Sappington, D. 1983. Limited Liability Contracts between Principal and Agent. Journal

of Economic Theory 29, 1-21.

54. Schmitz, P. W. 2001. On monopolistic licensing strategies under asymmetric information.

Journal of Economic Theory 106, 177-189.

55. Sinclair-Desgagn�e. B. 2001. Incentives in common agency. Working Paper 2001s-66,

CIRANO.

56. Stole, L. 1991. Mechanism design under common agency. mimeo.

57. Suzumura, K. 1992. Cooperative and noncooperative R&D in an oligopoly with spillovers.

American Economic Review 82, 1307-1320.

61



58. Tapon, F. 1989 A transaction costs analysis of innovations in the organization of phara-

maceutical R&D. Journal of Economic Behavior and Organization 12, 197-213.

59. Teece, D. J. 1986. Pro�ting from technological innovation: implications for integration,

collaboration, licensing and public policy. Research Policy 15, 285-305.

60. Teece, D. J. 1989. Inter-organizational requirements of the innovation process. Managerial

and Decision Economics, Special Issue, 35-45.

61. Veugelers, R. 1997. Internal R&D expenditures and external technology sourcing, Research

Policy 26, 303-316.

62. Vonortas, N. S. 1994. Inter-�rm cooperation with imperfectly appropriable research. In-

ternational Journal of Industrial Organization 12, 413-435.

63. Bernheim, B. D. and Whinston, M. D. 1986a. Menu auctions, resource allocation, and

economic in
uence. Quarterly Journal of Economics 101, 1-31.

62



Notes

1In this paper, we interchangeably use the terms \outsourcing", \contracting out", and \del-

egation", in order to refer to some R&D tasks undertaken by a laboratory on behalf of one or

several �rms under conditions laid out in a contract agreed formally beforehand.

2The National Science Foundation (2006) uses the term "contract R&D" to denote a trans-

action with external parties involving R&D payments or income, regardless of the actual legal

form of the transaction. The quoted �gures do not include contract R&D expenses by U.S.

companies that do not perform internal R&D, or that contract out R&D to companies located

overseas.

3For analyses of changes in the industrial organization of R&D in the chemical industry over

the last two decades, see Rosemberg (1990), Pisano (1991), Lerner and Merges (1998), Martin

(2001), Argyres and Liebskind (2002), Katz and Shelanski (2004), among others.

4For example, in a contract signed by Tularik (a US laboratory) and Japan Tobacco, the

objective of the R&D program is \to agonize or antagonize Orphan Nuclear Receptors for the

treatment of disease in humans (\Field"). Subject to the fourth sentence of this paragraph,

`Orphan Nuclear Receptors' shall mean: (i) [*], (ii) any protein containing a [*] domain of

[*] amino acid residues [*] of which are [*] that is further characterized by [*] of the [*] type

and to the [*] of which [*] domain is a region with [*] to the [*] domain of any of the [*] set

forth in (i) above, for which a [*] shall not have been identi�ed, but excluding [*] and the [*]

(as de�ned in [*]; and (iii) other [*] added to the research component of the Program (...)"

Although detailed technological speci�cations that appear in the original version of the contract

are private information (and thus marked by brackets [*] in the quotation), the publicly available

clauses support our speci�cation that outputs of outsourced R&D projects are targeted in very

precise directions.

5In the context of the pharmaceutical industry, and before focusing on situations in which

the laboratory is better informed than the user, Ambec and Poitevin (2001) emphasize that

the properties of a new drug \are never known ex ante". They also recognize that the value of

an innovation depends on the e�ciency of the new process or the quality of the new product,

an information \di�cult to obtain before the innovation is developed" (p. 2, added emphasis).

This is the reason why the contract they consider is signed after the research phase, but before

development operations. By contrast, we look at situations in which the laboratory may contract

with one or several �rms before research and development operations are engaged.

6Several other contributions to the theoretical economic literature introduce changes in the

speci�cations of Bernheim and Whinston (1986a) in order to explain a large variety phenomena.

Among others, Mitra (1999) adds a coalition formation stage, in which individual principals may

decide to bear the cost of forming a group or not, with an application to trade policy. Another
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example is a paper by Dixit, Grossman and Helpman (1999), which relaxes the assumption that

preferences are quasi-linear, in a model of tax policy. More recently, Martimort (2004) modi�es

the basic framework by introducing moral hazard (i.e., the agent 's action cannot be veri�able),

in a political economy environment.

7In the terminology of La�ont and Martimort (1997), indirect externalities are of \type 1",

and direct externalities of \type 2".

8In an example, Sinclair-Desgagn�e (2001) also refers to the analysis of R&D contracts as a

possible application of a common agency setup in which principals condition their payments to

the agent on the quantities received by other principals.

9To elaborate, the set of types de�ned in Epstein and Peters (1999) includes the mechanisms

used by the other principals, and also informs whether the latter mechanisms depend on other

principals' mechanisms, and so on.

10Peters (2001) also shows that any equilibrium allocation that can be obtained with this

set of menus is \weakly robust", in the sense that the allocation persists as an equilibrium

allocation { among possible others { when the set of mechanisms available to the principals is

enlarged. In a related contribution, Martimort and Stole (2002) also investigate the possibility

of substituting menus of contracts for more complex communication mechanisms. However, the

common agency model they construct speci�es that a given principal may not contract over

the set of allocations controlled by another principal, whereas we are interested in situations in

which each principal may condition payment transfers to the agent on the output received by

rival principals.

11In Peters (2003)'s terminology, the strategies ti we consider in the present model are \take-it

or leave-it o�ers", that is \degenerate menus consisting of a single incentive contract" (p. 89).

12This does not exclude the no R&D output case from the set of possible outcomes. When it

�nds it pro�table to do so, the laboratory may choose x = 0 in stage 3.

13This act limits antitrust recoveries against registered agreements to reduced damages if the

terms of the submitted agreement are found to violate the law. It also gives �rms the possibility

of limiting antitrust analysis to the rule of reason in lieu of the per se illegality rule. The most

frequently mentioned cooperative agreements which registered under the NCRA come in support

to existing models of R&D cooperation, in which rival �rms collaborate horizontally at the pre-

competitive stage by coordinating the use of proprietary R&D facilities. However, agreements

of a very di�erent kind apply. For example, Katz et al. (1990, pp. 186-190) describe the case

of MCC (Microelectronics and Computer Technology Corporation), which became \an open-

market supplier of contract R&D" to supply application-oriented \deliverables" to large �rms

(e.g., Hewlett-Packard, Motorola, Honeywell, Westinghouse Electric). In a more systematic

way, Majewski (2004), analyzes detailed contract-level data to present stylized facts on all R&D
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projects that �led for protection under the NCRA. A large subset of these projects refer to

competitors in product markets that choose to outsource the production of R&D services to a

third-party contractor. These agreements are better matched by the speci�cations of the present

delegated R&D setup than by models of horizontal R&D cooperation.

14This quali�cation appears in Martimort (2005). This says that each principal may observe

and verify the output level delivered to the other principal, and thus condition its o�ered pay-

ments on it (by contrast, in a private common agency set-up, a principal may contract only on

the output it speci�cally receives from the agent).

15Remark that an agent who received truthful payment o�ers in the contracting stage has

strictly more information than principals after the realization of the stochastic parameter in the

action stage.

16To see that, observe that gi (x
o (�)) � voi implies ti (xo (�)) = gi(xo (�))� voi from (10), then

substitute gi (x
o (�))� voi for toi (xo (�)) in (8).

17More precisely, the limited liability constraints can be binding, but only over subsets of �

with zero measure.

18The notion of coalition-proof Nash equilibrium is introduced by Bernheim et al. (1987).

19Remark that Theorem 3 does not preclude the existence of coalition-proof Nash equilibria

outside I��.

20This unusual payo� matrix presentation is borrowed from Prat and Rustichini (2003). It

illustrates the fact that the two �rms, as principals, play a game through the laboratory, an

agent.

21This concept was introduced by Aumann (1959). In contrast to coalition-proof Nash equi-

libria, the de�nition of strong Nash equilibria does not introduce any restriction on the set of

possible deviations.

22This can be proved by rewritting the agent's costs as ~rS(�;x) = rS(�;x)�
P
i2S gi(x). Then

Proposition 7 applies.

23We may equivalently consider the horizontal merger of �rms if we maintain the assumption

that divisions of a merged entity non-cooperatively maximize their individual pro�ts in their

own control variables on the �nal market (price, quantity, quality, advertising, and so on).

24The strong subadditivity property is closely related to the strict subadditivity property. The

characteristic function � (:) is subadditive if �(N) � �(S) + �(T ) for all S; T 2 2N such that

S [ T = N and S \ T = ;. There is strict subbaditivity if at least one of the inequalities above
is strict. For n = 2, strong and strict subadditivity coincide. However, the strong subadditivity

property is more demanding than strict subadditivity for all n > 2.
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25Recall that vi can be interpreted as reservation pro�ts obtained by sourcing R&D services

from a dedicated laboratory or by relying on in-house capabilities. The latter interpretation is

favoured in the following, for simplicity.

26We exclude here all incentives to merge that may stem from the acquisition of some exoge-

nously assumed superior ability to supply R&D outputs. For well-known empirically grounded

accounts on e�ciency gains as a motive for vertical integration between R&D and production

stages, see Armour and Teece (1978) and Pisano (1989, 1991).

27For simplicity, we treat �rms equally ex ante, in the words of Leahy and Neary (2005).

In that case, a su�cient second-order condition for a symmetric optimum is @2�S(�;x)=@x
2
i +

(n � 1)@2�S(�;x)=@xi@xj < 0; all i; j, i 6= j. In this example, this is equivalent to � (1� �) >
2= (1 + n)2 � 1, which holds true.

28As in the previous example, we treat �rms equally ex ante. From Leahy and Leary (2005),

a su�cient second-order condition for a symmetric optimum is � (1� �) > 2=
�
n (1 + n)2

�
.

29This holds true when � is in
�
2 (3n+ 2) =n (1 + n)2 ; 2(2n+ 1)= (1 + n)2

�
, for all n � 2.

Note that the latter interval is always de�ned.

30Katz and Shelanski (2004) do not evoke R&D contracts. In short analyzes of recent merger

cases, with a special emphasis on the pharmaceutical industry, they report the existence of R&D

agreements among competitors.
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11 Appendix

11.1 Notation and De�nitions

Recall that, for any given distribution of �, principal i's expected net payo� is E� [gi(x(�))� ti(x(�))],

where ti(x) is principal i's contingent transfer payment, and gi(x) is principal i's gross payo�.

Principals' total transfers and total gross payo�s For any realization of the stochastic

variable �, de�ne:

t(x (�)) =
X
i2N

ti(x (�)); (15)

and

g(x (�)) =
X
i2N

gi(x (�)): (16)

Agent's total cost and incremental costs The (research) costs a priori depends on the

exact set of principals that actually contract with the agents i.e. the set of accepted contracts

A:

For any set of principal S � N; de�ne

r(S; �;x) (17)

the costs associated to the production of x 2 X in the state of nature � when the agent accept

to contract with S principals. For any i 2 S � N; we shall denote fSi (�;x) the incremental cost

de�ned by:

fSi (�;x) = r (S; �;x)� r (Sn fig ; �;x) : (18)

By convention, if i =2 S; then fSi (�;x) � 0:

More generally, for any set T � S;we shall denote fST the incremental cost de�ned by

fST (�;x) = r (S; �;x)� r (SnT; �;x) : (19)
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Limited liability We shall assume that principal transfers are non-negative and bounded

from below. More precisely, we will focus on the cases where, at equilibrium, for all S � Ao

X
j2S

tj (x) � fA
o

S (�;x);

almost all �: If research costs are r(S; �;x)

Agent's chosen actions set and e�cient actions set For any realization of the sto-

chastic variable �, de�ne:

Xo (�) = argmax
x2X

�
vA

o

L (�; t;x) = t(x)� r(Ao; �;x)
	
; (20)

where Ao is the equilibrium set of accepted contracts. Xo (�) is the agent's pro�t-maximizing

set of actions associated to state of nature �: Let

X� (�) = argmax
x2X

(W (�;x) = g(x)� r(A�; �;x)) ; (21)

where A� is the set of accepted contracts.that allow to maximize the expected joint-pro�ts.

X� (�) is the joint-pro�t maximizing set of actions associated to state of nature �, also referred

to as the set e�cient actions.

Joint pro�ts of the agents and a subset of principals Let 2N represent the set of

subsets of N including the empty set. For any set S 2 2N , and any realization � of the stochastic

variable, de�ne:

W (S; �) = max
x2X

 
W (S; �;x) =

X
i2S

gi(x (�))� r(S; �;x)
!
; (22)

that is the joint pro�t of the agent and principals in S. A maximizer of W (S; �;x) is denoted

x�S (�), an element of:

X�
S (�) = argmax

x2X
W (S; �;x) : (23)

We assume that the expected pro�ts of the agent in isolation is zero: E� [W (;; �)] = 0:
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Payo� distributions sets For any realization of the stochastic variable �, de�ne:

V�(�;x) =

(
v = (v1; v2; ::; vn) : for all S � N ,

X
i2S

vi �
"X
i2N

gi(x)� rN (�;x)�W (�;NnS)
#)

;

(24)

that is the set of all possible payo� distributions when the action x is chosen by the agent for

the realisation � of the stochastic variable.

