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Abstract

We consider a repeated electoral competition game between two parties, each repre-
senting a constituent with a given income level. Parties are unable to commit to a
policy before the election; they choose a non-linear income tax schedule once elected.
In each period, citizens cast a vote either for the incumbent or for the challenger. We
first show that there exist (pure strategy) subgame perfect equilibria where both parties
choose the most-preferred tax schedule of their constituent, subject to the constraint
that they are reelected. We characterize a specific class of these BPR (Best Policy with
Reelection) equilibria in which one of the parties plays its constituent’s unconstrained
optimal tax function. Equilibrium tax schedules are always piecewise linear. Depending
on the income levels of the two parties’ constituents, we obtain either classical left-vs-
right equilibria (where the poor vote for one party and the rich for the other one) or
ends-against-the-middle equilibria (where both poor and rich vote for one party while
the middle class votes for the other party). In both types of equilibria both parties
propose the same tax schedule to a subset of the population.

Keywords: Postelection politics, no commitment, ends-against-the-middle, piece-
wise linear income tax

JEL codes: D72, H24



1 Introduction

The determination of income taxes through a democratic process has been extensively

studied over the last three decades. In their seminal contributions Romer (1975) and

Roberts (1977) studied the determination of a linear income tax schedule under ma-

jority voting. This problem being unidimensional, a Condorcet winner (majority voting

equilibrium) exists under quite weak assumptions. It is given by the most-preferred tax

of the individuals with median productivity. This implies that the electoral competition

game between two parties who are able to commit at the campaign stage has a unique

equilibrium in pure strategies, which is given by the Condorcet winner.

The restriction to a linear tax scheme is artificial. It is made for simplicity but cannot

be justified by informational or practical considerations. In reality income tax schedules

are typically non-linear (most often piecewise linear), and marginal tax rates vary with

income. A satisfactory treatment of the democratic choice of income taxes should thus

allow for non-linear taxes. However, with a non-linear tax, the policy space becomes

multi-dimensional, leading to voting cycles and the non-existence of a pure strategy

Nash equilibrium of the electoral competition game (Plott (1967)).

Confronted with this difficulty, two different approaches have been adopted. The

first well treaded approach consists in keeping the framework of the Downsian elec-

toral competition but to study solution concepts different from the pure-strategy Nash

equilibrium. Recall that key features of Downsian models is that they concentrate on

one-shot games and that parties are able to commit to their announced policy. The

alternative solution concepts that have been considered include the uncovered set, ob-

tained by eliminating weakly dominated strategies (De Donder and Hindriks (2003))

or the bipartisan set, which is the support of mixed strategies played in equilibrium

(De Donder and Hindriks (2003), Carbonell-Nicolau and Ok (2007)). Roemer (2001)

does depart from the strict Downsian framework but keeps the assumption that parties

can commit to any policy at the electoral stage. This area of research has been dubbed

“preelection politics” by Persson and Tabellini (2000).

The second direction of research, referred to as “postelection politics”, assumes that
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electoral promises are not binding or too vague to matter. Consequently, parties are

effectively unable to commit to any policy before the election. Few papers have followed

this approach when modelling political competition over tax functions. Moreover, these

contributions have focused on one-shot games in which candidates (who have prefer-

ences over the different policies) implement, if elected, their own most-preferred policy.

The policy space is thus reduced to the set of individually optimal policies so that we

essentially return to a single dimensional problem. Roëll (1996) and Bohn and Stuart

(2005) show that a Condorcet winning non-linear taxation schedule exists under rather

mild conditions.

We follow this second strand of research and we take the analysis a step forward by

considering an infinitely repeated electoral competition game with no policy commitment,

building on the work by Duggan (2000) and Banks and Duggan (2008). In our model,

two parties with known preferences compete repeatedly. There is an election in each

period and the party receiving the most votes is elected for that period (majority rule).

Parties are not able to commit to the policy they would implement if elected. The

elected party chooses a tax schedule for the current period and this process is repeated

indefinitely. Citizens then cast their votes on the basis of their expectations of parties’

choices.

We show that, when the parties are sufficiently patient, there exist (pure strategy)

subgame perfect equilibria in which the incumbent party in any given period adopts

the policy that maximizes the utility of its constituent under the constraint that it is

reelected (i.e., that it receives at least 50% of the votes). We label these BPR (Best

Policy with Reelection) equilibria.

We apply this equilibrium concept to a model where citizens differ only according

to their exogenous income level. The income distribution is positively skewed, with

the median income below the mean. The set of admissible tax schedules consists of

all functions that (i) are continuous, (ii) entail marginal tax rates that are nonnegative

and do not exceed one1 and (iii) satisfy the government budget constraint. The identity

of the parties’ constituents are exogenously given. One of the parties, A, represents a

1Where derivatives exist; we do not impose differentiability.
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constituent with income below the median level, while party B stands for a constituent

with income above the median level.

We focus on BPR equilibria in which one of the two parties proposes the most-

preferred tax schedule of the constituent it represents (absent any reelection considera-

tion). We distinguish between four types of equilibria and show that the specific type

that emerges depends on the income levels of the constituents of the two parties. The

party whose constituent is more moderate offers the most-preferred tax schedule of its

constituent, while the other party proposes a policy that satisfies its constituent and

voters up to the median income voter, or an “ends-against-the-middle” policy (where

both poor and rich people vote for one party while the middle class vote for the other

party) if its constituent is very extreme (very far from the median income level).

All BPR equilibria, whatever the identity of the two constituents, exhibit piecewise

linear tax functions proposed by both parties. Furthermore, in all equilibria, both

parties propose the same tax policy to a subset of the electorate. We discuss these

features of BPR equilibria in the concluding section.

2 The model

2.1 The economic model

The economic modelling is borrowed from Roemer (2006). There is a continuum of citi-

zens/voters identified by their exogenous income y, which is distributed on the support

[y−, y+] according to a probability measure H, whose distribution function is denoted

F . We denote by f the density function. We assume that the distribution function is

positively skewed, with the median income ym strictly lower than the average income y.

Let T (y) denote a generic tax function. We restrict the set of admissible tax func-
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tions, denoted by Ω, to functions that are (i) continuous, (ii) satisfy2

0 ≤ T ′(y) ≤ 1 (1)

where differentiable, and (iii) are purely redistributive (there is no revenue requirement)

so that3 ∫ y+

y−
T (y)f(y)dy = 0. (2)

We do not explicitly impose the limited liability condition T (y) ≤ y since this constraint

is not binding at any of the equilibria we consider. Consumption of an individual with

pre-tax income y is denoted by c(y) = y − T (y).4 Utility is increasing in consumption

and denoted by the function u(c) with u′ > 0 and u′′ ≤ 0. Let v(y, T ) = u(y−T ) denote

the utility level of an individual with pre-tax income y who pays a tax of T .

2.2 The political competition game

There are two political parties denoted by A and B. Following Duggan (2000) or Banks

and Duggan (2008), we study a repeated elections model with infinite horizon.5 The

players in this game are the two parties and the voters. At the beginning of each period

t, an election takes place in which voters decide whether to reelect the incumbent party

or to appoint the challenger. The party obtaining the most votes is elected (majority

rule), and gets to choose a tax schedule Tt for the current period. When the two parties

2This condition implies that both tax liabilities and after-tax income are non-decreasing functions of
pre-tax income. Such a condition is usually derived instead of assumed in the optimal tax literature with
endogenous income. Alternatively, we could replace the upperbound on the marginal tax rate by α < 1 as
in Roemer (2009). One interpretation of α is that both parties agree not to enact policies with too large
marginal tax rates (to avoid the distortionary impact of unmodelled labor-leisure substitution). With
this interpretation, marginal tax rates below α create few if any labor supply distortions. Introducing
such an α would not change substantially our results.

3Adding an exogenous revenue requirement would not change our results.
4Given the one-to-one relationship between tax functions T and after-tax consumption functions

c, the game we describe is equivalent to one where parties announce consumption functions rather
than tax functions. In the rest of the paper, we sometimes adopt the shortcut “a party proposes a
consumption function” rather than writing that “a party proposes a tax function that results in the
following consumption function”.

5The main difference between our setting and these models is that we assume that the preferences
of the parties are observable to the voters. In Duggan (2000) and Banks and Duggan (2008), the voters
cannot observe the type of the challenger, which is randomly drawn.
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receive the same proportion of votes, the incumbent party is reelected for sure.6 The

same sequence of events is repeated indefinitely.

An important feature of this model is that elections are not preceded by a campaign

stage with policy announcements. Before the election, parties are not able to commit

to the policy they would implement if elected. This assumption is in contrast with most

election models in the literature and it is crucial to our results. Consider a static game

with policy commitment. In the absence of a Condorcet winner (as is the case in our

model), for any given policy proposed by a party, the other party can put forward an

alternative policy preferred by a majority of voters and thus win the election. This

explains why a (pure strategy) Nash equilibrium fails to exist in this static game.7

This result hinges on the commitment assumption: the winning party implements,

once elected, the policy announced during the campaign. This is a strong assumption:

when there is no commitment and parties have policy preferences, the elected party

should implement its ideal policy in a one shot game. The only credible promises at the

campaign stage thus correspond to the ideal policies of the two parties! When elections

are repeated, the set of credible promises is enlarged as the party in power in a given

period balances the short-term benefit of implementing a favored policy with the long-

term benefit of being reelected in future periods. This is precisely the trade-off that we

seek to capture with our modeling.8

We now describe the payoffs and strategies of the two types of actors (namely parties

and voters), starting with the two parties. Party i (i = A,B) represents constituents

with income yi, with yA < ym < yB. Its payoff from the sequence {Tt(.)} of outcomes

is given by

(1− δ)
∞∑

t=1

δt−1 [v(yi, Tt(yi)) + βωit] . (3)

The parties’ payoffs come from two sources. First, parties care about the tax function

enacted because it determines the utility of their constituents. Parties also care about

6This assumption is not crucial to our results. We show later on in the paper that our results extend
to the case in which the incumbent is reelected with a positive probability strictly lower than one in the
case of a tie. We however stick to this assumption for expositional clarity.