Of interest is also the set of the possible payo� distributions at the ex-ante stage, that is

when the realisation of the stochastic variable is not yet known. Let x (�) be the action chosen

by the agent for the realisation � of the stochastic variable, and de�ne:

V�(fx (�)g�2�) =

8>>><>>>:
v = (v1; : : : ; vn) : for all S � N ,X

i2S
vi � E�

"X
i2N

gi(x (�))� rN (�;x (�))�W (�;NnS)
#
9>>>=>>>; :

(25)

We denote V �� the set of the possible payo� distribution when the action x (�) chosen by the

agent is in X� (�):

V �� � V�(fx� (�)g�2�) =
(
v = (v1; : : : ; vn) : for all S � N ,

X
i2S

vi � E� [W (�;N)�W (�;NnS)]
)
:

Remark indeed that, by de�nition of X� (�) ;

W (�;N) =
X
i2N

gi(x
� (�))� rN (�;x� (�))

for all x� (�) in X� (�) so that V �� � V�(fx� (�)g�2�) does not depend on the speci�c set

fx� (�)g�2� considered.

Observe implementation of the payo� distribution is robust to uncertainty if

v 2 \�2�V�(�;x� (�))

It is ex-post implementable is v 2V�(�;x� (�)); while it is ex-ante implementable (i.e. imple-

mentable in expected terms if v 2 V�(fx� (�)g�2�)

Implementable payo� set
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For any x 2 X; de�ne:

I� (x) = fv = (v1; : : : ; vn) : for all i 2 N , vi � gi(x)g ;

that is the set of all payo� distributions that is implementable by the means of non-negative

transfers when the action x is chosen by the agent.

Of interest is also the set of payo� distributions that is implementable by the means of non-

negative transfers at the ex-ante stage, that is when the realisation of the stochastic variable,

hence the action chosen by the agent is not yet known. Let x (�) be the action chosen by the

agent for the realisation � of the stochastic variable, and de�ne:

I�
�
fx (�)g�2�

�
= fv = (v1; : : : ; vn) : for all i 2 N , vi � gi(x (�))g ; (26)

almost all �.

We denote I�� the set of the implementable payo� distribution when there exists a set of

action fx� (�)g�2� in fX� (�)g�2� such that v is in I�
�
fx� (�)g�2�

�
: Formally:

I�� =
�
v = (v1; : : : ; vn) : v 2 I�

�
fx� (�)g�2�

�
for some fx� (�)g�2�

	
:

Remark indeed that, in contrast to V�(fx� (�)g�2�); the set I�
�
fx� (�)g�2�

�
depends on the

speci�c set fx� (�)g�2� considered.
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11.2 Proof of Theorem 3

11.2.1 Theorem 11:2:1 (Characterization of the Nash equilibria):

A triplet (to; Ao; fxo (�)g) is a Nash Equilibrium of the delegated common game � if and only

if:

(1) the action xo (�) is in:

Xo (�) = argmax
x2X

vA
o

L (�; t
o;x) for almost all �

(2) for all principals i in Ao:

E�
�
vA

o

L (�; to;xo (�))
�
= sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
;

(3) for all principals i in Ao:

Xo (�) � argmax
x2X

h
gi (x)� fA

o

i (�;x) + v
Aonfig
L

�
�; to�i;x

�i
for almost all �;

(with the convention fA
o

i (�;x) � 0 if i =2 Ao)

(4a) for all principals i in Ao:

E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

� sup

�
0; E�

�
max
x2X

�
gi (x)� fS[figi (�;x) + vSL

�
�; to�i;x

����
all S � Nn fig ;

and

E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

� sup
�
0; E�

�
gi (x

o
S (�)) + v

S
L
�
�; to�i;x

o
S (�)

��	
all S � Nn fig ;

with xoS (�) = argmaxx2X v
S
L(�; t

o
�i;x):
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(4b) for all principals i in NnAo:

E�
��
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
���

� sup

�
0; E�

�
max
x2X

�
gi (x)� fS[figi (�;x) + vSL

�
�; to�i;x

����
all S � Nn fig .

11.2.2 Proof of Theorem 11:2:1:

( Su�ciency:

Suppose that the triplet (to; Ao; fxo (�)g) is not a Nash equilibrium of the game. There

exists a principal i 2 N , a strategy t̂i (x), a set bA of accepted contracts and a set of actions
fx̂ (�)g�2� chosen by the agent, that make the principal i strictly better o�. There are

four possible cases:

a) Principal i 2 Ao \ bA :
By de�nition,

v
bA
L (�; t;x) � ti (x)� f

bA
i (�;x) + v

bAnfig
L (�; t�i;x) : (27)

If the agent contracts with principal i 2 bA when it is o�ered t = �t̂i; to�i� ; we know that
E�

h
t̂i (x̂ (�))� f

bA
i (�; x̂ (�)) + v

bAnfig
L

�
�; to�i; x̂ (�)

�i
� E�

�
max
x2X

vSL
�
�; to�i;x

��
;

(28)

all S � Nn fig :

If principal i is strictly better o� by adopting the strategy t̂i (x) it does also mean that:

E�
�
gi (x̂ (�))� t̂i (x̂ (�))

�
> E� [gi (x

o (�))� toi (xo (�))] : (29)

Now condition (4a) implies that

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

� E�

h
gi (x (�))� fS[figi (�;x (�)) + vSL

�
�; to�i;x (�)

�i
(30)
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all fx (�)g�2� 2 X�, all S � Nn fig : In particular, by setting x (�)� x̂ (�) and S = bAn fig
in (30) we get that:

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

� E�

h
gi (x̂ (�))� f

bA
i (�; x̂ (�)) + v

bAnfig
L

�
�; to�i; x̂ (�)

�i
: (31)

Adding (29) and (31), we �nd

E�

h
�fAoi (�;xo (�)) + v

Aonfig
L

�
�; to�i;x

o (�)
�
� t̂i (x̂ (�))

i
> E�

h
�f bAi (�; x̂ (�)) + v bAnfigL

�
�; to�i; x̂ (�)

�
� toi (xo (�))

i
: (32)

Collecting terms:

E�

h
t̂i (x̂ (�))� f

bA
i (�; x̂ (�))

i
< E�

�
vA

o

L (�; to;xo (�))
�
� E�

h
v
bAnfig
L

�
�; to�i; x̂ (�)

�i
:

(33)

Now, we know from agent's L participation constraint that E�
�
vA

o

L (�; to;xo (�))
�
must be

non-negative. More precisely, since i 2 Ao; we know from condition (2) that there are two

cases:

� Either E�
�
vA

o

L (�; to;xo (�))
�
= 0, in which case equation (33) writes directly

E�

h
v
bA
L
�
�; t̂i; t

o
�i; x̂ (�)

�i
= E�

h
t̂i (x̂ (�))� f

bA
i (�; x̂ (�)) + v

bAnfig
L

�
�; to�i; x̂ (�)

�i
< 0:

(34)

It cannot be the case that the agent accepts to contract with principals in bA and

chooses the set of actions fx̂ (�)g�2� since it yields negative pro�ts.

� Or E�
�
vA

o

L (�; to;xo (�))
�
> 0; in which case we know from condition (2) that there

exists S � Nn fig and xo�i (�) 2 argmaxx2X vSL
�
�; to�i;x

�
such that

E�
�
vA

o

L (�; to;xo (�))
�
= E�

�
vSL
�
�; to�i;x

o
�i (�)

��
: (35)
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Hence inequality (33) rewrites:

E�

h
t̂i (x̂ (�))� f

bA
i (�; x̂ (�))

i
< E�

�
vSL
�
�; to�i;x

o
�i (�)

��
� E�

h
v
bAnfig
L

�
�; to�i; x̂ (�)

�i
:

(36)

that is:

E�

h
t̂i (x̂ (�))� f

bA
i (�; x̂ (�)) + v

bAnfig
L

�
�; to�i; x̂ (�)

�i
< E�

�
vSL
�
�; to�i;x

o
�i (�)

��
;

(37)

which contradicts (28). In words, the agent would not accept to contract with prin-

cipal i 2 bA if it could make a strictly better pro�t by contracting with the set

S � Nn fig of principals. �

b) Principal i in Ao and not in bA :
If principal i is strictly better o� by o�ering the strategy t̂i (x) it does mean that:

E� [gi (x̂ (�))] > E� [gi (x
o (�))� toi (xo (�))] ; (38)

From condition (4a) however we know that

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i
� E�

h
gi (x̂ (�)) + v

bA
L
�
�; to�i; x̂ (�)

�i
:

(39)

Summing both inequalities gives

E�

h
toi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i
> E�

h
v
bA
L
�
�; to�i; x̂ (�)

�i
;

(40)

that is

E�
�
vA

o

L (�; to;xo (�))
�
> E�

h
v
bA
L
�
�; to�i; x̂ (�)

�i
: (41)

From agent's L participation constraint, we know that E�
�
vA

o

L
�
�; to�i;x

o (�)
��
is non neg-

ative. More precisely, since i 2 Ao; we know from condition (2) that there are two cases:
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� Either E�
�
vA

o

L (�; to;xo (�))
�
= 0, in which case equation (41) writes directly

E�

h
v
bA
L
�
�; to�i; x̂ (�)

�i
< 0: (42)

It cannot be the case that the agent accepts to contract with principals in bA and

chooses the set of actions fx̂ (�)g�2� since it yields negative pro�ts.

� Or E�
�
vA

o

L (�; to;xo (�))
�
> 0; in which case we know from condition (2) that there

exists S � Nn fig and xo�i (�) 2 argmaxx2X vSL
�
�; to�i;x

�
such that

E�
�
vA

o

L (�; to;xo (�))
�
= E�

�
vSL
�
�; to�i;x

o
�i (�)

��
: (43)

Hence inequality (41) rewrites:

E�

h
v
bA
L
�
�; to�i; x̂ (�)

�i
< E�

�
vSL
�
�; to�i;x

o
�i (�)

��
; (44)

which contradicts the assumption that agent L choices
� bA; fx̂ (�)g�2�� when it is

o�ered t =
�
t̂i; t

o
�i
�
maximize its pro�ts. �

c) Principal i is not in Ao but in bA :
If principal i is strictly better o� by o�ering the strategy t̂i (x) it does mean that:

E�
�
gi (x̂ (�))� t̂i (x̂ (�))

�
> E� [gi (x

o (�))] ; (45)

From condition (4b) however we know that

E�
�
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
��
� E�

h
gi (x (�))� fS[figi (�;x (�)) + vSL

�
�; to�i;x (�)

�i
;

(46)

all fx (�)g�2� 2 X�, all S � Nn fig : In particular, by setting x (�)� x̂ (�) and S = bAn fig
in (46) we get that:

E�
�
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
��
� E�

h
gi (x̂ (�))� f

bA
i (�; x̂ (�)) + v

bAnfig
L

�
�; to�i; x̂ (�)

�i
:

(47)
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Summing both inequalities gives:

E�
�
vA

o

L
�
�; to�i;x

o (�)
��
> E�

h
t̂i (x̂ (�))� f

bA
i (�; x̂ (�)) + v

bAnfig
L

�
�; to�i; x̂ (�)

�i
;

(48)

that is

E�

h
v
bA
L
�
�; t̂i; t

o
�i; x̂ (�)

�i
< E�

�
vA

o

L
�
�; to�i;x

o (�)
��

which contradicts the assumption that agent L choices
� bA; fx̂ (�)g�2�� when it is o�ered

t =
�
t̂i; t

o
�i
�
maximize its pro�t. �

d) Principal i =2 Ao [ bA :
If the agent does not �nd pro�table to contract with principal i in either cases (when

the later o�ers toi (x) or t̂i (x)), it does mean that the change of strategy has no impact

on agent L choices
� bA; fx̂ (�)g�2��. This contradicts the assumption that o�ering t̂i (x)

result in a strict improvement of principal i's payo�: �

(Remind that i =2 A [ bA implies that fAi (�;x) � f bAi (�;x) � 0):
) Necessity:

Condition (1) follows from the assumption, given the contracting set Ao; the agent chooses

for all � 2 � the action xo (�) that maximizes its own pro�ts;

Condition (2) is Lemma 11:2:3 below and its implication displayed as Corollary ??. It has

a twofold meaning. First, it states that the set of accepted contracts Ao maximizes the

expected pro�ts of the agent. Second, it evidences that the participation constraint of the

agent to the contractual relationship with any principal i 2 Ao is binding;

Condition (3) is Lemma 11:2:5 below that evidences the fact that, given the contracting

set Ao; the strategy toi (x) of any principal i in the contracting set is such that, for almost

all � 2 � , the agent chooses the action x� (�) that maximizes her joint-pro�ts with this

principal;

Conditions (4a) and (4b) are Lemma 11:2:4 below. The later evidences the fact that, given
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the cost functions fSi (�;x) ; the set of accepted contracts A
o maximizes the joint-pro�ts of

the agent and any principal i in the contracting set Ao. Moreover, for any principal i 2 N;

contracting takes place if and only if, it improves on the sum of his expected equilibrium

payo� and the agent's expected equilibrium payo�.

11.2.3 Lemma 11:2:3 (Expected marginal contribution of a single principal to the

equilibrium pro�ts of the agent):

In any Nash equilibrium, each contracting principal i in Ao extract all the expected rent of the

agent given the other principals equilibrium strategies to�i. In other words, the strategy t
o
i is such

that the agent's expected equilibrium pro�ts remain the same if i does not contract. Formally,

E�

�
max
x2X

vA
o

L (�; to;x)

�
= sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
; (49)

for all principals i in Ao:

Proof: By assumption, all contractual relationships are bene�cial to the agent. Formally,

for any i 2 Ao;

E�

�
max
x2X

vA
o

L (�; to;x)

�
� sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
: (50)

Assume that there is some i 2 Ao for which there is a strict inequality and look for a

contradiction. Denote b"i the di�erence between the agent's expected net gains and what she can
obtains if she does not contract with principal i :

b"i = E� �max
x2X

vA
o

L (�; to;x)

�
� sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
> 0: (51)

Consider the strategy

bti (x) = toi (x)� b"i=2: (52)
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If such a strategy is o�ered by principal i; the agent still �nd it pro�table to contract with him.

Indeed, by keeping unchanged the contracting set Ao and the equilibrium actions xo (�) ; her

pro�ts are already strictly higher than the pro�ts she would get by contracting with any set

S � Nn fig : To see that, observe that by de�nition

E�
�
vA

o

L
�
�; bti; to�i;xo (�)�� = E� �max

x2X
vA

o

L (�; to;x)

�
� b"i=2 (53)

so that from (51)

E�
�
vA

o

L
�
�; bti; to�i;xo (�)�� = sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
+ b"i � b"i=2:

(54)

Thus, given the equilibrium strategies of the other principals to�i; the agent is strictly better o�

by contracting with principal i even when the later o�ers the modi�ed strategy bti (x) :
E�

�
max
x2X

vA
o

L
�
�; bti; to�i;x�� > sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
: (55)

It is easy to show that the agent cannot improve upon her expected payo� by contracting

with a set A � (fig [Nn fig) di�erent from Ao: It is also obvious that, for any realization of the

parameter �; the agent cannot improve upon her realized payo� by choosing an action x 2 X

which is not in Xo (�) : Indeed, for both decision sets Ao and fxo (�)g ; a possible improvement

would mean that the triplet (to; Ao; fxo (�)g) is not a Nash equilibrium (The agent would not be

pro�t-maximising when o�ered to). It follows that, by o�ering bti (x) rather than toi (x) ; principal
i does not modify the decisions of the agent.

Observe that, if the agent does not modify its decisions, principal i is realising a strictly

higher payo� with strategy bti (x) than with toi (x), for any realization of the parameter �:
vi
�
�; bti; to�i� = gi (x

o (�))� bti (xo (�))
= gi (x

o (�))� toi (xo (�)) + b"i=2
> vi

�
�; toi ; t

o
�i
�
: (56)
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As a result, principal i expected payo� is strictly higher when he o�ers bti (x) rather than
toi (x) : This contradicts the fact that the triplet (t

o; Ao; fxo (�)g) is a Nash equilibrium of the

game.�

11.2.4 Lemma 11:2:4 (The contracting set maximizes the sum of the expected prof-

its of the agent and any principal i):

In any Nash equilibrium (to; Ao; fxo (�)g), the equilibrium contracting set Ao maximizes the

expected joint-pro�ts of the agent and any principal i in Ao: Formally, for all principals i in

Ao:

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

� sup

�
0; E�

�
max
x2X

�
gi (x)� fS[figi (�;x) + vSL

�
�; to�i;x

����
all S � Nn fig ;

Furthermore, contracting occurs if and only if, given the incremental costs fSi (�;x), it improves

over the sum of their equilibrium payo�s. Formally, for all principals i in Ao:

E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

� sup
�
0; E�

�
gi (x

o
S (�)) + v

S
L
�
�; to�i;x

o
S (�)

��	
all S � Nn fig ;

with xoS (�) = argmaxx2X v
S
L(�; t

o
�i;x): For all principals i in NnAo:

E�
��
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
���

� sup

�
0; E�

�
max
x2X

�
gi (x)� fS[figi (�;x) + vSL

�
�; to�i;x

����
all S � Nn fig .

Proof: Assume this is not true, i.e. there exists either (Case A) a principal i 2 Ao and a

contracting set bA 3 i such that
E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

< sup

�
0; E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

����
; (57)

79



or (Case B) a principal i 2 Ao and a contracting set bA � Nn fig such that
E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

< sup
n
0; E�

h
gi (bx (�)) + v bAL ��; to�i; bx (�)�io , (58)

with bx (�) = argmaxx2X v bAL (�; to�i;x) or (Case C) a principal i =2 Ao and a contracting set bA 3
i such that

E�
��
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
���

< sup

�
0; E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

����
. (59)

We examine all three cases and look for a contradiction.

Without any loss of generality, we assume in the remaining of the demonstration that, whenever

i 2 bA (i.e. for Cases A and C) the set bA is the set S � N for which the expected joint-pro�ts

E�

�
max
x2X

�
gi (x)� fSi (�;x) + v

Snfig
L

�
�; to�i;x

���

takes the highest value; while, whenever i 2 bA (i.e. for Case B), the set bA is the set S � Nn fig
for which the agents pro�ts

E�

�
max
x2X

�
vSL
�
�; to�i;x

���
takes the highest value.

Case A Principal i 2 Ao \ bA :
If i 2 Ao; it cannot be the case that

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i
< 0: (60)

Indeed, for contracting to be pro�table for principal i; it must be the case that

vi = E� [gi (x
o (�))� toi (xo (�))] � 0: (61)
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Substracting the later equation to equation (60) gives

E�

h
toi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

� E�
�
vA

o

L (�; to;xo (�))
�
< 0; (62)

which means that agent would make negative pro�ts at equilibrium. We therefore know

from equation (57) that

E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
> 0 (63)

so that the equation (57) itself rewrites

E�

h�
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
��i

< E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
: (64)

Let b"i > 0 be the expected di�erence between the pair of joint-pro�ts de�ned as follows:
b"i = E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
�E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i
: (65)

Let ki be the expected di�erence between maximum joint-pro�t of the agent and principal

i and the equilibrium pro�ts of the agent:

ki = E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
�E�

�
vA

o

L (�; to;xo (�))
�
: (66)

Consider the strategy bti (x) de�ned as follows:
bti (x) � gi (x)� ki + b"i=2: (67)

If the agent contracts with the set bA when o�ered �bti; to�i� ; its expected payo� writes
E�

�
max
x2X

v
bA
L
�
�; bti; to�i;x��

� E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
� ki + b"i=2

= E�
�
vA

o

L (�; to;xo (�))
�
+ b"i=2: (68)
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We thus know that, if the agent participation constraint is satis�ed when the agent is

o�ered to, it will still be the case when she is o�ered
�bti; to�i� : However, there is a priori

no reason for the agent to contract with the set bA when o�ered �bti; to�i� : It may well exist
a set that would yield a higher pro�t. when the agent is o�ered

�bti; to�i� : We now show it
cannot be the case.

Assume bA is not a contracting set when the agent is o�ered �bti; to�i� and look for a con-
tradiction. Let eA be the contracting set when the agent is o�ered �bti; to�i�. The very fact
that bA is not a contracting set means that

E�

�
max
x2X

v
bA
L
�
�; bti; to�i;x�� < E� �max

x2X
v
eA
L
�
�; bti; to�i;x�� : (69)

If i =2 eA; the expected pro�ts can be rewritten as
E�

�
max
x2X

v
eA
L
�
�; bti; to�i;x�� � E� �max

x2X
v
eA
L
�
�; to�i;x

��
: (70)

From Lemma 11:2:3; we know that the agent's expected equilibrium pro�ts when o�ered

to are at least as high as the expected pro�ts when the contracting set is eA � Nn fig :

Formally,

E�

�
max
x2X

v
eA
L
�
�; to�i;x

��
� E�

�
max
x2X

vA
o

L (�; to;x)

�
(71)

Combining inequalities (69) and (71) with the equality (70) leads to

E�

�
max
x2X

v
bA
L
�
�; bti; to�i;x�� < E� �max

x2X
vA

o

L (�; to;x)

�
; (72)

which clearly contradicts (68) that states that, when the agent is o�ered
�bti; to�i� she can

guarantee herself a strictly higher payo� than E�
�
maxx2X v

Ao

L (�; to;x)
�
: It follows that,

if bA 3 i is not a contracting set when the agent is o�ered
�bti; to�i�, the later must also

contain principal i:
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If i 2 eA then, by the very de�nition (67) of the strategy bti (x) ;
E�

�
max
x2X

v
eA
L
�
�; bti; to�i;x��

= E�

�
max
x2X

�
gi (x)� f

eA
i (�;x) + v

eAnfig
L

�
�; to�i;x

���
� ki + b"i=2: (73)

From the de�nition of bA; we also know that
E�

�
max
x2X

�
gi (x)� f

eA
i (�;x) + v

eAnfig
L

�
�; to�i;x

���
� E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
: (74)

Combining the later inequality with the two expected payo�s de�ned in (68) and (73), one

gets

E�

�
max
x2X

v
eA
L
�
�; bti; to�i;x�� � E� �max

x2X
v
bA
L
�
�; bti; to�i;x��

which contradicts the fact that bA is not a contracting set when the agent is o�ered �bti; to�i� :
Thus we know that, bA is a contracting set when the agent is o�ered

�bti; to�i�. From the

de�nition (67) of the strategy bti (x) ; we know that principal i payo� writes
vi = ki � b"i=2

= E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
� E�

�
vA

o

L (�; to;xo (�))
�
� b"i=2

= E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
+ E� [gi (x

o (�))� toi (xo (�))]

�E�
h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i
� b"i=2

= E� [gi (x
o (�))� toi (xo (�))] + b"i=2: (75)

It follows that principal i would get a strictly higher payo� by o�ering bti rather toi ; a clear
contradiction with assumption that (to; Ao; fxo (�)g) is a Nash equilibrium.

To sum up, Case A is excluded: if principal i 2 Ao \ bA; equation (57) cannot hold true.
Case B Principal i in Ao but not in bA :

As already shown in case A, since i 2 Ao; we know that

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i
� 0:
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Thus equation (58) rewrites

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

< E�

h
gi (bx (�)) + v bAL ��; to�i; bx (�)�i : (76)

where bx (�) 2 argmaxx hv bAL ��; to�i;x�i.
From the very de�nition of a Nash-Equilibrium, principal i strategy toi (x) is a best-

response to other principals' strategies. In particular the net equilibrium payo� voi =

E� [gi (x
o (�))� toi (xo (�))] is greater than the one that would be obtained by o�ering the

null strategy bti (x) � 0; that would induce the agent to contract with bA and adopt the

actions bx (�) : Formally
E� [gi (bx (�))] � E� [gi (xo (�))� toi (xo (�))] : (77)

Adding the later inequality to (76) gives

E�

h
toi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

< E�

h
v
bA
L
�
�; to�i; bx (�)�i

which contradicts the fact that contracting set Ao is the equilibrium set.

To sum up, Case B is excluded: if principal i is in Ao but not in bA; equation (58) cannot
hold true:

Case C Principal i is not Ao but is in bA :
We assume that there is no principal i 2 N for which participation to the R&D market is

a priori excluded. Thus, there exists at least one set S 3 i such that:

E�

�
max
x2X

�
gi (x)� fSi (�;x) + v

Snfig
L

�
�; to�i;x

���
� 0:

It follows that (59) may be rewritten as

E�
��
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
���

< E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
: (78)
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De�ne again b"i > 0 as the expected di�erence
b"i = E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
�E�

�
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
��
; (79)

and consider the strategy bti (x) de�ned as follows:
bti (x) � gi (x)� ki + b"i=2; (80)

where ki is the di�erence between maximum expected joint-pro�t of principal i and the

agent and the expected equilibrium pro�ts of the agent:

ki = E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
�E�

�
vA

o

L (�; to;xo (�))
�
: (81)

If the agent contracts with the set bA when o�ered �bti; to�i� ; its expected payo� writes
E�

�
max
x2X

v
bA
L
�
�; bti; to�i;x��

� E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
� ki + b"i=2

= E�
�
vA

o

L (�; to;xo (�))
�
+ b"i=2: (82)

We thus know that, if the agent �nd pro�table to contract with Ao when she is o�ered

to, her participation constraint will still hold true when she is o�ered
�bti; to�i� : However,

there is a priori no reason for the agent to contract with the set bA when o�ered �bti; to�i� :
It may well exist a set that would yield a higher pro�t. when the agent is o�ered

�bti; to�i� :
We now show it cannot be the case.