7This is true whether parties have policy preferences or not. See Duggan and Fey (2005).
8For the sake of simplicity, we do not model the campaign announcement stage. It is plain however

that parties could not credibly announce policies that are not equilibrium outcomes.
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winning the elections per se, enjoying an additional payoff β > 0 (spoils of office, ego

rents, etc.) when they win the elections at time t. Accordingly, ωit denotes the indicator

function taking the value 1 if party i is elected in period t (and 0 otherwise). The

discount factor is denoted by 0 < δ < 1. A (pure) strategy of party i specifies the policy

Tt(.) chosen once elected in period t, for every possible history of the game at date t.

A type y voter’s payoff from the sequence {Tt(.)} of policy outcomes is the discounted

sum of per-period utility levels:

(1− δ)
∞∑

t=1

δt−1v(y, Tt(y)),

where δ is the same time discount factor as for parties.9

A (pure) strategy of voter j specifies, for every possible history of the game, whether

he votes for the incumbent or for the challenger. We assume that voters act as though

pivotal in the election.10 They vote for the incumbent if the continuation value from re-

electing him is greater than the one obtained when electing the challenger. When indif-

ferent, they are assumed to vote for the incumbent.11 This approach is called prospective

voting.

We are now in a position to characterize a special class of equilibria of this game.

2.3 Best Policy with Reelection equilibria

We first define the optimal tax schedules of a given party i. We distinguish between the

unconstrained optimum and the constrained optimum. Let T opt
i (.) denote the uncon-

strained optimal tax schedule of party i absent electoral considerations. It is obtained

by maximizing the utility of the party’s constituent (with income yi) over the entire set

9The assumption of identical discount factors is made purely for convenience. Considering different
discount factors for the parties and the citizens would not affect the results.

10This condition can be seen as the analogous of the elimination of weakly dominated strategies, a
criterion widely used in static games to get rid of “unreasonable” equilibria. This also corresponds to
stage-undominated strategies in dynamic models with a finite number of voters (see Baron and Kalai
(1993)).

11This assumption is needed to solve the optimization program of the parties. It can be justified by
considering that voters behave according to the old axiom “better the devil you know than the devil
you don’t” when both the incumbent and the challenger propose the same after-tax income to them.
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of admissible strategies:

T opt
i (.) = argmax

T∈Ω
v(yi, T (yi)), i = A,B. (4)

The constrained optimum TBPR
i (., Tj), on the other hand, is the tax function that

maximizes party i’s constituent’s utility under the constraint that at least 50% of the

voters prefer this tax function to Tj :

TBPR
i (., Tj) = argmax

T∈Ω
v(yi, T (yi)), i, j = A,B, i 6= j

s. t. H(y : v(y, T (y)) ≥ v(y, Tj(y))) ≥ 1/2.

The following Proposition states that, when the discount factor is sufficiently large,

there exists a (pure strategy) subgame perfect equilibrium of the electoral competition

game, where both parties offer their preferred policy under the constraint of reelection.

Proposition 1 Assume that there exist two tax schedules T ∗
A(.) and T ∗

B(.) such that

T ∗
A(.) = TBPR

A (., T ∗
B) and T ∗

B(.) = TBPR
B (., T ∗

A). Then there exists a subgame perfect

equilibrium, called BPR equilibrium, with the parties playing T ∗
i (.) when in office if both

parties are patient enough (i.e., if δ is large enough).

To prove Proposition 1, we resort to the concepts of initial path, punishments and

simple strategy profiles introduced by Abreu (1988). Those concepts are formally de-

fined in the proof of Proposition 1 in Appendix A. A strategy profile for the parties

is a rule prescribing an initial path and punishments for any deviation from the initial

path, or from a previously prescribed punishment, where a path (or punishment) is

an infinite stream of one-period action profiles. In the BPR equilibrium we study, the

initial path (denoted by Q0) prescribes that each party i, once elected, proposes its

optimal constrained policy, T ∗
i (.). If any party deviates from this prescription, it is to

be punished in all subsequent periods. We restrict ourselves to simple strategy profiles,

where punishments are history-independent, in the sense that we specify the same pun-

ishment Qi for any deviation, after any previous history, by party i. The punishments

used to sustain the BPR equilibrium are as follows: if party i is in power and deviates

in period t, then the other party j (j 6= i) plays its optimal constrained policy T ∗
j (.) if
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elected in t + 1, while party i would play if elected a policy that a majority of voters

dislike compared to T ∗
j (.). The exact same punishment is repeated for all periods after

t+ 1.

These simple strategies define the following play of the game. As long as both parties

have played according to Q0 in the past (i.e., every incumbent i has always played T ∗
i (.)),

the incumbent in the next period also abides by Q0 and plays its optimal constrained

policy. As soon as one incumbent i deviates from Q0 in period t, it is punished by

both parties switching to the punishment Qi in all subsequent periods. Likewise, if one

incumbent j at time k deviates from the required punishment Qi (i = j or i 6= j), it is

punished by a move from Qi to Qj in all subsequent periods: parties also get punished

if they fail to punish the other party.

We first have to state how voters compute the continuation value associated with

both parties at time t. This requires that voters anticipate, for any given history of

the game, which policy each party would implement if elected at any future period. As

usual in the literature, we assume that the expectations of the voters are in line with

the strategies used by the parties. That is, if the history of the game is consistent with

both parties having played Q0 in the past (i.e., incumbents have always implemented

their optimal constrained policy), voters assume that they will do so in the future as

well. If one incumbent i has just deviated from Q0, voters assume that parties will play

according to the punishment Qi in the future, and similarly if the incumbent i has just

deviated from the prescribed punishment Qj (j = i or j 6= i).

We are now in a position to give the intuition for Proposition 1. Abiding by the

initial path Q0 at all stages allows the incumbent party i to be reelected (because voters

anticipate that parties will play their optimal unconstrained strategies at any stage in

the future) and gives this party (who remains in power for ever) a constant stream of

pay-offs with two components: the utility from implementing its optimal constrained

policy T ∗
i (.) and the spoils of office term β. We now test deviations, using Proposition

1 in Abreu (1988) which states that perfection of the candidate equilibrium may be

verified by checking “one-shot” deviations alone (i.e., deviations followed by conformity

with the strategy profile in question). Observe first that voters gain nothing by deviating
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from their strategy (voting for the party offering them the highest continuation value,

computed as explained above) since, with a continuum of voters, no one is decisive.

Observe then that, among parties, only the incumbent can deviate at time t. If the

incumbent deviates from the prescribed Q0 at time t, voters anticipate that Qi will be

played in the future, so that the current incumbent will never be reelected (and thus

will lose the spoils of office terms) and will have to do with the optimal constrained

policy of the other party. Faced with this prospect, the best deviation by an incumbent

at time t consists in playing its optimal unconstrained strategy, to maximize its payoff

at time t, followed by a stream a lower pay-offs in the future. We show in the Appendix

that, unsurprisingly, if the incumbent is patient enough it will prefer to stick with the

flow of pay-offs associated with the initial path Q0 rather than deviating from this path.

We also have to show that parties have no incentive to deviate from the punishments

prescribed. Assume that the history of the game is such that penalty Qi should be

played in the next period (i.e., the current incumbent i at time t− 1 has deviated from

its prescribed behavior). A majority of citizens then vote for party j 6= i at time t.

The punishment Qi is such that party j should play its optimal constrained policy and

remain in power in all future periods. This corresponds to the flow of payoffs that this

party would obtain with the initial path Q0 in case of incumbency, and the same lower

bound on this party’s patience which guarantees that this party does not deviate from

Q0 then also ensures that it does not deviate from the punishment Qi. As for party i,

it is voted out of office in period t and remains in the opposition for ever, which robs

this party from any decision in the future.12 We then obtain that there exists a BPR

(subgame perfect) equilibrium as described in Proposition 1 provided that parties are

patient enough.

We have assumed so far that, when the two parties receive the same number of votes,

the incumbent is reelected for sure. We now argue that Proposition 1 generalizes to the

case where the incumbent is reelected with some positive probability (lower than one)

12If we further assume that party i plays T opt
i in punishment Qi (a policy that a majority of voters

dislike compared to T ∗
j ), we further obtain that this party would have no incentive to deviate from its

prescribed action under Qi, even in the out-of-equilibrium situation where party i would unexpectedly
come back to power under punishment Qi.
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when it obtains the same fraction of votes as the challenger. The payoff when following

strategy Q0 then becomes a lottery. Assuming without loss of generality that party A is

the incumbent, abiding by strategy Q0 ensures a flow of lotteries consisting of a payoff of

v(yA, T
∗
A(yA))+β with some positive probability and a payoff of v(yA, T

∗
B(yA)) otherwise.

The payoff in case of deviation by A from Q0 is not affected and remains given by (14)

in the Appendix. It is straightforward to check that, if party A is patient enough,

the payoff associated with playing Q0 is larger than the payoff obtained if deviating.13

Observe that this result is robust to many different ways of specifying the probability

that the incumbent is reelected when both parties tie for winning (this probability may

be time dependent and may depend or not on the identity of the incumbent at time t).

In the remainder of the paper, we characterize a specific and particularly interesting

class of BPR equilibria, namely those in which one of the parties is not effectively

constrained by electoral considerations. In other words, this party offers its constituents’

unconstrained optimal policy. We distinguish between four types of equilibria which we

first characterize (Sections 4 and 5) before establishing their existence (Section 6).

3 Individually optimal tax schedules

Before studying equilibria of the electoral competition game, we describe the optimal

tax schedules of individual voters. Ideally, individuals with income yi would like to

completely expropriate people with income below and above yi, setting their net income

to 0. However, they face the constraints that the tax function must be continuous and

that marginal tax rates (where they exist) have to be between 0 and 1. Under these

restrictions, it is plain that they should set a marginal tax rate of 0 to all individuals

with income below yi and of 1 to individuals with higher incomes. The optimal tax

schedule of an individual with income yi is thus given by14

T opt
i (y) = max [y − yi, 0]− Iopti , (y, yi) ∈ [y−, y+]2 (5)

13The payoff associated with the lottery is lower than the payoff obtained when the incumbent is
reelected with certainty, so that the lower-bound on δ above which Proposition 1 holds is larger (while
remaining strictly less than one).