Assume bA is not a contracting set when the agent is o�ered �bti; to�i� and look for a con-
tradiction. Let eA be the contracting set when the agent is o�ered �bti; to�i�. The very fact
that bA is not a contracting set means that

E�

�
max
x2X

v
bA
L
�
�; bti; to�i;x�� < E� �max

x2X
v
eA
L
�
�; bti; to�i;x�� : (83)
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If i =2 eA; the expected pro�ts can be rewritten as
E�

�
max
x2X

v
eA
L
�
�; bti; to�i;x�� � E� �max

x2X
v
eA
L
�
�; to�i;x

��
: (84)

And by de�nition of the equilibrium contracting set Ao; we know (this is actually Lemma

11:2:3) that

E�

�
max
x2X

v
eA
L
�
�; to�i;x

��
� E�

�
max
x2X

vA
o

L (�; to;x)

�
; (85)

since contracting with eA was already possible when the agent was o�ered to: Combining
inequalities (83) and (85) with the equality (84) leads to

E�

�
max
x2X

v
bA
L
�
�; bti; to�i;x�� < E� �max

x2X
vA

o

L (�; to;x)

�
; (86)

which clearly contradicts (82) that states that, when the agent is o�ered
�bti; to�i� she can

guarantee herself a strictly higher payo� than E�
�
maxx2X v

Ao

L (�; to;x)
�
. It follows, if

bA 3 i is not the contracting set, eA must also contain principal i:
If i 2 eA then, by the very de�nition (80) of the strategy bti (x) ;

E�

�
max
x2X

v
eA
L
�
�; bti; to�i;x��

= E�

�
max
x2X

�
gi (x)� f

eA
i (�;x) + v

eAnfig
L

�
�; to�i;x

���
� ki + b"i=2: (87)

From the de�nition of bA; we also know that
E�

�
max
x2X

�
gi (x)� f

eA
i (�;x) + v

eAnfig
L

�
�; to�i;x

���
� E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
: (88)

Combining the later inequality with the two expected payo�s de�ned in (82) and (87), one

gets

E�

�
max
x2X

v
eA
L
�
�; bti; to�i;x�� � E� �max

x2X
v
bA
L
�
�; bti; to�i;x��

which contradicts the fact that bA is not a contracting set when the agent is o�ered �bti; to�i� :
Thus we know that, bA is a contracting set when the agent is o�ered

�bti; to�i�. From the
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de�nition (80) of the strategy bti (x) ; we know that, if the agent contracts with bA; principal
i payo� writes

vi = ki � b"i=2
= E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
� E�

�
vA

o

L (�; to;xo (�))
�
� b"i=2

= E�

�
max
x2X

�
gi (x)� f

bA
i (�;x) + v

bAnfig
L

�
�; to�i;x

���
+ E� [gi (x

o (�))]

�E�
�
gi (x

o (�)) + vA
o

L
�
�; to�i;x

o (�)
��
� b"i=2

= E� [gi (x
o (�))] + b"i=2: (89)

It follows that principal i would get a strictly higher payo� by o�ering bti rather toi ; a clear
contradiction with assumption that (to; Ao; fxo (�)g) is a Nash equilibrium.

To sum up, Case C is excluded: if principal i is not Ao but is in bA; equation (59).

All three cases A, B and C are excluded. �

11.2.5 Lemma 11:2:5 (Maximization of the joint pro�ts of the agent and principal

i at equilibrium):

In any Nash equilibrium (to; Ao; fxo (�)g), the action equilibrium xo (�) chosen by the agent is

such that the joint pro�t of the agent L and any principal i in the contracting set Ao is maximized

for almost all �. Formally,

gi (x
o (�))� fAoi (�;xo (�)) + v

Aonfig
L

�
�; to�i;x

o (�)
�
� gi (x)� fA

o

i (�;x) + v
Aonfig
L

�
�; to�i;x

�
(90)

for almost all �, for all i 2 N; and for all feasible action x 2 X.
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Proof: This follows almost straightforwardly from Lemma 11:2:4: We know indeed that,

for all i 2 Ao

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

� E�

�
max
x2X

�
gi (x)� fS[figi (�;x) + vSL

�
�; to�i;x

���
all S � Nn fig ; (91)

This holds true in particular for S � Aon fig ; so that

E�

h
gi (x

o (�))� fAoi (�;xo (�)) + v
Aonfig
L

�
�; to�i;x

o (�)
�i

� E�

�
max
x2X

�
gi (x)� fA

o

i (�;x) + v
Aonfig
L

�
�; to�i;x

���
: (92)

However, by de�nition of the maximum,

gi (x
o (�))� fAoi (�;xo (�)) + v

Aonfig
L

�
�; to�i;x

o (�)
�

� max
x2X

�
gi (x)� fA

o

i (�;x) + v
Aonfig
L

�
�; to�i;x

��
(93)

so that for (92) to hold true, it must be the case that

gi (x
o (�))� fAoi (�;xo (�)) + v

Aonfig
L

�
�; to�i;x

o (�)
�

= max
x2X

�
gi (x)� fA

o

i (�;x) + v
Aonfig
L

�
�; to�i;x

��
;

almost all �: �
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11.3 Truthfull Nash Equilibria Characterisation3

11.3.1 Remark 11.3.1 (Constant payo�s for the contracting principals at equilib-

rium):

In all TNE, for all principal i in the contracting set Ao

gi(x
o (�))� E� [gi(xo (�))� toi (xo (�))] � 0; (94)

for almost all �: As a result, contracting principals' payo�s do not depend on �, that is:

voi = gi(x
o (�))� toi (xo (�)) = E� [gi(xo (�))� toi (xo (�))] ; (95)

for all i 2 Ao; almost all �:

Proof: Assume equation (94) does not hold, i.e. that there exists a principal i 2 Ao and a

set � � � of strictly positive measure such that gi(xo (�)) < E� [gi(xo (�))� toi (xo (�))] : Clearly

the expected transfer can be decomposed over � and its complementary set �n�:

From the de�nition of truthfulness, for any � 2 � principal i's equilibrium transfer is zero, that

is:

toi ((x
o (�)) = 0 > gi(x

o (�))� E� [gi(xo (�))� toi (xo (�))] :

Hence, the net payo� of the principal is strictly smaller than the expected payo� over the set �:

From the de�nition of truthfulness, for any � 2 �n� principal i's equilibrium transfer is:

toi ((x
o (�)) = gi(x

o (�))� E� [gi(xo (�))� toi (xo (�))] :

Hence, the net payo� of the principal is exactly equal to the expected payo� over the set �n�.

It follows that:

E� [vi(x
o (�))] = E�2� [gi(x

o (�))� 0] + E�2�n� [gi(xo (�))� toi (xo (�))]

< E�2� [gi(x
o (�))� gi(xo (�)) + E� [gi(xo (�))� toi (xo (�))]]

+E�2�n� [gi(x
o (�))� gi(xo (�)) + E� [gi(xo (�))� toi (xo (�))]]

< E� [gi(x
o (�))� toi (xo (�))] ;
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a contradiction.

Now, equation (95) is a simple restatement of (94) obtained by applying the de�nition of

truthfulness, that is:

toi (x
o (�)) = supf0; gi(xo (�))�E� [gi(xo (�))� toi (xo (�))]g = gi(xo (�))�E� [gi(xo (�))� toi (xo (�))] ;

for almost all �: Hence:

vi(x
o (�)) = gi(x

o (�))� toi (xo (�)) = E� [gi(xo (�))� toi (xo (�))] ;

for all i 2 Ao; almost all �. �

11.3.2 Proposition 11.3.2 (Upper-bound on equilibrium payo�s, or vo 2 V �� �
V�(fx� (�)g�2�)):

The equilibrium action xo (�) 2 Xo (�) of the common agency game gives rise to equilibrium

payo�s vo=(vo1; :::; v
o
n) in V

�
� � V�(fx� (�)g�2�), that is:

X
k2S

vok � E� [W (�;Ao)�W (�;AonS)] , all S � Ao: (96)

Proof: Recall that xo (�) 2 Xo (�) denotes the equilibrium action chosen by the agent,

when the realization of the stochastic variable is �. Then for all S � Ao, de�ne:

X�
S (�) = argmax

x2X

 X
i2S

gi(x)� r(S; �;x)
!
: (97)

Let x�AonS (�) an element of X
�
AonS (�). By de�nition of the agent's equilibrium choice xo (�), we

know that:

E�

24 X
i2AonS

toi (x
�
AonS (�))� r(A

onS; �;x�AonS (�))

35 � E�

24max
x2X

0@ X
i2AonS

toi (x)� r(AonS; �;x)

1A35
� E�

"X
i2Ao

toi (x
o (�))� r(Ao; �;xo (�))

#
: (98)
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Then S [AonS = Ao and Ao \AonS = ; imply that:

E�

"X
i2Ao

toi (x
o (�))

#
= E�

"X
k2S

tok(x
o (�))

#
+ E�

24 X
l2AonS

tol (x
o (�))

35 ; (99)

which yields:

E�

24 X
l2AoNnS

tol (x
�
AonS (�))� r(A

onS; �;x�AonS (�))

35 � E�

"X
k2S

tok(x
o (�))

#
� E� [r (Ao; �;xo (�))]

+E�

24 X
l2AonS

tol (x
o (�))

35 : (100)

In order to transform the left-hand side of the latter expression, recall from the de�nition of

truthful strategies that, for all l 2 AonS, we have:

gl(x
�
NnS (�))� E� [gl(x

o (�))� tol (xo (�))] � tol (x�NnS (�)): (101)

Substitute the latter inequality in the previous one to obtain:

E�

24 X
l2AonS

h
gl(x

�
AonS (�))� gl(x

o (�)) + tol (x
o (�))

i
� r

�
AonS; �;x�AonS (�)

�35
� E�

"X
k2S

tok(x
o (�))

#
� E� [r (Ao; �;xo (�))] + E�

24 X
l2AonS

tol (x
o (�))

35 :
The term

P
l2AonS t

o
l (x

o (�)) cancels out on each side of the inequality sign, and a simple reor-

ganization gives:

�E�

 X
k2S

tok(x
o (�))

!
� �E� [r (Ao; �;xo (�))] + E�

0@ X
l2AonS

gl (x
o (�))

1A
�E�

0@ X
l2AonS

gl(x
�
AonS (�))� r(A

onS; �;x�AonS (�))

1A : (103)

By adding
P
k2S gk(x

o (�)) on each side, one �nds that:

E�

 X
k2S

[gk(x
o (�))� tok(xo (�))]

!

� E�

 X
i2Ao

gi(x
o (�))� r(Ao; �;xo (�))

!
�E�

0@ X
l2AonS

gl(x
�
AonS (�))� r(A

onS; �;x�AonS (�))

1A :
91



Let vok = E� [gk(x
o (�))� tok(xo (�))] denotes principal k's net equilibrium expected pro�ts. By

using
P
i2Ao gi(x

o (�)) � r(Ao; �;xo (�)) �
P
i2Ao gi(x

� (�)) � r(Ao; �;x� (�)), all �; we �nally

obtain:

X
k2S

vok � E� [W (�;Ao)�W (�;AonS)] ; (105)

for all S � Ao, as required. �

11.3.3 Proposition 11.3.3 (E�cient actions and equilibrium actions almost always

coincide):

Almost all elements xo (�) of the agent's pro�t-maximizing set Xo (�) are elements of the e�cient

set X� (�), and almost all elements x� (�) of the e�cient set X� (�) are elements of the agent's

pro�t-maximizing set Xo (�).

Proof:

(xo (�) 2 X� (�)) : Assume that there exists b� � � of strictly positive measure such that there
exists xo (�) in Xo (�) and not in X� (�) for all � in b�, and look for a contradiction. By
de�nition the truthfulness of the strategy toi implies that:

gi(x)� E� [gi(xo (�))� toi (xo (�))] � toi (x):

We know from Remark 11.3.1 that, in equilibrium, the strategy toi of any principal in the

contracting set Ao is truthful relative to xo (�) for almost all realizations of �, that is:

gi(x)� gi(xo (�)) + toi (xo (�)) � toi (x); (106)

for all i 2 Ao; all x; and for almost all �. Take in particular x = x� (�) 2 X� (�). We

obtain:

gi(x
� (�))� gi(xo (�)) + toi (xo (�)) � toi (x� (�)); (107)
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for almost all �: Summing through Ao, and substracting r(Ao; �;x� (�)) on each side of the

inequality sign, yields:X
i2Ao

gi(x
� (�))�

X
i2Ao

gi(x
o (�)) +

X
i2Ao

toi (x
o (�))� r(Ao; �;x� (�)) �

X
i2Ao

toi (x
� (�))� r(Ao; �;x� (�));

(108)

for almost all �: Then introduce r(Ao; �;xo (�)) on the left-hand side, and reorganize terms,

to obtain:"X
i2Ao

gi(x
� (�))� r(Ao; �;x� (�))

#
�
"X
i2Ao

gi(x
o (�))� r(Ao; �;xo (�))

#
+
X
i2Ao

toi (x
o (�))� r(Ao; �;xo (�)) �

X
i2Ao

toi (x
� (�))� r(Ao; �;x� (�)); (109)

for almost all �:

Observe that x� (�) 2 X� (�) and xo (�) =2 X� (�) imply that
P
i2Ao gi(x

� (�))�r(Ao; �;x� (�)) >P
i2Ao gi(x

o (�))�r(Ao; �;xo (�)), which in turn implies that the di�erence
P
i2N t

o
i (x

o (�))�

r(Ao; �;xo (�)) is strictly smaller than the whole algebraic expression on the left-hand side

of the inequality sign. Therefore:X
i2Ao

toi (x
o (�))� r(Ao; �;xo (�)) <

X
i2Ao

toi (x
� (�))� r(Ao; �;x� (�)); (110)

almost all �: Since b� is a set of strictly positive measure, there exists a non-empty subset of
b� for which we have both xo (�) in Xo (�) and the inequality (110) veri�ed, a contradiction.

(x� (�) 2 Xo (�)) : Assume that there exists b� � � of strictly positive measure such that there
exists x� (�) in X� (�) and not in Xo (�) for all � in b�, and look for a contradiction.
By de�nitionX

i2Ao
toi (x

o(�))� r(Ao; �;xo(�)) �
X
i2Ao

toi (x
� (�))� r (Ao; �;x� (�)) ; (111)

all �: The inequality is strict if x�(�) =2 Xo (�) : For all i 2 Ao and all x 2 X, we know

from the truthfulness of strategies toi that:

toi (x) � gi(x)� E� [gi(xo (�))� toi (xo (�))] : (112)
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In the latter expression, substitute x� (�) for x on both sides, and voi for E� [gi(x
o (�))� toi (xo (�))]

on the right-hand side. Then sum through Ao, and substract r(Ao; �;x� (�)) on each side

of the inequality sign, to obtain:

X
i2Ao

toi (x
� (�))� r (Ao; �;x� (�)) �

X
i2Ao

[gi (x
� (�))� voi ]� r (Ao; �;x� (�)) ;

(113)

all �: By transitivity, taking (111) and (113) together leads to:

X
i2Ao

toi (x
o(�))� r(Ao; �;xo(�)) �

X
i2Ao

[gi(x
� (�))� voi ]� r(Ao; �;x� (�)):

The inequality is strict if x�(�) =2 Xo (�) ; that is if � 2 b�: Since from Remark 11.3.1, for

all principal i in the contracting set toi (x
o(�)) = gi (x

o(�))� voi for almost all �; it follows

that

E�

"X
i2Ao

[gi(x
o(�))� voi ]� r(Ao; �;xo(�))

#
� E�

"X
i2Ao

[gi(x
� (�))� voi ]� r (Ao; �;x� (�))

#
:

(114)

almost all �: Inequality (114) is strict for almost all � 2 b�: Since b� is a set of strictly

positive measure, this says

E�

"X
i2Ao

gi(x
o(�))� r(Ao; �;xo(�))

#
> E�

"X
i2Ao

gi(x
� (�))� r (Ao; �;x� (�))

#
;

(115)

where the equilibrium payo�s voi have been cancelled on both sides. This later inequality

is clearly not compatible with the de�nition of the e�cient actions x� (�) : �

11.3.4 Lemma 11.3.4 (Necessary and su�cient condition de�ning the Pareto fron-

tier V�� of V �� � V�(fx� (�)g�2�)):

The payo� vector vo is in V�� , the Pareto frontier of V �� ; if and only if, for all j there exists

S � Ao, with j 2 S, such that:

X
i2S

voi = E� [W (�;A
o)�W (�;AonS)] : (116)
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Proof: (i) Assume that vo = (vo1; v
o
2; ::; v

o
n) 2 V�(�;x) but for all S � Ao with j 2 S we

have:

X
i2S

voi < E� [W (�;A
o)�W (�;AonS)] : (117)

It is possible to slightly increase voj while remaining inside V
�
� � V�(fx� (�)g�2�), a contradiction.

(ii) Assume that for all j there exists S � Ao, with j 2 S, such that:

X
i2S

voi = E� [W (�;A
o)�W (�;AonS)] : (118)

and vo = (vo1; v
o
2; ::; v

o
n) 2 V �� , but vo =2 V��. Then there exists v = (�v1; v2; ::; vn) 2 V�� with

(�v1; v2; ::; vn) � (vo1; v
o
2; ::; v

o
n). Without loss of generality, assume that �v1 > vo1. Consider

(�v1; v
o
2; ::; v

o
n). Since (�v1; v2; ::; vn) � (�v1; vo2; ::; von), it is clear that (�v1; vo2; ::; von) 2 V �� . But this

cannot be since there exists S � Ao with j = 1 2 S such that:

E� [W (�;A
o)�W (�;AonS)] =

X
i2S

voi < �v1 +
X

i2Snf1g
voi ; (119)

a contradiction with Proposition 11.3.2. �

11.3.5 Proposition 11.3.5 (Pareto e�ciency, or xo (�) 2 V�(�;x� (�))):

Any equilibrium is Pareto e�cient, i.e. the equilibrium payo�s are in V��, the Pareto frontier of

the set V �� � V�(fx� (�)g�2�).

Proof: We consider the two cases evoqued in Lemma 11.2.3, as follows.

� Case 1: E�
�
maxx2X v

Ao

L (�; to;x)
�
= 0

By de�nition of W (�;Ao) � maxx2X
�P

j2Ao gj(x)� r(Ao; �;x)
�
, we know that:

E� [W (�;A
o)] = E�

24X
j2Ao

gj(x
� (�))�

X
j2Ao

toj(x
� (�)) +

X
j2Ao

toj(x
� (�))� r (Ao; �;x� (�))

35 :
(120)
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Recalling from Proposition 11.3.3 that almost all elements x� (�) of the e�cient set

X� (�) � argmax
x2X

0@X
j2Ao

gj(x)� r(Ao; �;x)

1A ; (121)

are also elements of the agent's pro�t-maximizing set

Xo (�) � argmax
x2X

0@X
j2Ao

toj(x)� r(Ao; �;x)

1A (122)

we obtain:

E� [W (�;A
o)] = E�

24X
j2Ao

�
gj(x

o (�))� toj(xo (�))
�35+ E�

24X
j2Ao

toj (x
o (�))� r(Ao; �;xo (�))

35 :
(123)

Since E�

24maxx2X
0@X
j2Ao

toj(x)� r(Ao; �;x)

1A35 = 0, equation (123) becomes:
E� [W (�;A

o)] =
X
j2Ao

E�
�
gj(x

o (�))� toj(xo (�))
�
=
X
j2Ao

voj (124)

� Case 2: E�
�
maxx2X v

Ao

L (�; to;x)
�
= supS�NnfigE�

24maxx2X
0@X
j2S

toj(x)� r(�;x)

1A35 >
0:

Let S�i = arg supS�NnfigE�

24maxx2X
0@X
j2S

toj(x)� r(�;x)

1A35 :
Assume that S�i � Aon fig :

From Lemma 1bis, we know that there exists a set of equilibrium actions such that a

subset of the contracting principals gives the agent a zero expected contribution at equi-

librium. More precisely, there exists a set of actions
�
xo�i (�)

	
in Xo (�) such that the set

of principals Tfig = A
onS�i veri�es

E�

24 X
j2Tfig

toj
�
xo�i (�)

�
� fAoTfig

�
�;xo�i (�)

�35 = 0; (125)

where fA
o

Tfig

�
�;xo�i (�)

�
=
�
r
�
Ao; �;xo�i (�)

�
� r

�
AonTfig; �;xo�i (�)

��
is the incremental

costs attached to the participation of the principals in Tfig: Observe that, since S�i �
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Aon fig ; the set Tfig contains at least principal i. Since xo�i (�) and xo (�) are in Xo (�) by

de�nition, we have:

E�

24X
j2Ao

toj (x
o (�))� r (Ao; �;xo (�))

35 = E�
24X
j2Ao

toj
�
xo�i (�)

�
� r

�
Ao; �;xo�i (�)

�35 :
(126)

Recalling again from Proposition 11.3.3 that xo (�) is in X� (�) for almost all �, we can

substitute x� (�) for xo (�) in the latter expression to obtain:

E�

24X
j2Ao

toj (x
� (�))� r (Ao; �;x� (�))

35 = E�
24X
j2Ao

toj
�
xo�i (�)

�
� r

�
Ao; �;xo�i (�)

�35 :
(127)

The latter expression can be decomposed over the set Tfig, as introduced above, and its

complementary set in Ao; namely S�i. This yields:

E�

24X
j2Ao

toj (x
� (�))� r (Ao; �;x� (�))

35
= E�

24 X
j2Tfig

toj
�
xo�i (�)

�
� fAoTfig

�
�;xo�i (�)

�35+E�
24 X
j2S�i

toj
�
xo�i (�)

�
� r

�
S�i; �;x

o
�i (�)

�35 :
We now focus on the right-hand side of the latter displayed expression. Recall that

E�

24 X
j2Tfig

toj
�
xo�i (�)

�
� fAoTfig

�
�;xo�i (�)

�35 = 0. Moreover, since xo�i (�) is an equilib-

rium action, from Remark 11.3.1 we know that for all principal i in the contracting

set toi (x
o
�i(�)) = gi

�
xo�i(�)

�
� voi for almost all �: Recalling from Proposition 11.3.3 that

xo�i (�) 2 X� (�), almost all �; we thus have toj
�
xo�i (�)

�
= gj

�
xo�i (�)

�
�E�

h
gj(x

� (�))� toj(x� (�))
i
,

almost all �: This leads us to rewrite (128) as:

E�

24X
j2Ao

toj (x
� (�))� r (Ao; �;x� (�))

35
= E�

24 X
j2S�i

�
gj
�
xo�i (�)

�
� gj (x� (�)) + toj (x� (�))

�
� r

�
S�i; �;x

o
�i (�)

�35 :
97



Now we add E�

24 X
j2Tfig

gj (x
� (�))

35 on both sides of the equality sign and simplify the
terms in toj (x

� (�)), all j 2 S�i, to obtain:

E�

24 X
j2Tfig

gj (x
� (�)) +

X
j2Tfig

toj (x
� (�))� r (Ao; �;x� (�))

35
= E�

24 X
j2Tfig

gj (x
� (�)) +

X
j2S�i

�
gj
�
xo�i (�)

�
� gj (x� (�))

�
� r

�
S�i; �;x

o
�i (�)

�35 ;
which can be reorganized to obtain:

E�

24 X
j2Tfig

gj (x
� (�))�

X
j2Tfig

toj (x
� (�))

35
= E�

240@X
j2Ao

gj (x
� (�))� r (Ao; �;x� (�))

1A�
0@ X
j2S�i

gj
�
xo�i (�)

�
� r

�
S�i; �;x

o
�i (�)

�1A35 :
By de�nition of x�S�i (�),

X
j2S�i

gj
�
xo�i (�)

�
� r

�
S�i; �;x

o
�i (�)

�
�
X
j2S�i

gj

�
x�S�i (�)

�
� r

�
S�i; �; x

�
S�i (�)

�

and recalling that for all principals in the contracting set voj = E�

h
gj (x

o (�))� toj (xo (�))
i
=

E�

h
gj (x

� (�))� toj (x� (�))
i
from Proposition 11.3.3, we obtain:

X
j2Tfig

voj � E�
�
W (�;Ao)�W (�;AonTfig)

�
: (132)

Since we know from Proposition 11.3.3 that
X
j2S

voj � E� [W (�;A
o)�W (�;AonS)] all

S � Ao; it follows that there is equality. As a result of Lemma 11.3.4, vo 2 V��.�

11.3.6 Lemma 11.3.6

Assume that, for all x 2 X and all i 2 N; the transfers ti(x) are de�ned by:

ti(x) = sup fgi(x)� vi; 0g (133)

98



and verify

X
i2S

ti (x)� fA
o

S (�;x) � 0; (134)

all S � Ao and almost all �:

Assume furthermore that for some S � Ao:

X
i2S

vi = E� [W (�;A
o)�W (�;AonS)] : (135)

Then, if S  Ao; the following three properties hold:

a)
X
i2Ao

ti

�
x�AonS (�)

�
� r

�
AonS; �;x�AonS (�)

�
=
X
i2Ao

ti (x
�
Ao (�))� r (Ao; �;x�Ao (�)) almost all

�;

b)
X
i2S

ti

�
x�AonS (�)

�
� fAoS

�
�;x�AonS (�)

�
= 0 almost all �;

c) For all i 2 AonS, ti(x�AonS (�)) = gi(x
�
AonS (�))� vi almost all �:

Proof of a) Let xo (�) denote an equilibrium action. As shown in Remark 11.3.1; for all

principals in the contracting setAo; it must be the case that gi(x
o (�)) � E� [gi(xo (�))� ti(xo (�))] =

voi ; almost all �: Thus, if strategies are de�ned according to (133) ; v
o
i = vi and ti (x

o (�)) =

gi (x
o (�)) � vi; almost all �: From Proposition 11.3.3; any equilibrium action is an e�cient

action hence, we can substitute x� (�) for xo (�) in the later expression to obtain ti (x� (�)) =

gi (x
� (�))� vi almost all �: It follows that equation (135) rewrites:

X
i2S

[gi(x
� (�))� ti (x� (�))]

= E�

24 X
i2Ao

gi(x
� (�))� r (Ao; �;x� (�))

!
�

0@ X
j2AonS

gi(x
�
AonS (�))� r(A

onS; �;x�AonS (�))

1A35 ;
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almost all �:Since the later equality holds true for almost all �; it also holds true in expectation.