14A formal proof, following the same technique as in the proof of Proposition 2, is left to the reader.
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where Iopti > 0 is the transfer (negative income tax) received by the individual with the

lowest income, y−. Put differently it is the difference between this individual’s after-tax

(net) and before-tax (gross) income. Graphically, Iopti measures the intercept of the

net income schedule in the (gross, net) income space [y−, y+]× [y−, y+]. It is obtained

from the government budget constraint (hereafter GBC) which, using (2) and (5) can

be written as

∫ yi

y−
(y + Iopti )f(y)dy +

∫ y+

yi

(yi + Iopti )f(y)dy =

∫ y+

y−
yf(y)dy ≡ y.

Solving this expression yields

Iopti =

∫ y+

yi

(y − yi)f(y)dy.

Consequently, the difference between net and gross income of the poorest individual

with party i’s (i = A,B) unconstrained optimal tax schedule is given by

IoptA =

∫ y+

yA

(y − yA)dF, (6)

IoptB =

∫ y+

yB

(y − yB)dF , (7)

so that IoptA > IoptB > 0 since yA < yB < y+.

For some of our arguments it is convenient to define copti (.), the optimal consumption

function of individuals with income yi:

copti (y) = Iopti +min [y, yi] , (y, yi) ∈ [y−, y+]2.

It is optimal in the sense that it is induced by the individual’s optimal tax schedule.

The unconstrained optimal consumption schedules of parties A and B are represented

on Figure 1.

The remainder of the paper concentrates on situations where one party proposes its

unconstrained most-preferred policy. To be more precise, we consider BPR equilibria

which are such that the reelection constraint is not effectively binding for one of the

parties, in the sense that this party i is reelected for sure when playing T opt
i . These

equilibria have a number of interesting features. We characterize them and show that

they exist which in itself is a very interesting (and rather surprising) property.

11



In section 4, party B (representing the richer constituent) offers its unconstrained

most-preferred policy, T opt
B . We first identify the optimal policy by party A in the set

of feasible tax schedules that all below-median income voters prefer to party B’s policy.

We then study the optimal policy for party A under the constraint that a non-null set of

voters whose income is less than the mean do not favor A’s policy over B’s. We call this

policy the best alternative to the simple policy referred to above. Section 5 performs the

same exercise when party A proposes its unconstrained most-preferred policy. Section 6

studies the conditions (on the identity of the parties’ constituents income levels yA and

yB) under which these pairs of policies constitute a BPR equilibrium of the electoral

game.

Observe that the Best Policy with Reelection TBPR
i (., Tj) and the unconstrained

optimal policy T opt
i (.) do not depend on the shape of the utility functions v and u. The

analysis contained in the rest of the paper is thus valid for any increasing utility function

that satisfies condition (17) in Appendix A.

4 Party B proposes its unconstrained most-preferred pol-
icy

Assume for the time being that B plays its unconstrained optimal strategy T opt
B (or

equivalently the consumption function coptB ). With this hypothesis, party B’s behavior

is well-defined and to characterize the equilibrium we only have to determine party A’s

strategy. In other words, we have to determine party A’s BPR reply to coptB . In this

section, we assume that the reelection constraint is binding for party A —i.e., that party

A would gather strictly less than one half of the vote it were to propose its unconstrained

optimal policy T opt
A (or equivalently coptA ). Observe from Figure 1 that a necessary and

sufficient condition for the reelection constraint to be binding for party A’s BPR when

faced with coptB is that coptA intersects coptB to the left of ym. We then assume throughout

this section that the following assumption holds:

Assumption 1: coptA (ym) < coptB (ym).

Under Assumption 1, party B is reelected for sure if it proposes coptB while party

A enacts its BPR once in office. Party B then has no incentive to choose a schedule
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different from coptB . This section then concentrates on party A’s BPR under Assumption

1. Interestingly it will turn out that this strategy can obey two quite distinct patterns.

Under pattern I, voters will be divided simply along the income line, with the “poor”

supporting party A while the “rich” vote for B. The other pattern, II, is of the “end-

against-the-middle” type with the poor and the rich supporting partyA while the middle

class supports B.

Turning to the formal construction of the equilibria, let cji (x, yB, yA) denote the

consumption level of an individual with income x, induced by the tax schedule played

in a type j equilibrium by party i, when party B represents an individual with income

yB and party A an individual with income yA. When no ambiguity can arise, we simply

use the notation cji (.) (and T j
i (.) for the corresponding tax function).

We now identify a simple tax function that allows party A to be reelected with the

support of all individuals with an income below the median ym. Party A’s corresponding

after-tax schedule, denoted by cIBA , is defined as follows (see Figure 2):

cIBA (y) =





coptB (y) + IIB2 if y− ≤ y ≤ yA
cIBA (yA) if yA < y ≤ y′A
coptB (y) if y′A ≤ y ≤ ym
coptB (ym) if ym ≤ y ≤ y+

All individuals with an income lower than yA face a zero marginal tax rate. As

can be seen from Figure 2, we denote by y′A the pre-tax income threshold such that

(i) individuals with yA ≤ y < y′A face a marginal tax of one while individuals with

y′A < y < ym face a zero marginal tax rate, and (ii) cIBA (y) = coptB (y) for the individuals

whose income y is between y′A and ym. Above ym, marginal tax rates under party A’s

policy are all equal to one. It is easy to see that cIBA (.) is fully determined by the value

of cIBA (0) —i.e., by IIB2 — and we set the value of IIB2 such that cIBA (.) integrates to the

mean of the income distribution.15

We prove the following Proposition in Appendix B:16

15The formal proof can be found in the working paper version of this article, which is available at
http://www.cepr.org/pubs/dps/DP7054.asp.

16The proof follows closely the proof of Theorem 4 in Roemer (2009). We are indebted to John
Roemer for pointing out this powerful proof method to our attention.
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Proposition 2 The function cIBA (y) is the solution to the following optimization pro-

gram:

max c(yA) such that (8)

c(y) ≥ coptB (y) for y ≤ ym,

0 ≤ c′(y) ≤ 1,∫ y+

y−
c(y)dF (y) ≤ ȳ.

In words, the schedule cIBA (.) is the best schedule for party A in the set of feasible

schedules where all individuals with an income at most equal to the median income

ym weakly prefer party A’s schedule to coptB (.). The intuition for why cIBA (.) is the best

schedule for party A in that class runs as follows. Starting from cIBA (.), if party A wants

to increase the after-tax consumption level of individuals with income yA, it necessarily

has to give a little less income to people with income above y′A (in order to satisfy the

GBC; see Figure 2). But then, the proportion of people (weakly) preferring this tax

schedule to coptB is strictly less than 50%.

There is of course no reason to restrict a priori tax schemes to be such that the

support for party A is made exclusively of low income individuals. We also have to

consider tax schedules where the support for any party is not an interval of voters.

Observe first that, if a best response by party A to coptB does not win the votes of all

voters with income is below the median level ym, then it must be of the “ends-against-

the-middle” form. A simple inspection of Figure 2, shows that, once A’s policy crosses

coptB , it must stay below (i.e., offer a lower consumption level than coptB ) until it runs into

the horizontal section of coptB (starting with some y ≥ yB), at which point it of course

coincides with coptB (since giving more consumption than coptB would be a waste of money

for party A). We can then restrict the search for party A’ best schedule to the set of

schedules such that c(y) ≥ coptB for y ∈ Ω = [y−, y1] ∪ [y′′A, y+], y1 < ym < y′′A, where

H(Ω) = 1/2.17 To do so, we proceed in two steps: we first set exogenously the threshold

incomes y1 and y′′A such that H(Ω) = 1/2, and look for Party A’s best schedule among

17It is straightforward that the constraint that H(Ω) is at least equal to one half is binding at the
optimum, otherwise party A could increase c(yA) while still satisfying its reelection constraint.
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those offering at least coptB to all individuals in Ω. Next, we optimize with respect to

y1 and y′′A (keeping H(Ω) = 1/2) to find the tax schedule that maximizes party A’s

payoff.18

For given thresholds y1 and y′′A such that H(Ω) = 1/2, we define the following

schedule (see Figure 2), denoted by cIIBA (y), as:19

cIIBA (y) =





coptB (y) + IIIB2 if y− ≤ y ≤ yA
cIIBA (yA) if yA < y ≤ ŷA
coptB (y) if ŷA ≤ y ≤ y1
cIIBA (y1) if y1 < y ≤ ỹA
cIIBA (ỹA) + y − ỹA if ỹA < y ≤ y′′A
coptB (y) if y′′A ≤ y ≤ y+

(9)

The following proposition is established in Appendix C:

Proposition 3 Fix the set Ω = [y−, y1] ∪ [y′′A, y+] where y1 < ym < y′′A and such that

H(Ω) = 1/2. The function cIIBA (y) is the solution to the following optimization program:

max c(yA) such that (10)

y ∈ Ω ⇒ c(y) ≥ coptB (y),

0 ≤ c′(y) ≤ 1,∫ y+

y−
c(y)dF (y) ≤ ȳ.

Proposition 3 states that the function cIIBA is party A’s best response to coptB when

the set of feasible tax schedules for A is restricted to those giving at least the same

consumption as coptB for the 50% of the polity belonging to the exogenous set Ω. It is

clear from the definition of Ω that there is a unidimensional family of cIIBA functions

associated with Ω. In other words, by varying the value of (say) y1 while choosing the

value of y′′A such that H(Ω) = 1/2, party A can span the set of feasible tax functions

guaranteeing reelection as defined by (9). Party A then chooses the tax function that

maximizes the value of c(yA).
20

18We thank John Roemer for suggesting this proof strategy.
19Figure 2 is drawn for the case where y1 < y′

A and cIIBA (yA) < cIBA (yA), but it is easy to draw the
same Figure with y1 = y′

A and/or cIIBA (yA) ≥ cIBA (yA).
20For the formal statement of this optimization problem, see the working paper version referred to in

footnote 15.
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We now give, with the help of Figure 2, the intuition as to why this tax schedule is

the best alternative to schedule cIBA . In order to maximize the consumption level offered

to individuals with pre-tax income yA, party A has to propose a zero marginal tax rate

to individuals with y ≤ yA (negative marginal tax rates being prohibited). Since we

are looking for a schedule that is not such that all below-median income agents vote

for A, it must be the case that cIIBA crosses coptB at some y = y1 < ym. All individuals

with y ≤ y1 then vote for party A. The least costly way to obtain the support of these

voters is to tax those with yA < y < y1 at 100% at the margin, under the constraint

that they receive at least as much as with coptB . That is, we have that cIIB′
A (y) = 0 for

yA < y < ŷA and cIIB′
A (y) = 1 together with cIIBA (y) = coptB (y) for ŷA < y < y1. Since

y1 < ym, party A needs the support of agents with income levels higher than yB. Given

our prohibition of negative marginal tax rates, it is impossible for party A to garner the

support of agents with income between y1 and yB. This means that there must exist

an income level y > yB, which we call y′′A, such that cIIBA (y′′A) = coptB (y′′A). Given that

copt
′

B (y) = 0 for y ≥ yB, we obtain that cIIBA (y) = coptB (y) for all y′′A ≤ y ≤ y+. Party

A chooses the values of y1 and y′′A in order to maximize cIIBA (yA) under the constraint

that it gathers one half of the votes —i.e., that
∫ y1
y− dF +

∫ y+
y′′A

dF = 1/2.

We have thus shown that, under Assumption 1 and when party B plays coptB , party

A’s BPR is either cIBA (where low income agents vote for party A while high income

voters support party B) or cIIBA (an “ends-against-the-middle” situation, where low and

high income voters support party A while middle income agents vote for party B). To

determine which of these two candidates effectively represents the party’s best policy we

simply have to compare the respective consumption levels they imply for its constituent

(an individual with income yA). We have that cIBA is better when cIBA (yA) > cIIBA (yA),

while cIIBA is better if the opposite relationship occurs. We summarize the results

obtained in this section in the following Proposition.

Proposition 4 Under Assumption 1, if party B proposes its unconstrained most-preferred

schedule coptB , then party A’s best response is to offer either cIBA or cIIBA . In either case,

(i) a subset of the population obtains the same after-tax income under the tax schedules
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proposed by both parties, and (ii) party B has no incentive to deviate from coptB .

5 Party A proposes its unconstrained most-preferred pol-
icy

The analysis developed in this section parallels the one introduced in the previous

section, except that the roles played by the two parties are reversed. We now assume that

A plays its unconstrained optimal strategy T opt
A . The corresponding after-tax schedule

coptA is depicted on Figure 3. We assume that the reelection constraint is binding for

party B when faced with coptA (i.e., policy coptA is preferred by a strict majority of voters

to coptB ), which translates into the following Assumption (the counterpart to Assumption

1):

Assumption 2: coptA (ym) > coptB (ym).

Under Assumption 2, party A is (re)elected for sure if it proposes T opt
A (or equiv-

alently coptA ) while party B enacts its constrained optimal policy once in office. Party

A then has no incentive to choose a schedule different from coptA , and we construct

party B’s best response. As in the previous section, we start by constructing the best

tax/consumption schedule satisfying pattern I where only high income agents vote for

party B. We then show that the only alternative to this schedule is an “end-against-the-

middle” proposal belonging to pattern II, where the poor and the rich support party

B while the middle class supports A.21

We first construct a simple tax function that allows party B to receive the votes of

all individuals with an income above the median ym. Party B’s schedule is denoted by

cIAB and is constructed as follows (see Figure 3):

cIAB (y) =





y + IIA1 if y− ≤ y ≤ ym
coptA (y) if ym < y ≤ y′B
cIAB (y′B) + y − y′B if y′B ≤ y ≤ yB
cIAB (yB) if yB ≤ y ≤ y+

All individuals with pre-tax income above yB face a marginal tax rate of one. Let y′B
denote the threshold income level such that (i) all individuals with income in between

21Observe the contrast with section 4, where the middle class votes for party B while the extremes
support party A.
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ym and y′B face a marginal tax rate of one while individuals with income in-between y′B
and yB face a zero marginal tax rate, and (ii) cIAB (y) = coptA (y) for the individuals whose

income y is between ym and y′B. Lower-than-median income individuals are faced with

a zero marginal tax rate. It is easy to see that cIAB (.) is determined completely (see

working paper version for a formal proof) by the value of cIAB (0) —i.e., by IIA1 — and

we choose the value of IIA1 that is such that cIAB (.) integrates to the mean of the income

distribution.

We now state the following proposition:22

Proposition 5 The function cIAB (y) is the solution to the following optimization pro-

gram:

max c(yB) such that (11)

c(y) ≥ coptA (y) for y ≥ ym,

0 ≤ c′(y) ≤ 1,∫ y+

y−
c(y)dF (y) ≤ ȳ.

In words, the schedule cIAB (.) is the best feasible schedule for party B among all those

where all individuals with an income larger than the median income ym weakly prefer

party B’s schedule to coptA (.). The intuition for why cIAB (.) is the best schedule for party

B in that class runs as follows. Starting from cIAB (.), if party B wants to increase the

after-tax consumption level of individuals with income yB, it necessarily has to give more

to all individuals with y′B ≤ y ≤ y+, because of the prohibition of negative marginal tax

rates. Because of the GBC, it then has to give less consumption to some individuals

with income lower than y′B, including individuals with y < ym (since marginal tax rate

cannot exceed one). But then, the proportion of people (weakly) preferring this tax

schedule to coptA is strictly less than 50%.

There is of course no reason to restrict a priori tax schemes to be such that the

support for party B is made exclusively of high income individuals. An argument similar

to the one developed in the previous section shows that any tax function by party B

22The proof follows closely the proof of Proposition 2 and is left to the reader.
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that is not supported by all voters with above-median income must be of the “ends-

against-the-middle” type. We then restrict the search for the best schedule by party B

to the set of schedules such that c(y) ≥ coptB for y ∈ Ω = [y−, y′′B]∪[y2, y+], y′′B < ym < y2,

where H(Ω) = 1/2. We proceed in the same two steps as in the previous section: we

first set exogenously the threshold incomes y′′B and y2 such that H(Ω) = 1/2 and look

for the best schedule for party B among those offering at least coptA to all individuals in

Ω. We then optimize with respect to y′′B and y2 (keeping H(Ω) = 1/2) to find the tax

schedule that maximizes party B’s payoff.

For given thresholds y′′B and y2 such that H(Ω) = 1/2, we define the following

schedule (see Figure 3),23 denoted by cIIAB (y):

cIIAB (y) =





coptA (y) if y− ≤ y ≤ y′′B
cIIAB (y′′B) if y

′′
B < y ≤ ỹB

cIIAB (ỹB) + y − ỹB if ỹB < y ≤ y2
coptA (y2) if y2 < y ≤ ŷB
cIIAB (ŷB) + y − ŷB if ŷB < y ≤ yB
cIIAB (yB) if yB ≤ y ≤ y+

The proof of the following proposition follows closely the one of Proposition 3 and

is left to the reader:

Proposition 6 Fix the set Ω = [y−, y′′B] ∪ [y2, y+], y
′′
B < ym < y2, where H(Ω) = 1/2.

The function cIIAB (y) is the solution to the following optimization program:

max c(yB) such that (12)

y ∈ Ω ⇒ c(y) ≥ coptA (y),

0 ≤ c′(y) ≤ 1,∫ y+

y−
c(y)dF (y) ≤ ȳ.

Proposition 6 states that the function cIIAB is party B’s best response to coptA when

the set of feasible tax schedules for B is restricted to those giving at least the same

consumption as coptA for the voters whose income level belong to the exogenous set Ω,

23Figure 3 is drawn for the case where y2 < ŷB and cIIAB (yB) < cIAB (yB), but it is easy to draw the
same Figure with y2 = ŷB and/or cIIAB (yB) ≥ cIAB (yB).
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whose measure is one half. By the same argument as in the previous section, party B

chooses among the unidimensional set of policies cIIAB (indexed for instance by y′′B) the

one that maximizes c(yB).

We now give, with the help of Figure 3, the intuition as to why this tax schedule is

the best alternative to schedule cIAB . In order to maximize the consumption level offered

to individuals with pre-tax income yB, party B has to impose a 100% marginal tax rate

on individuals with y > yB (larger marginal tax rates being prohibited). Since we are

looking for a schedule that is not such that all above-median income agents vote for B,

it must be the case that cIIAB crosses coptA at some y = y2 > ym (with cIIAB (y) < coptA (y)

for y = y2 − ε, for ε arbitrarily small and positive). All individuals with y ≥ y2 then

vote for party B. The least costly way to obtain the support of these voters is to tax

those with y2 ≤ y ≤ ŷB < yB at 100% at the margin while giving them exactly the same

consumption level than with coptB , and to impose a zero marginal tax rate on individuals

ŷB ≤ y < yB (see Figure 3). Since y2 > ym, party B needs the support from agents with

income levels lower than yA. Given our prohibition of marginal tax rates larger than

one, it is impossible for party B to have the support of agents with income between

yA and y2. This means that there must exist an income level y < yA, which we call

y′′B, such that cIIAB (y′′B) = coptA (y′′B). Given that copt
′

A (y) = 1 for y < yA, we obtain that

cIIAB (y) = coptA (y) for all y− ≤ y ≤ y′′B. Party B chooses the values of y2 and y′′B in order

to maximize cIIAB (yB) under the constraint that it gathers one half of the votes —i.e.,

that
∫ y′′B
y− dF +

∫ y+
y2

dF = 1/2.

We have thus shown that, under Assumption 2 and when party A plays coptA , party

B’s BPR is either cIAB (where low income agents vote for party A and high income

voters support party B) or cIIAB (an “ends-against-the-middle” situation, where low and

high income voters support party B while middle income agents vote for party A). To

determine which of these two candidates effectively represents the party’s best policy we

simply have to compare the respective consumption levels they imply for its constituent

(an individual with income yB). We have that cIAB is better when cIAB (yA) > cIIAB (yB),

while cIIAB is better if the opposite relationship occurs. We summarize the results

obtained in this section in the following proposition.
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Proposition 7 Under Assumption 2, if party A proposes its unconstrained most-preferred

schedule coptA , then party B’s best response is to offer either cIAB or cIIAB . In either case,

(i) a subset of the population obtains the same after-tax income under the tax schedules

proposed by both parties, and (ii) party A has no incentive to deviate from coptA .

So far we have characterized policy pairs that potentially constitute BPR equilib-

ria of the electoral game. In each case we have posited that one of the parties (B in

Section 4 and A in Section 5) was playing its unconstrained optimal policy. We have

constructed two potential BPR schedules for the other party. Determining the best of

these two schedules implies a comparison of endogenous variables. The next section

studies the circumstances under which the policy pairs described here and in the pre-

vious section effectively constitute a BPR equilibrium. For this we provide conditions

on the income levels yA and yB of the parties’ respective constituents which are the

fundamental exogenous variables underlying our analysis.