We simplify it by decomposing the set Ao into S [ (AonS) and reorganizing terms we obtain:

E�

24 X
j2AonS

gi(x
�
AonS (�))� r(A

onS; �;x�AonS (�))

35� E�
24 X
i2AonS

gi(x
� (�))� r (Ao; �;x� (�))

35
= E�

"X
i2S

ti (x
� (�))

#
:

We also know by assumption, i.e. from equation (134), that

E�

"X
i2S

ti

�
x�AonS (�)

�
� fAoS

�
�;x�AonS (�)

�#
� 0:

Adding this inequality to the previous equation gives:

E�

24 X
j2AonS

gi(x
�
AonS (�))� r

�
AonS; �;x�AonS (�)

�35� E�
24 X
i2AonS

gi(x
� (�))� r (Ao; �;x� (�))

35
+ E�

"X
i2S

ti

�
x�AonS (�)

�
� fAoS

�
�;x�AonS (�)

�#
� E�

"X
i2S

ti (x
� (�))

#
:

From assumption (133) (and Proposition 11.3.3) we also get that for all i 2 Ao; all x 2 X:

ti(x) � gi(x)� vi = gi(x)� E� [gi (x� (�))� ti (x� (�))] ;

hence by considering x = x�AonS (�) and taking the expectation in � we have:

E�

24 X
i2AonS

ti

�
x�AonS (�)

�35 � X
i2AonS

E�

h
gi

�
x�AonS (�)

�
� gi (x� (�))

i
+ E�

24 X
i2AonS

ti (x
� (�))

35 :
Add the latter inequality to equation (136) to obtain:

E�

"X
i2Ao

ti

�
x�AonS (�)

�
� r

�
Ao; �;x�AonS (�)

�#
� E�

"X
i2Ao

ti (x
� (�))� r (Ao; �;x� (�))

#
;

(137)

where we used r (Ao; �;x) = fA
o

S (�;x) + r (AonS; �;x) :

Inequality (137) rewrites

E�

h
vA

o

L

�
�; t;x�AonS (�)

�i
� E�

�
vA

o

L (�; t;x� (�))
�
: (138)
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From Proposition 11.3.3, we know that x� (�) 2 Xo (�) ; almost all �: Hence, for all x 2 X and

for almost all �

X
i2Ao

ti (x)� r(Ao; �;x) �
X
i2Ao

ti (x
� (�))� r(Ao; �;x� (�)) � max

x2X

�
vA

o

L (�; t;x)
	
:

It follows that inequality (138) cannot be strict, so that

E�

"X
i2Ao

ti

�
x�AonS (�)

�
� r

�
Ao; �;x�AonS (�)

�#
= E�

"X
i2Ao

ti (x
� (�))� r (Ao; �;x� (�))

#
:

(139)

Moreover, since
X
i2Ao

ti

�
x�AonS (�)

�
� r

�
Ao; �;x�AonS (�)

�
�
X
i2Ao

ti (x
� (�))� r (Ao; �;x� (�)) ; al-

most all �; the equality

X
i2Ao

ti

�
x�AonS (�)

�
� r

�
Ao; �;x�AonS (�)

�
=
X
i2Ao

ti (x
� (�))� r (Ao; �;x� (�))

holds true almost all �:This proves a)

Proof of b) and c) Assume that E�

"X
i2S

ti

�
x�AonS (�)

�
� fAoS

�
x�AonS (�)

�#
> 0: Then

inequality (136) is strict which implies that inequality (138) is also strict, contradicting as-

sertion a) of the lemma. This proves that E�

"X
i2S

ti

�
x�AonS (�)

�
� fAoS

�
�;x�AonS (�)

�#
= 0:

Since from (134) ;
X
i2S

ti (x) � fA
o

S (�;x) � 0; all x 2 X; almost all �; this implies in turn thatX
i2S

ti

�
x�AonS (�)

�
� fAoS

�
�;x�AonS (�)

�
= 0; almost all �; namely b).

Similarly assume that for some i 2 AonS, E�
h
ti

�
x�AonS (�)

�i
> E�

h
gi

�
x�AonS (�)

�i
� vi.

This would imply again that inequality (137) is also strict, contradicting assertion a) of the

lemma. This proves that E�

h
ti

�
x�AonS (�)

�i
= E�

h
gi

�
x�AonS (�)

�i
� vi all i 2 AonS: Since

ti(x) � gi (x) � vi; all x 2 X; it implies that ti
�
x�AonS (�)

�
= gi

�
x�AonS (�)

�
� vi all i 2 AonS;

and almost all � namely c). �
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11.3.7 Proposition 11.3.7 (Any vector in V�� can be supported by a Truthful Nash-
Equilibrium):

Any vector v in I�� \ V��; that is in the intersection of the implementable payo� set I�� and the

Pareto frontier V�� of V �� ; can be obtained as an equilibrium distribution of payo�s.

Proof: Consider a vector v 2 I�� \ V��. We shall prove that there exists a to such that

the triplet
�
to; Ao; fx� (�)g�2�

�
is a Truthful Nash Equilibrium that generates the equilibrium

payo�s v. Toward this aim, consider the truthful strategies:

toi (x) = sup fgi (x)� vi; 0g all x 2 X; all i 2 N: (140)

As v 2 I��; we know that there exists fx� (�)g�2� in fX� (�)g�2� such that, for all i 2 N;

vi � gi(x� (�));

almost all �: It follows that

toi (x
� (�)) = gi (x

� (�))� vi

almost all �:As a result, if the triplet (Ao; to;x� (�)) constitutes an equilibrium, for any principal

i in Ao; the equilibrium payo� writes

E�2� [gi (x
� (�))� toi (x� (�))] = vi:

We now show that the triplet (Ao; to;x� (�)) indeed constitutes an equilibrium. To do this,

we have to show that the four conditions of Theorem 3 are satis�ed.

� Condition (1) says that the equilibrium action almost always maximizes the agent's ben-

e�ts. We thus have to show that x� (�) 2 Xo (�) almost all �. Assume it is not the case

i.e. there exist b� of strictly positive measure and x̂ (�) 6= x� (�) such that:
X
j2Ao

toj(x̂ (�))� r(Ao; �; x̂ (�)) >
X
j2Ao

toj(x
� (�))� r(Ao; �;x� (�)); (141)
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for all � 2 b�: Note that, by de�nition:
X
j2Ao

toj(x
� (�))� r(Ao; �;x� (�)) =

X
j2Ao

gj (x
� (�))�

0@X
j2Ao

�
gj (x

� (�))� toj (x� (�))
�1A

�r(Ao; �;x� (�))

=
X
j2Ao

gj(x
� (�))�

X
j2Ao

vj � r(Ao; �;x� (�)); (142)

almost all �; which allows us to rewrite the right hand-side of the previous inequality. Let

S (�) � Ao be the set of principals for which the expected transfers are zero when the chosen

action is x̂ (�). By de�nition S (�) =
n
j 2 Ao j toj (x̂ (�)) = 0

o
, and from truthfulness,

toj (x̂ (�)) = gj (x̂ (�))� vj for all j 2 AonS (�). This allows us to rewrite the left hand-side

of inequality (141) to obtain:

X
j2AonS(�)

[gj(x̂ (�))� vj ]� r(Ao; �; x̂ (�)) >
X
j2Ao

gj(x
� (�))�

X
j2Ao

vj � r(Ao; �;x� (�));

(143)

for almost all � 2 b�: It follows that:
X
j2S(�)

vj >

0@X
j2Ao

gj (x
� (�))� r (Ao; �;x� (�))

1A�
0@ X
j2AonS(�)

gj(x̂ (�))� r (Ao; �; x̂ (�))

1A ;
(144)

for almost all � 2 b�: Since, by de�nition of x�AonS(�) (�), we have:
X

j2AonS(�)
gj(x̂ (�))� r(Ao; �; x̂ (�)) �

X
j2AonS(�)

gj

�
x�AonS(�) (�)

�
� r(Ao; �;x�AonS(�) (�));

(145)

for almost all � 2 b�: This rewrites as:
X
j2S(�)

vj > W (�;N)�W (�;NnS (�)); (146)

for almost all � 2 b�; which contradicts the fact that v 2 V� (�;x� (�)) � V� (�;x
� (�)),

almost all �:
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� Condition (2) states that the agent's partipation constraint is binding for all the contrac-

tual relationships it entertains with principals in in the contracting set. Formally, for all

principals i in Ao:

E�
�
vA

o

L (�; to;xo (�))
�
= sup

(
0; sup
S�Nnfig

E�

�
max
x2X

vSL
�
�; to�i;x

��)
. (147)

To see that this holds is true, observe by Lemma 11.3.4 that v 2 V�(�;x� (�)) implies

that, for all i 2 Ao; there exists S � Ao, with i 2 S, such that:

X
j2S

vj = E�

24X
j2Ao

gj (x
� (�))� r (Ao; �;x� (�))�W (�;AonS)

35 : (148)

If S = Ao; observe that, from condition (1), x� (�) 2 X� (�) almost all �; hence

E�

24max
x2X

8<:X
j2Ao

toj(x)� r(Ao; �;x)

9=;
35 = E�

24X
j2Ao

toj (x
� (�))� r (Ao; �;x� (�))

35 :
(149)

Thus a simple decomposition gives

E�

24max
x2X

8<:X
j2Ao

toj(x)� r(Ao; �;x)

9=;
35 = E�

24X
j2Ao

gj(x
� (�))� r (Ao; �;x� (�))

35
�
X
j2Ao

E�
�
gj(x

� (�))� toj(x� (�))
�

= E�

24X
j2Ao

gj(x
� (�))� r (Ao; �;x� (�))�W (�; ;)

35
�
X
j2Ao

vj = 0 (150)

from equation (148) :

If S  Ao; we know by Lemma 11.3.6(a) that, for this particular subset S; we have:

X
j2Ao

tj

�
x�AonS (�)

�
� r

�
Ao; �;x�AonS (�)

�
=
X
j2Ao

tj (x
� (�))� r (Ao; �;x� (�))

(151)

almost all �: In other words, x� (�) leads to the same bene�ts as x�AonS (�) for the agent.

Therefore x� (�) 2 Xo (�) ; almost all �; as obtained from Condition (1) ; implies that
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x�AonS (�) 2 X
o (�) ; almost all �: And from Lemma 11.3.6(b),

X
j2S

tj

�
x�AonS (�)

�
� fAoS

�
�;x�AonS (�)

�
= 0; (152)

almost all �: Therefore, substracting equation (152) from (151) we obtain:

vA
o

L (�; to;x� (�)) =
X

i2AonS
tj

�
x�AonS (�)

�
+ fA

o

S

�
�;x�AonS (�)

�
� r

�
Ao; �;x�AonS (�)

�
=

X
j2AonS

tj

�
x�AonS (�)

�
� r

�
AonS; �;x�AonS (�)

�
; (153)

almost all �: Remind that principal i 2 S: Thus AonS � Nn fig : Moreover, from Lemma

11.3.6(c), for all j 2 AonS, tj(x�AonS (�)) = gj(x
�
AonS (�))� vj ; almost all �: It follows that

x�AonS (�) 2 argmaxx

8<: X
j2AonS

toj (x)� r (AonS; �;x)

9=; ; almost all �: As a result
E�

24max
x2X

8<:X
j2Ao

toj(x)� r(Ao; �;x)

9=;
35

later equation states that refore we have shown that there exists an equilibrium strategy

xo�i (�), which here is given by x
�
NnS (�) ; such that the expected transfer from principal i

is zero.