To make the argument crisper, some extra terminology is useful. An outcome will be

referred to as “Type I” equilibrium when parties receive the support of either the poorer

or the richer part of the electorate, while “Type II” equilibria are of the ends-against-

the-middle variety (one party receives the support of the poorer and richer voters while

voters in the middle of the income distribution support the other party). We also index

the equilibrium type by the identity of the party proposing its unconstrained optimal

policy, to obtain the following definitions:

Definition 1

In a type IA equilibrium, party A proposes coptA while party B proposes cIAB .

In a type IIA equilibrium, party A proposes coptA while party B proposes cIIAB .

In a type IB equilibrium, party B proposes coptB while party A proposes cIBA .

In a type IIB equilibrium, party B proposes coptB while party A proposes cIIBA .

6 Equilibrium partition

We are now in a position to state our main result.
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Proposition 8 The space (yB, yA) can be partitioned into four regions, each corre-

sponding to a different BPR equilibrium. There exist three decreasing functions of yB,

denoted by ΦA, Φ and ΦB, that are such that

if y− ≤ yA ≤ ΦB(yB), the equilibrium is of type IIB;

if ΦB(yB) ≤ yA ≤ Φ(yB), the equilibrium is of type IB;

if Φ(yB) ≤ yA ≤ ΦA(yB), the equilibrium is of type IA;

if ΦA(yB) ≤ yA, the equilibrium is of type IIA.

The three functions and the partition of equilibria they delineate are represented

on Figure 4. The formal proof of Proposition 8 is provided in Appendix D. Here we

restrict ourselves to presenting the underlying intuition.

If the median income individuals are indifferent between both parties’ unconstrained

most-preferred policies (T opt
A and T opt

B ), then the unique equilibrium is such that each

party proposes its unconstrained most-preferred policy. This is because under this policy

any incumbent party will be reelected with one half of the votes. The locus of pairs

(yB, yA) for which this is true is represented by the function yA = Φ(yB). To the left

of this schedule (in the (yB, yA) space - see Figure 4), Assumption 1 holds so that by

Proposition 7 and Definition 1, the equilibrium of the game is of Type IB or IIB; it

is party B who proposes its unconstrained optimal policy. Similarly, to the right of Φ,

Assumption 2 holds and, by Proposition 4 and Definition 1, the equilibrium of the game

is of Type IA or IIA, and it is party A who proposes its unconstrained optimal policy.

Intuitively, we obtain that party A proposes its unconstrained optimal policy (i.e.,

Assumption 2 holds) if yB is large enough (i.e., very different from ym) for a given

yA, or if yA is large enough (i.e., close enough to ym) for a given yB. The proof of

Proposition 8 also shows that the function Φ is decreasing in yB.
24 This means that,

24To understand why Φ decreases with yB , observe first that the space of most-preferred after-tax
income schedules is unidimensional and can be indexed by the pre-tax income of the individual (since
there is a unique kink in the most-preferred after-tax income function, with zero marginal tax rate
below and unitary marginal tax rate above — see Figure 1). We show in the Appendix that indi-
vidual preferences are single-peaked in the space of most-preferred policies. That is, the utility that
an individual with gross income y achieves with the most-preferred tax schedule of an individual with
gross income x increases with x when x < y and decreases with x when x > y. This in turn implies
that, as yB increases, the value of yA for which the median income individual is indifferent between the
most-preferred policies of yA and yB decreases.
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the lower yA is (i.e., the more different it is from ym), the larger (i.e., the more different

from ym) yB has to be in order for party A to propose its unconstrained optimal policy

at equilibrium. In other words, the party with a moderate (i.e., close to the median)

constituent offers its optimal unconstrained policy. Finally, we obtain that, if yB is large

enough (close enough to the maximum income y+), then whatever the value of yA ≤ ym,

the equilibrium is of type IA or IIA.
25

We now turn to the policy offered by the party not playing its unconstrained most-

preferred policy at the equilibrium. We obtain from Proposition 8 and Figure 4 that

policies that divide the electorate between poorer and richer voters (Type I) are played

if the parties’ constituents are close to the locus yA = Φ(yB): the party that is more

extreme offers a policy that satisfies its base and voters up to the median income level

if its base is not too extreme, and an ends-against-the-middle policy if its constituent is

very extreme (very far from the median). The intuition for this result comes from the

observation that policies cIAB and cIBA respectively tend toward coptB and coptA when yA

and yB become arbitrary close to Φ. This is not the case for policies cIIAB and cIIBA . For

any point such that yA = Φ(yB), the only equilibrium consists in both parties offering

their unconstrained optimal policy. As we move slightly away from Φ by, say increasing

yA, the schedule c
IA
B remains very close to coptB (while ensuring that party B is reelected

if it is the incumbent), and thus gives more utility to party B’s constituents than the

schedule cIIAB .

The fact that both ΦA and ΦB decrease with yB is intuitive once we look at Figure

4. We see that the locus ΦB gives, for any value of yA, the minimum value of yB that

is compatible with a Type I equilibrium. Similarly, ΦA gives, for values of yA large

enough, the maximum value of yB compatible with a Type I equilibrium. In other

words, ΦB and ΦA determine the boundaries of an interval of values of yB for which

we have a Type I equilibrium. The fact that both functions ΦB and ΦA are decreasing

25This is due to the fact that the median income individual strictly prefers the unconstrained optimal
tax schedule of party A (whatever the value of yA < ym) to the one of party B when yB is arbitrarily
close to y+. This preference in turn comes from the observation that, under any individual y’s most-
preferred policy, all individuals with an income above y obtain at least the average income ȳ. On the
other hand, individual y+’s most preferred policy is the laissez-faire, so that with a positively skewed
income distribution the median income prefers the policy advocated by party A to the laissez-faire.
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in yB means that this interval moves to the right (its two extreme values increase) as

yA decreases. This is intuitive since the value of yB for which both parties play their

unconstrained most-preferred policy also increases when yA decreases.

Finally, observe that there is some asymmetry in the model because of the assump-

tion that the median income is lower than the mean. This asymmetry benefits party A

(whose constituent has a lower-than-median income) in the following sense: there exist

equilibria where party A proposes its unconstrained optimal policy even when yA is

extreme (i.e., very low – provided of course that yB is also extreme, i.e., large enough)

while there is no equilibrium where party B proposes its unconstrained optimal policy

when yB is extreme (i.e., large enough, whatever the value of yA).

7 Conclusion

In this paper, we develop a repeated electoral competition game between two parties,

each maximizing the utility of a different citizen. Citizens differ only according to their

exogenous income level. Parties are unable to commit to any policy before the election;

they choose a non-linear income tax schedule once elected. In each period, citizens cast

a vote either for the incumbent or for the challenger.

We first show that there exist (pure strategy) subgame perfect equilibria where

both parties choose the most-preferred tax schedule of their constituent subject to the

constraint that they are reelected. We characterize a class of these (Best Policy with

Reelection, or BPR) equilibria for which one of the two parties plays the unconstrained

optimal tax schedule of its constituents. We obtain that tax schedules in such BPR

equilibria are always piecewise linear. We distinguish between four types of equilibria

and show that the specific type that emerges depends on the income levels of the con-

stituents of the two parties. The party whose constituent is more moderate offers its

optimal unconstrained policy, while the other party proposes a policy that satisfies its

constituent and voters up to the median income voter, or an “ends-against-the-middle”

policy if its constituent is very extreme (very far from the median income level). All

types of equilibria are such that both parties propose the same tax schedule for a subset

of the population.
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How do these results relate to the income tax schedules observed in reality? Piecewise

linearity is a very common feature in practice. It is worth emphasizing that we do not

assume that tax functions have this property, but rather that we start from a much

larger set of admissible non-linear functions and that we obtain piecewise linearity as a

property of all tax functions proposed in BPR equilibria. In all equilibria we consider,

one party proposes a tax function with only two brackets while the other party proposes

a tax function with more than two brackets. One way to generate more brackets at

equilibrium would be to assume that parties represent more than one constituent (i.e.

income level). We leave such an extension for future research.

We also obtain that, in all equilibria studied, one party proposes a tax function (with

minimum marginal tax rate up to a threshold income level and the maximum marginal

rate above) that exhibits both marginal and average progressivity. The tax function

proposed by the other party may not be progressive (except for very specific combi-

nations of yA and yB). Marginal progressivity is a characteristic of many real world

tax schedules and is notoriously difficult to obtain as a solution in an optimal taxation

framework. Average progressivity, on the other hand, is an even more common charac-

teristic of real world tax schedules but our setting offers just one of the many possible

explanations (which include essentially the entire optimal income tax literature).

Finally, in all equilibria studied both parties propose the same tax schedule to a sub-

set of the population. This characteristic of equilibrium tax schedules is also obtained by

Roemer (2009) who studies the same economic environment and the same set of admis-

sible tax functions but who develops another electoral competition game where parties

can commit to electoral promises. Roemer (2009) also uses data on income taxation in

the US from 1960 to 2004 to check whether both parties propose the same tax schedule

for a subset of the population. Since parties do not compete by announcing precise tax

schedules,26 Roemer (2009) looks at major tax reforms, attributing the reform to the

party of the President at the time of reform. The reform then becomes the status quo

until a new reform is enacted. He can then attribute both the status quo legislation

26This observation is much more in line with the postelection politics approach developed here than
with the preelection politics model developed in Roemer (2009).
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and the reform to political parties. He obtains that most reforms do not change the

effective tax-and-transfer rates faced by the middle class. His empirical evidence then

supports our type I equilibria, which have this characteristic. Roemer (2009) also argues

empirically that the Democratic party is more supported by poorer voters while richer

voters tend to favor the Republican party. This observation is also more in line with

Type I equilibria than with ends-against-the-middle, Type II, equilibria. Interpreting

both observations in the light of our model leads us to the conclusion that both US

parties represent constituents whose income level is not too far from the median voter’s

income level.

Our paper admittedly falls short on several accounts. First, we restrict the set

of equilibria to BPR equilibria where one party proposes the most-preferred policy of

its constituent, absent any electoral consideration. It would be worthwhile to look at

non-BPR equilibria in this setting.

Finally, incentive effects on the labor supply decision are absent from our model.

Introducing a preference for leisure and thus a distortionary impact of income taxation

would constitute an interesting extension. This would certainly yield less extreme results

which would have a more realistic flavor. In particular marginal tax rates of one would

no longer emerge and be replaced by the tax revenue maximizing rates (maximum of

Laffer curve).
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APPENDIX

A Proof of Proposition 1

As stated in the text, we resort to the concepts of simple strategy profiles, initial path

and punishments introduced by Abreu (1988). The initial path Q0 is an infinite stream

of one-period pairs of actions, one for each party in the case this party is the incumbent

(a party not elected in period t has no action to undertake in that period). We define

Q0 = {(T ∗
A(.), T

∗
B(.)) , (T

∗
A(.), T

∗
B(.)) , (T

∗
A(.), T

∗
B(.)) , ...} .

The punishments are given by the following infinite stream of one-period pairs of actions.

The punishment if party A deviates is given by

QA =
{(

T opt
A (.), T ∗

B(.)
)
,
(
T opt
A (.), T ∗

B(.)
)
,
(
T opt
A (.), T ∗

B(.)
)
, ...

}
,

while the punishment if party B deviates is given by

QB =
{(

T ∗
A(.), T

opt
B (.)

)
,
(
T ∗
A(.), T

opt
B (.)

)
,
(
T ∗
A(.), T

opt
B (.)

)
, ...

}
.

The prescription for each party is to play Q0 if both parties have always followed

Q0 in the past and to play the punishment Qi if player i has just deviated from Q0.

Also, parties have to keep playing the punishment for ever after party i has deviated

from Q0, say in period t: if party j (j = i or j 6= i) deviates from the punishment at

date k ≥ t, then both parties have to play Qj for ever starting at k + 1.

If the history of the vote at time t is consistent with both parties having played Q0

in all periods, voters assume that players continue to play according to Q0, so that A

if elected will implement T ∗
A(.) while B will implement T ∗

B(.) if elected. If the history

is such that party i has just deviated from its prescribed action (as described above),

then voters anticipate that parties will follow Qi from now on. In all cases, citizens

use these beliefs to compute the continuation value of each party and they vote for the

party offering the highest continuation value.

Assume that both parties have followed the prescribed strategy Q0 up to period t,

and that party A is the incumbent. By abiding by strategy Q0 now and in the future,
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party A remains in office for ever (since voters identify a vote for party A as a vote

for T ∗
A(.) and a vote for B as a vote for T ∗

B(.), and since T ∗
A(.) is by definition the best

policy that guarantees reelection for party A when faced with the alternative T ∗
B(.)) and

obtains the payoff:

(1− δ)
∞∑
τ=t

δτ−t [v(yA, T
∗
A(yA)) + β] = v(yA, T

∗
A(yA)) + β. (13)

As explained in the text, Abreu (1988, Proposition 1) states that the subgame per-

fection of the simple strategy profile generated by (Q0, QA, QB) may be verified by

checking “one-shot” deviations alone (i.e., deviations followed by conformity with the

strategy profile in question). Voters gain nothing by deviating from their strategy (vot-

ing for the party offering them the highest continuation value, computed as explained

above) since, with a continuum of voters, no single voter is decisive.

Assume for the moment that T ∗
A(.) 6= T opt

A (.) and that T ∗
B(.) 6= T opt

B (.). By definition

of T ∗
B, it must be the case that a majority of voters prefer T ∗

A to T opt
B (or else, we

would have that T ∗
B = T opt

B ), ensuring that party A is elected at each round with the

punishment QB. Likewise, we have that a majority of voters prefer T ∗
B to T opt

A (or else,

we would have that T ∗
A = T opt

A ), ensuring that party B is elected at each round with

the punishment QA.

Consider first the possibility of a one-shot deviation from Q0 by A. Party A may only

deviate at any given stage if it is the current incumbent. According to the strategies

defined above, party A anticipates that both parties will play QA after a deviation,

which means (given voters’ anticipations) that it will never be reelected again in the

future and will have to face the policy T ∗
B(.) for ever. Faced with this prospect, party A

if it deviates chooses to implement its optimal unconstrained policy, T opt
A (.). The payoff

of A following the deviation is thus given by

(1− δ)
(
v(yA, T

opt
A (yA)) + β

)
+ (1− δ)

∞∑

t=2

δt−1v(yA, T
∗
B(yA))

= (1− δ)
(
v(yA, T

opt
A (yA)) + β

)
+ δv(yA, T

∗
B(yA)). (14)

Comparing the payoffs associated with the initial path Q0, (13), with that achieved in
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case of a deviation (14), shows that A should remain on the initial path if and only if

δ ≥ v(yA, T
opt
A (yA))− v(yA, T

∗
A(yA))

v(yA, T
opt
A (yA))− v(yA, T ∗

B(yA)) + β
, (15)

i.e., if party A is patient enough. Note that the right hand side of (15) is strictly lower

than one if v(yA, T
∗
A(yA))+ β > v(yA, T

∗
B(yA))–i.e., if party A is better off in office with

its optimal constrained policy than out of office with the optimal constrained policy of

the other party, a condition that is always satisfied (for any β ≥ 0).

We now have to check that party B has no incentive to deviate from the punishment

path QA. When sticking to the policy choice implied by QA, B obtains the payoff:

(1− δ)
∞∑
τ=t

δτ−t [v(yB, T
∗
B(yB)) + β] = v(yB, T

∗
B(yB)) + β.

It if it deviates from QA, B is punished in all subsequent periods according to QB and

gets the following continuation value:

(1− δ)
(
v(yB, T

opt
B (yB)) + β

)
+ δv(yB, T

∗
A(yB)).

Comparing the two previous expressions, B should not deviate when

δ ≥ v(yB, T
opt
B (yB))− v(yB, T

∗
B(yB))

v(yB, T
opt
B (yB))− v(yB, T ∗

A(yB)) + β
. (16)

The right hand side of (16) is strictly lower than one if v(yB, T
∗
B(yB))+β > v(yB, T

∗
A(yB))–

i.e., if party B is better off in office with its optimal constrained policy than out of office

with the optimal constrained policy of the other party, a condition that is always satis-

fied (for any β ≥ 0).

Observe now that the inequality that must be satisfied for party B not to have an

incentive to deviate from the initial path Q0 is the same as (16) —i.e., the inequality

that guarantees that party B abides by the punishment path QA. In both cases, party B

remains for ever in office with its optimal constrained policy if it follows the prescribed

actions, with the punishment for a deviation being the same since it is given by QB in

both cases. Likewise, the inequality that must be satisfied for party A to abide by QB
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is (as given by (15)), the same as the one that is required for the same party to follow

the initial path Q0.27

We have assumed up to now that T ∗
A(.) 6= T opt

A (.) and that T ∗
B(.) 6= T opt

B (.). Suppose

now that T ∗
A(.) = T opt

A (.) while T ∗
B(.) 6= T opt

B (.), so that the punishment paths are given

by

QA =
{(

T opt
A (.), T ∗

B(.)
)
,
(
T opt
A (.), T ∗

B(.)
)
,
(
T opt
A (.), T ∗

B(.)
)
, ...

}
,

QB =
{(

T opt
A (.), T opt

B (.)
)
,
(
T opt
A (.), T opt

B (.)
)
,
(
T opt
A (.), T opt

B (.)
)
, ...

}
.

Party A wins with its optimal unconstrained policy under both Q0 and QA and has

thus no incentive to deviate from either. As for QB, a majority of voters must favor

T opt
A to T opt

B , or else we would have that T ∗
B = TB

opt. Party A thus has no incentive to

deviate from QB. Party B has no incentive to deviate from QA if

δ ≥ v(yB, T
opt
B (yB))− v(yB, T

∗
B(yB))

v(yB, T
opt
B (yB))− v(yB, T

opt
A (yB)) + β

,

whose right hand side is strictly lower than one since v(yB, T
∗
B(yB))+β > v(yB, T

opt
A (yB))

for any β ≥ 0. This same equation also guarantees that party B won’t deviate from the

initial path Q0 (and also from QA, in the out-of-equilibrium situation where B returns

to power while both parties play QA).

We can deal similarly with the situation where T ∗
B(.) = T opt

B (.), whether or not

T ∗
A(.) 6= T opt

A (.).

We then obtain that there exists a BPR (subgame perfect) equilibrium as described

in Proposition 1 provided that

δ ≥ δ̃ ≡ max{ v(yA, T
opt
A (yA))− v(yA, T

∗
A(yA))

v(yA, T
opt
A (yA))− v(yA, T ∗

B(yA)) + β
,

v(yB, T
opt
B (yB))− v(yB, T

∗
B(yB))

v(yB, T
opt
B (yB))− v(yB, T ∗

A(yB)) + β
},

(17)

with 0 < δ̃ < 1.

27Party i has no opportunity to deviate from punishment Qi (i = A,B) since it is never in power
according to this punishment. Observe also that, even if party i somehow managed to be elected while
the other party correctly plays Qi (an out-of-equilibrium situation), it would definitely play T opt

i , which
is the policy prescribed by punishment Qi.
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B Proof of Proposition 2

The proof is by contradiction. Assume that cIBA (y) does not solve the optimization

program (8), but rather that the function c∗(y) does. Define g(y) = c∗(y)− cIBA (y), and

consider the convex combination (1 − ε)cIBA (y) + εc∗(y) = cIBA (yA) + εg(yA), which is

also feasible for program (8).

Define

∆(ε) = cIBA (yA) + εg(yA)

−
∫ yA

y−
εg′(y)β(y)dy +

∫ y′A

yA

εg′(y)γ(y)dy

−
∫ ym

y′A
εg′(y)δ(y)dy +

∫ y+

ym

εg′(y)α(y)dy

+

∫ ym

y′A

(
cIBA (y) + εg(y)− coptB (y)

)
η(y)dy

+ρ

[
ȳ −

∫ y+

y−

(
cIBA (y) + εg(y)

)
dF (y)

]
,

where α(y), β(y), δ(y), γ(y), η(y) are non-negative functions and ρ is a non-negative

number.

Observe that ∆ is linear in ε, with ∆(0) corresponding to program (8) with cIBA (.),

and with ∆(1) corresponding to program (8) with c∗(.), plus a series of non-negative

terms: for instance, in the intervals [y−, yA] and [y′A, ym], g′ ≤ 0 because cIB′
A (y) = 1.