� Condition (3) states that, given the strategies toj (x) ; all j 6= i; of all other principals, the

equilibrium action maximizes the joint payo�s of the agent and principal i, any i 2 Ao: To

see that, observe that, as v 2 I��; there exists fx� (�)g�2� in fX� (�)g�2� such that, for all

i 2 Ao;

vi � gi(x� (�)); (154)

almost all �: By de�nition:

toi (x) = sup f0; gi (x)� vig (155)

all x; hence

toi (x
� (�)) = gi (x

� (�))� vi; (156)
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almost all �: Now, as truthfulness implies

toi (x) � gi (x)� vi; (157)

all x; and considering from (156) that vi = gi (x
� (�))� toi (x� (�)), almost all �; we obtain:

gi (x
� (�))� gi (x) � toi (x� (�))� toi (x) ; (158)

all i 2 Ao; all x; almost all �:

Condition (1) has established that, for almost all �; x� (�) is an equilibrium choice of the

agent when strategies are to. It follows that:0@X
j2Ao

toj(x)� r(Ao; �;x)

1A�
0@X
j2Ao

toj (x
� (�))� r (Ao; �;x� (�))

1A � 0;

(159)

almost all �: Sum (158) and (159) to obtain:

gi (x
� (�))� gi (x)

� toi (x� (�))� toi (x) +

0@X
j2Ao

toj(x)� r(Ao; �;x)

1A�
0@X
j2Ao

toj(x
� (�))� r(Ao; �;x� (�))

1A ;
=

0@ X
j2Aonfig

toj(x)� r(Ao; �;x)

1A�
0@ X
j2Aonfig

toj(x
� (�))� r(Ao; �;x� (�))

1A ;
all i 2 Ao; all x; almost all �:Since from Proposition 11.3.3, x� (�) 2 Xo (�) ; almost all �,

we have

gi (x
o (�))�fAoi (�;xo (�))+v

Aonfig
L

�
�; to�i;x

o (�)
�
� gi (x)�fA

o

i (�;x)+v
Aonfig
L

�
�; to�i;x

�
;

all i 2 Ao; all x; almost all �: The later rewrites

Xo (�) � argmax
x2X

h
gi (x)� fA

o

i (�;x) + v
Aonfig
L

�
�; to�i;x

�i
all i 2 Ao; almost all �:

Since all four conditions of Theorem 3 are veri�ed, the triplet (Ao; to;x� (�)) appears to be

an equilibrium. We thus exhibited a TNE that leads to the desired vector of payo�s. �
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Remark 3 (Set of principals with nul expected-transfer and e�ciency of the corre-

sponding action for common agency game restricted to the complementary set of

principals): This Remark use to follow proposition 11.3.5

Assume that the expected pro�t of the agent is strictly positive and let x�fig (�) in X
� (�)

denote the actions such that t�i

�
x�fig (�)

�
= 0; almost all �: Let Sfig be the set of principals for

which the expected transfer is zero for this set of actions:

Sfig =
n
j 2 N j E�

h
t�j

�
x�fig (�)

�i
= 0
o
:

The actions x�fig (�) are e�cient actions of the common agency game restricted to the comple-

mentary set of principals NnSfig Formally:

x�fig (�) 2 argmax
x2X

8<: X
j2NnSfig

gj (x)� r(�;x)

9=; � X�
NnSfig (�)

almost all �:

Proof: A consequence of Proposition 4 is that inequality (??) is actually an equality. Hence

E�

24 X
j2NnSfig

gj

�
x�fig (�)

�
� r(�;x�fig (�))

35 = E�
24 X
j2NnSfig

gj

�
x�NnSfig (�)

�
� r(�; x�NnSfig (�))

35 ;
and since by de�nition of x�NnSfig (�),X

j2NnSfig

gj

�
x�fig (�)

�
� r(�;x�fig (�)) �

X
j2NnSfig

gj

�
x�NnSfig (�)

�
� r(�; x�NnSfig (�));

it follows that there is equality for almost all �:�
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11.4 Truthfullness and Coalition-proofness3

NB: Notations, Marker et references to be updated

Proposition 6 (Any TNE is an e�cient action for the restricted game �S): Consider

a common agency game � and its restriction �S . Any element of the agent's pro�t-maximizing

set X� (�) for � is an element the e�ciency set X�
S (�) for �

S .

Proof: The equilibrium action maximizes the joint pro�ts of the agent and the principals

in S, all S, so that no coalition can ever contemplate to be (jointly) better o�. We have already

demonstrated that, in all truthful equilibria, and for all realizations of the random variable �,

the agent selects an e�cient action. In other words, a maximizer of the agent's bene�t function

�L(�; t;x) is also a maximizer of W
N (�;x). We now want to show that for all S � N; this

maximizer is also a joint maximizing action for the agent and the coalition S of principals,

given the other principals' strategies
�
t̂i (x)

	
i2NnS . More precisely, we want to show that the

maximizer of �L(�; t;x) is also a maximizer of the joint-payo� function �
S (�;x) de�ned as

follows:

�S (�;x) =
X
i2S

gi(x) +
X
j2NnS

tj(x)� r(�;x): (161)

Note that �S (�;x) = WS (�;x) +
P
j2NnS tj(x). Denote by x̂(�) � (x̂1(�); x̂2(�); ::;x̂n(�))x̂ the

action produced by the agent at equilibrium of the restricted agency game, when the principals

o�er the transfers t̂ (x)� (t̂1 (x) ; t̂2 (x) ; ::; t̂n (x) ) and the realization of the random variable is �:

Clearly x̂(�) is the maximizer of �L(�; t;x). Given the principals strategies t̂ (x) ; the equilibrium

payo� of principal i 2 N is k̂i � gi(x̂(�))� t̂i(x̂(�)) which, as a result of truthfulness, does not

depend on � as long as t̂i(x̂(�)) > 0: In what follows, we will assume this is the case.

Assume that x̂(�) does not maximize �S (�;x) : More precisely, let ~x(�) be the maximizer of

�S (�;x) as de�ned in (161), and assume that there exists a set � of strictly positive Lebesgue
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measure such that, for all � 2 �:

�S (�; ~x(�)) > �S (�; x̂(�)) ; (162)

that is:

X
i2S

gi(~x(�))� r(�; ~x(�)) +
X
j2NnS

t̂j(~x(�)) >
X
i2S

gi(x̂(�))� r(�; x̂(�)) +
X
j2NnS

t̂j(x̂(�)):

(163)

The objective is now to demonstrate that (̂t; x̂) cannot be a (Nash) equilibrium of the restricted

common agency game.

Let " be the expected di�erence between max�S (�;x) � �S (�; ~x(�)) and �S (�; x̂(�)), that

is:

" = E�
�
�S (�; ~x(�))� �S (�; x̂(�))

�
; (164)

which is positive from equation (162), by assumption. Now de�ne the truthful strategies�
~ti(x)

	
i2S , such that:

~ti(x) = gi(x)� ~ki; (165)

where the equilibrium payo� of the principal i is:

~ki = k̂i + "= (1 + jSj) ; (166)

and jSj is the size of the set S: Clearly, if the agent accepts the set of o�ers t (x)� (~ti2S(x); t̂j2NnS (x) ),

all principals i in S are better o� (for all realizations of �) by proposing the truthful strategy

~ti(x) rather than t̂i (x). We now show that the expected bene�ts of the agent are higher in the

latter case, so that, given the payment strategies t̂j2NnS (x) as proposed by the other principals,

the agent does accept to contract when the principals i in S propose the payments ~ti (x) in lieu

of t̂i(x):
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If t =
�
t̂i2S ; t̂i2NnS

�
= t̂ and x = x̂(�) then:

�L(�; t̂; x̂) =
X
i2S

t̂i(x̂(�))� r(�; x̂(�)) +
X
j2NnS

t̂j(x̂(�));

=
X
i2S

h
gi(x̂(�))� k̂i

i
� r(�; x̂(�)) +

X
j2NnS

t̂j(x̂(�)); (167)

= �S (�; x̂(�))�
X
i2S

k̂i: (168)

If t =
�
~ti2S ; t̂j2NnS

�
and x = ~x(�) then:

�L(�; t; ~x) =
X
i2S

t̂i(~x(�))� r(�; ~x(�)) +
X
j2NnS

t̂j(~x(�)); (169)

=
X
i2S

h
gi(~x(�))� ~ki

i
� r(�; ~x(�)) +

X
j2NnS

t̂j(~x(�)); (170)

= �S (�; ~x(�))�
X
i2S

~ki: (171)

Clearly the expected bene�ts of the agent for t =
�
t̂�j ; ~tj

�
and x = ~x(�) are higher than for t = t̂

and x = x̂(�), that is:

E�
�
�L(�;

�
~ti2S ; t̂j2NnS

�
; ~x)
�
� E�

�
�L(�; t̂; x̂)

�
(172)

= E�

" 
�S (�; ~x(�))�

X
i2S

eki!� �S (�; x̂(�))�X
i2S

k̂i

!#
; (173)

= "�
X
i2S

�
~ki � k̂i

�
= "= (1 + jSj) : (174)

That is, if (t;x)=
�
~t; ~x(�)

�
the agent's expected bene�ts are greater than E�

�
maxx �L(�; t̂;x)

�
,

a contradiction. �

Proposition 7 (Any TNE induces payo�s in the Pareto frontier of the set all coalition-

proof payo� distributions for the restricted game �S): Consider a common agency game

� and its restriction �S . Any TNE yields a vector of principals' payo�s in VS� (�;x� (�)), that is

the Pareto frontier of V S� (�;x
� (�)) for �S.
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Proof: We argue that if (t�;x� (�)) is a truthful equilibrium of the agency game � for

the realization � of the random variable, then for all S � N; the equilibrium payo� vector

(gi (x
� (�))� t�i (x̂ (�)))i2N is in VS� (�;x� (�)), that is the Pareto frontier of the set:

V S� (�;x
�) =

8<:v 2 <n+ : for all T � S, X
i2T

vi �
X
i2S

gi(x
�)� r(�;x�) +

X
i2NnS

t�j (x
�)�W (�; SnT )

9=; ;
where x� (�) 2 X� (�), the strategies t�j (:) of the principal in NnS are considered as given, and

where:

WS(�; T ) = max
x2X

8<:X
i2T

gi(x)� r(�;x) +
X
j2NnS

tj(x)

9=; : (175)

If this is true, it does mean that no subgroup can make a credible counterproposal that weakly

bene�ts all of its members, and thus the equilibrium is self-enforcing.

From Proposition 4, we know that the vector of equilibrium payo�s is in V�(�;x� (�)), that

is the Pareto frontier of V�(�;x
� (�)), where x� (�) 2 X� (�) :

From Lemma 2 we know that v 2 V�(�;x) if and only if v 2 V�(�;x) and for all j there exists

T � N , with i 2 T , such that:

X
i2T

vi =
X
i2N

gi(x)� r(�;x)�W (�;NnT ): (176)

For any j 2 S it is thus possible to �nd a set T � N with j 2 T , such that:

X
i2T

vi =

"X
i2N

gi(x
�
N (�))� r(�;x�N (�))

#
�

24 X
i2NnT

gi(x
�
NnT (�))� r(�;x

�
NnT (�))

35 :
(177)

Noting that:

X
i2T

vi =
X
i2T\S

vi +
X

i2T\NnS
vi; (178)

and also that:

X
i2T\NnS

vi =
X

i2T\NnS
gi(x

�
N (�))�

X
i2T\NnS

ti(x
�
N (�)); (179)
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we see that:

X
i2T\S

vi =
X
i2T

vi �
X

i2T\NnS
gi(x

�
N (�)) +

X
i2T\NnS

ti(x
�
N (�)): (180)

Again, by using (177), we obtain:

X
i2N

gi(x
�
N (�))�

X
i2T\NnS

gi(x
�
N (�)) =

X
i2S

gi(x
�
N (�)) +

X
i2NnS

gi(x
�
N (�))�

X
i2T\NnS

gi(x
�
N (�));

=
X
i2S

gi(x
�
N (�)) +

X
i2NnS\NnT

gi(x
�
N (�)); (181)

and:

X
i2NnT

gi(x
�
NnT (�)) =

X
i2NnT\S

gi(x
�
NnT (�)) +

X
i2NnT\NnS

gi(x
�
NnT (�)); (182)

as well as:

X
i2T\NnS

ti(x
�
N (�)) =

X
i2NnS

ti(x
�
N (�))�

X
i2NnT\NnS

ti(x
�
N (�));

0 =
X

i2NnT\NnS
ti(x

�
NnT (�)) +

X
i2T\NnS

ti(x
�
NnT (�))�

X
i2NnS

ti(x
�
NnT (�)):(183)

Eventually we get:

X
i2T\S

vi =

24X
i2S

gi(x
�
N (�)) +

X
i2NnS

ti(x
�
N (�))� r(�;x�N (�))

35 (184)

�

24 X
i2NnT\S

gi(x
�
NnT (�)) +

X
i2NnS

ti(x
�
NnT (�))� r(�;x

�
NnT (�))

35 (185)

+

8<:
24 X
i2NnT\NnS

gi(x
�
N (�))�

X
i2NnT\NnS

ti(x
�
N (�))

35 (186)