Suppose that we can find α(y), β(y), δ(y), γ(y), η(y) and ρ (all non-negative) such

that ∆′(0) ≤ 0. Since ∆ is a linear function of ε, it will follow that ∆(0) ≥ ∆(1), which

implies a fortiori that program (8) is maximized with cIBA (.), our desired contradiction.

We then assume that

∆′(0) = g(yA)−
∫ yA

y−
g′(y)β(y)dy +

∫ y′A

yA

g′(y)γ(y)dy

−
∫ ym

y′A
g′(y)δ(y)dy +

∫ y+

ym

g′(y)α(y)dy

+

∫ ym

y′A
g(y)η(y)dy − ρ

∫ y+

y−
g(y)dF (y)

≤ 0.
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Integrating by parts, we obtain

∆′(0) = g(yA)− [g(y)β(y)]yAy− +

∫ yA

y−
g(y)β′(y)dy

+ [g(y)γ(y)]y
′
A

yA
−

∫ y′A

yA

g(y)γ′(y)dy

− [g(y)δ(y)]ym
y′A

+

∫ ym

y′A
g(y)δ′(y)dy

+ [g(y)α(y)]y+ym −
∫ y+

ym

g(y)α′(y)dy

+

∫ ym

y′A
g(y)η(y)dy − ρ

∫ y+

y−
g(y)dF (y)

≤ 0,

which simplifies to

∆′(0) = g(yA)

−g(yA)β(yA) + g(y−)β(y−) +
∫ yA

y−

[
β′(y)− ρf(y)

]
g(y)dy

+g(y′A)γ(y
′
A)− g(yA)γ(yA) +

∫ y′A

yA

[−γ′(y)− ρf(y)
]
g(y)dy

−g(ym)δ(ym) + g(y′A)δ(y
′
A) +

∫ ym

y′A

[
δ′(y) + η(y)− ρf(y)

]
g(y)dy

+g(y+)α(y+)− g(ym)α(ym) +

∫ y+

ym

[−α′(y)− ρf(y)
]
g(y)dy

≤ 0.
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Regrouping terms, we have

∆′(0) = g(yA) (1− β(yA)− γ(yA))

+g(y′A)
(
γ(y′A) + δ(y′A)

)

−g(ym) (α(ym) + δ(ym))

+g(y−)β(y−) + g(y+)α(y+)

+

∫ yA

y−

[
β′(y)− ρf(y)

]
g(y)dy

+

∫ y′A

yA

[−γ′(y)− ρf(y)
]
g(y)dy

+

∫ ym

y′A

[
δ′(y) + η(y)− ρf(y)

]
g(y)dy

+

∫ y+

ym

[−α′(y)− ρf(y)
]
g(y)dy

≤ 0.

We can make sure that ∆′(0) ≤ 0 if the Lagrangian functions and multipliers are

chosen to satisfy the following inequalities:

β(yA) + γ(yA) ≥ 1,

γ(y′A) + δ(y′A) ≤ 0, (18)

α(ym) + δ(ym) ≥ 0,

β(y−) ≤ 0,

α(y+) ≤ 0,

β′(y) ≤ ρf(y) on [y−, yA] ⇒ β(yA)− β(y−) ≤ ρF (yA),

γ′(y) ≥ −ρf(y) on [yA, y
′
A] ⇒ γ(y′A)− γ(yA) ≥ −ρ

(
F (y′A)− F (yA)

)
,

δ′(y) ≤ ρf(y)− η(y) on [y′A, ym] ⇒ δ(ym)− δ(y′A) ≤ ρ
(
1/2− F (y′A)

)− Γ(ym),

α′(y) ≥ −ρf(y) on [ym, y+] ⇒ α(y+)− α(ym) ≥ −ρ/2,

where

Γ(ym) =

∫ ym

y′A
η(y)dy.
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We must find non-negative functions α(y), β(y), δ(y), γ(y), η(y) and a non-negative

number ρ satisfying those inequalities. Immediately, we deduce from (18) that γ(y′A) =

δ(y′A) = β(y−) = α(y+) = 0.

We simplify and obtain the following system of 6 equations in 6 unknowns,

β(yA) + γ(yA) = 1, (19)

α(ym) + δ(ym) > 0, (20)

β(yA) = ρF (yA), (21)

γ(yA) = ρ
(
F (y′A)− F (yA)

)
, (22)

δ(ym) = ρ
(
1/2− F (y′A)

)− Γ(ym), (23)

α(ym) = ρ/2, (24)

where all inequalities have been replaced by an equal sign, except for (20) where we use

a strict inequality.28

Using (21) and (22) in (19), we obtain that

ρF (yA) + ρ
(
F (y′A)− F (yA)

)
= 1,

⇒ ρF (y′A) = 1

⇒ ρ = 1/F (y′A) ≥ 2.

Then (21) gives

β(yA) =
F (yA)

F (y′A)
∈]0, 1],

while (22) gives

γ(yA) =
F (y′A)− F (yA)

F (y′A)
∈ [0, 1[,

and (24) gives

α(ym) =
1

2F (y′A)
≥ 1.

From (23), we have

δ(ym) =
1/2− F (y′A)

F (y′A)
− Γ(ym),

28The inequality in (20) has to be strict. Otherwise, using (20) and (24) we would obtain that ρ = 0,
a contradiction with what follows.
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so that we can choose

Γ(ym) =
1/2− F (y′A)

F (y′A)
≥ 0 and δ(ym) = 0

and from (20) we obtain

α(ym) + δ(ym) =
1

2F (y′A)
≥ 1.

From the sign of derivatives of the functions α(y), β(y), δ(y), γ(y) and η(y) we can

then immediately verify that they are non-negative in their intervals when end points

are defined as above, meaning that we have indeed constructed non-negative Lagrangian

functions, and proved our claim.

C Proof of Proposition 3

The proof is by contradiction. Assume that cIIBA (y) does not solve the optimization

program (10), but rather that the function c∗(y) does. Define g(y) = c∗(y) − cIIBA (y),

and consider the convex combination (1−ε)cIIBA (y)+εc∗(y) = cIIBA (yA)+εg(yA), which

is also feasible for program (10).

Define

∆(ε) = cIIBA (yA) + εg(yA)

−
∫ yA

y−
εg′(y)β(y)dy +

∫ ŷA

yA

εg′(y)γ(y)dy

−
∫ y1

ŷA

εg′(y)δ(y)dy +
∫ ỹA

y1

εg′(y)α(y)dy

−
∫ y′′A

ỹA

εg′(y)η(y)dy +
∫ y+

y′′A
εg′(y)θ(y)dy

+

∫ y1

ŷA

(
cIIBA (y) + εg(y)− coptB (y)

)
λ1(y)dy

+

∫ y+

y′′A

(
cIIBA (y) + εg(y)− coptB (y)

)
λ2(y)dy

+ρ

[
ȳ −

∫ y+

y−

(
cIIBA (y) + εg(y)

)
dF (y)

]
,

where α(y), β(y), δ(y), γ(y), η(y), θ(y), λ1(y) and λ2(y) are non-negative functions while

ρ is a non-negative number.
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Observe that ∆ is linear in ε, with ∆(0) corresponding to program (10) with cIIBA (.),

and with ∆(1) corresponding to program (10) with c∗(.), plus a series of non-negative

terms: for instance, in the intervals [y−, yA] and [ŷA, y1], g
′ ≤ 0 because cIIB′

A (y) = 1.

Suppose that we can find α(y), β(y), δ(y), γ(y), η(y), θ(y), λ1(y), λ2(y) and ρ (all

non-negative) such that ∆′(0) ≤ 0. Since ∆ is a linear function of ε, it will follow that

∆(0) ≥ ∆(1), which implies a fortiori that program (10) is maximized with cIIBA (.), our

desired contradiction.

We then assume that

∆′(0) = g(yA)−
∫ yA

y−
g′(y)β(y)dy +

∫ ŷA

yA

g′(y)γ(y)dy

−
∫ y1

ŷA

g′(y)δ(y)dy +
∫ ỹA

y1

g′(y)α(y)dy

−
∫ y′′A

ỹA

g′(y)η(y)dy +
∫ y+

y′′A
g′(y)θ(y)dy

+

∫ y1

ŷA

g(y)λ1(y)dy +

∫ y+

y′′A
g(y)λ2(y)dy

−ρ

∫ y+

y−
g(y)dF (y)

≤ 0.

Integrating by parts, we obtain

∆′(0) = g(yA)− [g(y)β(y)]yAy− +

∫ yA

y−
g(y)β′(y)dy

+ [g(y)γ(y)]ŷAyA −
∫ ŷA

yA

g(y)γ′(y)dy

− [g(y)δ(y)]y1ŷA +

∫ y1

ŷA

g(y)δ′(y)dy

+ [g(y)α(y)]ỹAy1 −
∫ ỹA

y1

g(y)α′(y)dy

− [g(y)η(y)]
y′′A
ỹA

+

∫ y′′A

ỹA

g(y)η′(y)dy

+ [g(y)θ(y)]
y+
y′′A

−
∫ y+

y′′A
g(y)θ′(y)dy

+

∫ y1

ŷA

g(y)λ1(y)dy +

∫ y+

y′′A
g(y)λ2(y)dy − ρ

∫ y+

y−
g(y)dF (y)

≤ 0,
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which simplifies to

∆′(0) = g(yA)

−g(yA)β(yA) + g(y−)β(y−) +
∫ yA

y−

[
β′(y)− ρf(y)

]
g(y)dy

+g(ŷA)γ(ŷA)− g(yA)γ(yA) +

∫ ŷA

yA

[−γ′(y)− ρf(y)
]
g(y)dy

−g(y1)δ(y1) + g(ŷA)δ(ŷA) +

∫ y1

ŷA

[
δ′(y) + λ1(y)− ρf(y)

]
g(y)dy

+g(ỹA)α(ỹA)− g(y1)α(y1) +

∫ ỹA

y1

[−α′(y)− ρf(y)
]
g(y)dy

−g(y′′A)η(y
′′
A) + g(ỹA)η(ỹA) +

∫ y′′A

ỹA

[
η′(y)− ρf(y)

]
g(y)dy

+g(y+)θ(y+)− g(y′′A)θ(y
′′
A) +

∫ y+

y′′A

[−θ′(y) + λ2(y)− ρf(y)
]
g(y)dy

≤ 0.
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Regrouping terms, we have

∆′(0) = g(yA) (1− β(yA)− γ(yA))

+g(ŷA) (γ(ŷA) + δ(ŷA))

−g(y1) (α(y1) + δ(y1))

+g(ỹA)(α(ỹA) + η(ỹA))

−g(y′′A)(η(y
′′
A) + θ(y′′A))

+g(y−)β(y−) + g(y+)θ(y+)

+

∫ yA

y−

[
β′(y)− ρf(y)

]
g(y)dy

+

∫ ŷA

yA

[−γ′(y)− ρf(y)
]
g(y)dy

+

∫ y1

ŷA

[
δ′(y) + λ1(y)− ρf(y)

]
g(y)dy

+

∫ ỹA

y1

[−α′(y)− ρf(y)
]
g(y)dy

+

∫ y′′A

ỹA

[
η′(y)− ρf(y)

]
g(y)dy

+

∫ y+

y′′A

[−θ′(y) + λ2(y)− ρf(y)
]
g(y)dy

≤ 0.