�

24 X
i2NnT\NnS

gi(x
�
NnT (�))�

X
i2NnT\NnS

ti(x
�
NnT (�))

359=; (187)

+
X

i2T\NnS
ti(x

�
NnT (�)): (188)

By Lemma 3(c), we know that a consequence of the equality (177) is that for all i 2 NnT ,

ti(x
�
NnT (�)) = gi(x

�
NnT (�)) � vi where vi = gi(x

�
N (�)) � ti(x�N (�)) is the equilibrium payo�.
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Since (NnT \NnS) � NnT; it follows that the term in curly brackets is identically zero. Now

by Lemma 3(b), we know that another consequence of the equality (177) is that for all i 2 T;

ti(x
�
NnT (�)) = 0: Since (T \ NnS) � T , we obtain that the last term of the latter displayed

expression is also zero. As a result, we get:

X
i2T\S

vi =

24X
i2S

gi(x
�
N (�)) +

X
i2NnS

ti(x
�
N (�))� r(�;x�N (�))

35
�

24 X
i2NnT\S

gi(x
�
NnT (�)) +

X
i2NnS

ti(x
�
NnT (�))� r(�;x

�
NnT (�))

35 : (189)

Now we argue that x�NnT (�) maximizes
P
i2NnT\S gi(x) +

P
i2NnS ti(x) � r(�;x). To see that,

notice �rst that:X
i2NnS

ti(x
�
NnT (�)) =

X
i2N

ti(x
�
NnT (�))�

X
i2S

ti(x
�
NnT (�));

=
X
i2N

ti(x
�
NnT (�))�

X
i2NnT\S

ti(x
�
NnT (�))�

X
i2T\S

ti(x
�
NnT (�)); (190)

=
X
i2N

ti(x
�
NnT (�))�

X
i2NnT\S

gi(x
NnT (�)) +

X
i2NnT\S

vi; (191)

where the lowest line is again a consequence of Lemma 3(b) - 3(c) and of equation (177), which

implies that ti(x
�
NnT (�)) = gi(x

�
NnT (�))� vi, for all i 2 NnT , and ti(x

�
NnT (�)) = 0 for all i 2 T .

Now we proceed ad absurdum, by supposing that there exists x such that:X
i2NnT\S

gi(x) +
X
i2NnS

ti(x)� r(�;x) >
X

i2NnT\S
gi(x

�
NnT (�)) +

X
i2NnS

ti(x
�
NnT (�))� r(�;x

�
NnT (�)):

(192)

Focus on the right-hand side of the latter expression. Substituting again the relation gi(x
�
NnT (�)) =

vi + ti(x
�
NnT (�)) for all i 2 NnT; and adding ti(x

�
NnT (�)) = 0 for all i 2 T \ S; we obtain that:X

i2NnT\S
gi(x

�
NnT (�)) +

X
i2NnS

ti(x
�
NnT (�))� r(�;x

�
NnT (�)) (193)

=
X

i2NnT\S
vi +

"X
i2N

ti(x
�
NnT (�))� r(�;x

�
NnT (�))

#
; (194)

=
X

i2NnT\S
vi +

"X
i2N

ti(x
�
N (�))� r(�;x�N (�))

#
; (195)
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by Lemma 3(a) and equation (177). Moreover, from truthfulness with respect to the equilibrium

values we know that:

vi � gi(x)� ti(x); (196)

all x, and all i 2 NnT \ S. We also know that ti(x) � 0, all i 2 T \ S. Therefore assumption

(192) can be rewritten as:

X
i2NnT\S

gi(x) +
X
i2NnS

ti(x)� r(�;x)

>
X

i2NnT\S
(gi(x)� ti(x))�

X
i2T\S

ti(x) +

"X
i2N

ti(x
�
N (�))� r(�;x�N (�))

#
:

Collecting terms, we obtain:

X
i2N

ti(x)� r(�;x) >
X
i2N

ti(x
�
N (�))� r(�;x�N (�)); (198)

a contradiction. �

Proof by induction We can now proceed by induction on the number of principals n, to demon-

strate that for every common agency game �:

1. All (strictly) coalition-proof Nash equilibria yields an e�cient action;

2. All (strictly) coalition-proof Nash equilibria yield a vector of principals' payo�s in V�(�;x� (�)),

the Pareto frontier of V�(�;x
� (�));

3. All truthful Nash equilibria are (strictly) coalition-proof.

Step 0: For n = 1, the three assertions are true.

By de�nition, for n = 1 a (strictly) coalition-proof Nash equilibrium is a Nash equilibrium.

It is well known that, when the agent is risk-neutral and contracting takes place ex-ante, the

optimal incentive contract implements the �rst-best. For any realization of the stochastic
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variable �; there is e�ciency that is x� (�) 2 X� (�) (point 1) and no rent is left to the agent

that is v1 = maxx fg1 (x)� r (�;x)g (point 2). Moreover, a truthful Nash equilibrium is a

Nash equilibrium, hence for n = 1 it is a (strictly) coalition-proof equilibrium (point 3).

Step 1: Suppose that all three assertions are true for every common agency game with no more

than n � 1 principals and consider the case of n principals. Consider a coalition-proof

Nash equilibrium as represented by the pair (t�;x� (�)). By de�nition, the pair (t�;x� (�))

is a strictly self-enforcing pro�le of strategies. This explains the relevance of the following

claim.

Claim 1: Let (t�;x� (�)) be a strictly self-enforcing strategy pro�le. Then for all S � N ,

and for all realizations of the stochastic variable �, the vector of principals' payo�s satis�es the

inequalities:

X
i2S

vi �
X
j2N

gj (x
� (�))� r (�;x� (�))�W (�;NnS): (199)

Proof: Let S � N: By de�nition of a strictly self-enforcing strategy pro�le, the pair

(t�;x� (�)) is a strictly coalition-proof Nash equilibrium of the restricted agency game:

�NnS =

"
�; X; F; r (:)�

X
i2S

ti (:) ; fgi (:)gi2NnS

#
:

By the induction hypothesis (1), x� (�) is an e�cient action of the restricted game �NnS , that

is:

x� (�) 2 argmax
x2X

8<: X
j2NnS

gj (x)�

24r (�;x)�X
j2S

t�j (x)

359=; : (200)

It follows that, for all S � N , all x 2 X, and all realizations of the stochastic variable �, we

have:

X
j2S

t�j (x
� (�))�

X
j2S

t�j (x) �

24 X
j2NnS

gj (x)� r (�;x)

35�
24 X
j2NnS

gj (x
� (�))� r (�;x� (�))

35 :
(201)
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Since t�j (x) � 0 (by assumption), it can be dropped from the previous formula. Multiplying the

inequality by (�1) and adding
P
j2S gj (x

� (�)) on both sides, one gets:

X
j2S

gj (x
� (�))�

X
j2S

t�j (x
� (�)) �

24X
j2N

gj (x
� (�))� r (�;x� (�))

35�
24 X
j2NnS

gj (x)� r (�;x)

35 :
(202)

This holds true in particular for x = x�NnS (�), so that:X
j2S

vj =
X
j2S

�
gj (x

� (�))� t�j (x� (�))
�

�
X
j2N

gj (x
� (�))� r (�;x� (�))�W (�;NnS); (203)

for all S � N . Now for the case S = N; it is clear that:

X
j2N

t�j (x
� (�))� r (�;x� (�)) � �min

x2X
r (�;x) ; (204)

hence:

X
j2N

�
gj (x

� (�))� t�j (x� (�))
�

(205)

�
X
j2N

�
gj (x

� (�))� t�j (x� (�))
�
+
X
j2N

t�j (x
� (�))� r (�;x� (�)) + min

x2X
r (�;x) ;

(206)

�
X
j2N

gj (x
� (�))� r (�;x� (�)) + min

x2X
r (�;x) ; (207)

�
X
j2N

gj (x
� (�))� r (�;x� (�))�W (�; f?g): (208)

It follows that all coalition-proof Nash equilibrium as characterized by the pair (t�;x� (�)) lead

to equilibrium payo�s in V� (�;x
� (�)) : �

The proof of Theorem 3 then continues by showing that the induction assumptions (3), (2),

and (1) hold true with n principals. To prove the induction assumption (3), namely that each

truthful Nash equilibrium is a strictly coalition-proof Nash equilibrium, we need to demonstrate

that (a) the pair (t�;x� (�)) is strictly self-enforcing, and (b) there is no other strictly self-

enforcing pro�le that yields a higher payo� to all players.
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(a) To demonstrate that the truthful Nash equilibrium as characterized by the pair (t�;x� (�))

is strictly self-enforcing, we must show that, for any S � N; the pair (t�;x� (�)) is a strictly

coalition-proof Nash equilibrium of the restricted game:

�S =

24�; X; F; r (:)� X
i2NnS

ti (:) ; fgi (:)gi2S

35 :
By the induction assumption (3), we know that, when there are up to n � 1 principals,

a truthful Nash equilibrium is strictly coalition-proof. It is thus su�cient to prove that,

for S � N; the pair (t�;x� (�)) is a truthful Nash-equilibrium of the restricted game �S .

From Theorem 2, we know that any vector of payo�s in V�(�;x� (�)) can be supported by

a truthful Nash equilibrium of the game �. We know also that x� (�) is in the set XS (�) of

e�cient actions of the reduced agency game (from Proposition 6), and that the vector of

payo�s is in the Pareto-frontier of the restricted game VS� (�;x� (�)) (from Proposition 7).

To summarize, the induction assumption (3), Theorem 2 and Propositions 6-7 allow us to

show that a truthful Nash-equilibrium of the agency game gives rise to a pair (t�;x� (�))

which is strictly self-enforcing.

(b) To demonstrate that the pair (t�;x� (�)) is not Pareto dominated by any other self-enforcing

pair, consider a self-enforcing pair (t0;x0 (�)) that yields to the vector of payo�s fv0igi2N .

From Claim 1, we know that, for any S � N , we have:

X
i2S

v0i �
X
j2N

gj
�
x0 (�)

�
� r

�
�;x0 (�)

�
�W (�;NnS) ; (209)

hence:

X
i2S

v0i �W (�;N)�W (�;NnS) ; (210)

which says that the payo� vector (v0i)i2N is in V�(�;x
� (�)). From Theorem 2, the equi-

librium payo�s (vi)i2N of the truthful Nash equilibrium are in V�(�;x� (�)), the Pareto

frontier of V�(�;x
� (�)): It follows that (v0i)i2N cannot Pareto dominate the vector of equi-

librium payo�s (vi)i2N . This concludes the proof of the induction assumption (3) for the

117



case of n principals. Any truthful Nash-equilibrium of the agency game gives rise to a pair

(t�;x� (�)) which is strictly self-enforcing and which cannot be Pareto dominated, i.e. to

a strictly coalition-proof Nash equilibrium.

We now turn to the proof of the induction assumption (2) for the case of n principals. Previ-

ous argument led us to show that, for any self-enforcing pair (t0;x0 (�)) (hence any strictly coali-

tion proof Nash equilibrium).give rise to vector of payo�s (v0i)i2N that belongs to V�(�;x
� (�)):

Assume it does not belong to V�(�;x� (�)); the Pareto frontier V�(�;x� (�)) that is it belongs to

the interior of V�(�;x
� (�)): This does mean that there exist a vector (vi)i2N in V�(�;x� (�)), the

Pareto frontier V�(�;x
� (�)) that Pareto dominates the vector (v0i)i2N : By Theorem 2, we know

that this vector of payo�s (vi)i2N can be obtained by a truthful Nash equilibrium, say the pair

(t�;x� (�)) : From induction assumption (3) we just proved, it is also a strictly coalition-proof

Nash equilibrium. Hence the pair (t�;x� (�)) is self-enforcing. A contradiction since if (t0;x0 (�))

is a strictly coalition-proof Nash equilibrium, it cannot be dominated by any other one. This

proves the induction assumption (2) for the case of n principals.

To prove the induction assumption (1), consider a strictly coalition-proof Nash equilib-

rium as given by the pair (t0;x0 (�)), and suppose that the action x0 (�) is not e�cient, that isP
j2N gj (x

0 (�))�r (�;x0 (�)) < W (�;N) : Then recall that Claim 1 implies that, for all S � N :

X
i2S

v0i �
X
j2N

gj
�
x0 (�)

�
� r

�
�;x0 (�)

�
�W (�;NnS) ;

< W (�;N)�W (�;NnS) ; (211)

which means that (v0i)i2N belongs to the interior of V�(�;x
� (�)). Again, this is a contradic-

tion, since there exists a vector of payo� (vi)i2N that Pareto dominates (v0i)i2N and belongs

to V�(�;x� (�)). By Theorem 2, this vector can be obtained by a truthful Nash equilibrium,

and from the induction assumption (3), it is also a strictly coalition-proof Nash equilibrium.

This constitutes a contradiction, since if (t0;x0) is a strictly coalition-proof Nash equilibrium it
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cannot be dominated by any other one. This proves the induction assumption (1) for the case

of n principals. �
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