We can make sure that ∆′(0) ≤ 0 if the Lagrangian functions and multipliers are
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chosen to satisfy the following inequalities:

β(yA) + γ(yA) ≥ 1,

γ(ŷA) + δ(ŷA) ≤ 0,

α(y1) + δ(y1) ≥ 0,

α(ỹA) + η(ỹA) ≤ 0,

η(y′′A) + θ(y′′A) ≥ 0,

β(y−) ≤ 0,

θ(y+) ≤ 0,

β′(y) ≤ ρf(y) on [y−, yA] ⇒ β(yA)− β(y−) ≤ ρF (yA)

γ′(y) ≥ −ρf(y) on [yA, ŷA] ⇒ γ(ŷA)− γ(yA) ≥ −ρ (F (ŷA)− F (yA))

δ′(y) ≤ ρf(y)− λ1(y) on [ŷA, y1] ⇒ δ(y1)− δ(ŷA) ≤ ρ (F (y1)− F (ŷA))− Γ1(y1)

α′(y) ≥ −ρf(y) on [y1, ỹA] ⇒ α(ỹA)− α(y1) ≥ −ρ(F (ỹA)− F (y1))

η′(y) ≤ ρf(y) on [ỹA, y
′′
A] ⇒ η(y′′A)− η(ỹA) ≤ ρ

(
F (y′′A)− F (ỹA)

)

θ′(y) ≥ −ρf(y) + λ2(y) on [y′′A, y+] ⇒ θ(y+)− θ(y′′A) ≥ −ρ(1− F (y′′A)) + Γ2(y+),

where

Γ1(y1) =

∫ y1

ŷA

λ1(y)dy,

Γ2(y+) =

∫ y+

y′′A
λ2(y)dy.

We must find non-negative functions α(y), β(y), δ(y), γ(y), η(y), θ(y), λ1(y) and

λ2(y) and a non-negative number ρ satisfying those inequalities. Immediately, we deduce

from above that γ(ŷA) = δ(ŷA) = α(ỹA) = η(ỹA) = 0.
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We can then simplify and obtain the following system of 9 equations in 9 unknowns:

β(yA) + γ(yA) = 1, (25)

α(y1) + δ(y1) > 0, (26)

η(y′′A) + θ(y′′A) > 0, (27)

β(yA) = ρF (yA), (28)

γ(yA) = ρ (F (ŷA)− F (yA)) , (29)

δ(y1) = ρ (F (y1)− F (ŷA))− Γ1(y1), (30)

α(y1) = ρ(F (ỹA)− F (y1)), (31)

η(y′′A) = ρ(F (y′′A)− F (ỹA)), (32)

θ(y′′A) = ρ(1− F (y′′A))− Γ2(y+), (33)

where all inequalities have been replaced by an equal sign, except for (26) and (27)

where we use the strict inequality.29

Using (28) and (29) in (25), we obtain that

ρF (yA) + ρ (F (ŷA)− F (yA)) = 1,

⇒ ρF (ŷA) = 1

⇒ ρ = 1/F (ŷA) ≥ 2.

Then (28) gives

β(yA) =
F (yA)

F (ŷA)
∈]0, 1],

while (29) gives

γ(yA) =
F (ŷA)− F (yA)

F (ŷA)
∈ [0, 1[.

Once ρ has been identified, we can use equations (31) and (32) to pinpoint the values

of α(y1) and η(y′′A),which are both positive since ρ > 0.

From (30), we have

δ(y1) =
F (y1)− F (ŷA)

F (ŷA)
− Γ1(y1),

29The inequality needs to be strict for (26) and (27). Otherwise, we would have (using (31) or (32))
that ρ = 0 and a contradiction with what follows.
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so that we can choose

Γ1(y1) =
F (y1)

F (ŷA)
− 1 ≥ 0 and δ(y1) = 0

and from (26) we obtain

α(y1) + δ(y1) =
F (ỹA)− F (y1)

F (ŷA)
> 0.

Likewise, from (33), we have

θ(y′′A) =
1− F (y′′A)
F (ŷA)

− Γ2(y+),

so that we can choose

Γ2(y+) =
1− F (y′′A)
F (ŷA)

≥ 0 and θ(y′′A) = 0

and from (27) we obtain

η(y′′A) + θ(y′′A) =
F (y′′A)− F (ỹA)

F (ŷA)
> 0.

From the sign of derivatives of the functions α(y), β(y), δ(y), γ(y) , η(y), θ(y), λ1(y)

and λ2(y), we can then immediately verify that they are non-negative in their intervals

when end points are defined as above, meaning that we have indeed constructed non-

negative Lagrangian functions, and proved our claim.

D Proof of Proposition 8

We first prove the properties of the function Φ before turning to those of ΦA. The

characteristics of ΦB are obtained in a similar way. Proposition 8 follows from the

definitions and properties of these three curves.

Step 1: The function Φ(yB)

The function Φ is defined in the following way: it gives the (unique) value of yA such

that the median income individual is indifferent between the unconstrained optimal

tax schedule of party A and the unconstrained optimal tax schedule of party B. We
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first prove that, in the space (yB, yA), this curve goes through the point (ym, ym), is

decreasing and crosses the horizontal axis at (α, y−) with ym < α < y+.

The after-tax income of the median voter under A’s optimal tax is

yA +

∫ y+

yA

(y − yA)dF

whereas it is

ym +

∫ y+

yB

(y − yB)dF

under B’s optimal tax, where we have used (6) and (7). The condition yA = Φ(yB) can

thus be written

yA +

∫ y+

yA

(y − yA)dF = ym +

∫ y+

yB

(y − yB)dF . (34)

a) When yA = ym and yB = ym, it is satisfied with equality. Therefore the curve Φ

goes through the point (ym, ym).

b) We then determine how the LHS of (34) varies with yA:

∂

∂yA

(
yA +

∫ y+

yA

(y − yA)dF

)
= F (yA) ≥ 0.

The derivative of the RHS of (34) with respect to yB is:

∂

∂yB

(
ym +

∫ y+

yB

(y − yB)dF

)
= F (yB)− 1 ≤ 0.

These two properties imply that the function Φ(yB) is continuous and decreasing.

c) We now argue that

yA +

∫ y+

yA

(y − yA)dF > ym +

∫ y+

yB

(y − yB)dF

for all yA ≤ ym when yB is close to y+.This comes from the observation that

yA+

∫ y+

yA

(y− yA)dF =

∫ yA

y−
yAdF +

∫ y+

yA

ydF ≥ y > ym = lim
yB→y+

ym+

∫ y+

yB

(y− yB)dF .

This inequality, together with the continuity of Φ, implies that the curve Φ crosses the

horizontal axis at the point (α, y−) where ym < α < y+.

The paragraph after the statement of the proposition in section 8 explains why we

have type IA or IIA equilibria when ym ≥ yA > Φ(yB), and type IB or IIB equilibria

when y− < yA < Φ(yB).

42



Step 2: The function ΦA(yB)

We now construct the curve ΦA and show that it is decreasing and goes through the

points (ym, ym) and (y+, β), where y− < β < ym. Along this curve (i.e., when yA =

ΦA(yB)), party B is indifferent between playing the strategy cIAB or cIIAB when party A

proposes its optimal tax schedule. As the utility level attained by party B is continuous

in yB under both policies cIAB and cIIAB , the function ΦA is also continuous in yB.

Take any point on Φ except (ym, ym) and consider an increase in yB: yB → yB + δ.

We argue that for δ arbitrarily small, B prefers to play cIAB to cIIAB when A proposes its

ideal policy. The argument is that when δ gets small, cIAB gets arbitrarily close to B’s

ideal policy coptB (recall that along Φ the median voter is indifferent between the ideal

policies of the two parties) while cIIAB does not. Then it is easy to see that, for small δ

enough, B strictly prefers cIAB to cIIAB .

Next consider the point (ym, ym). We argue that at any point to the right of (ym, ym),

B prefers cIIAB to cIAB . This follows from the fact that cIAA is the ideal policy of the median

voter, coptm , when yA = ym. Consequently, cIAB must also be equal to coptm for B to be

reelected by the median voter. It then immediate follows that cIIAB is preferred by B to

cIAB , as it gives less income to ym individuals and more to yB individuals.

These two facts imply that ΦA is to the right of Φ and crosses the axis yA = ym at

(ym, ym) only. Therefore ΦA is decreasing over some subset of its support.

We now argue that ΦA cannot increase, by showing that at any point to the right

of ΦA, B prefers cIIAB to cIAB .

Consider a point (yB, yA) on ΦA (corresponding tax schedules are represented on

figure 5) and increase slightly yB : yB → yB + δ. The initial point being on ΦA, we

have cIAB (yB, yB, yA) = cIIAB (yB, yB, yA), namely B obtains the same after-tax income

by playing cIAB or cIIAB . We then construct cIAB (y, yB+δ, yA). It is represented on Figure

5. It is identical to cIAB (y, yB, yA) for values of y ≤ y′B; for y > y′B, it corresponds to

the dashed green curve. Then consider the strategy for yB + δ that corresponds to the

dashed green curve for y larger than y′B and to cIIAB (y, yB, yA) for lower values of y.

This tax function satisfies by construction the GBC and yields 50% of the votes to B.
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Moreover, it provides exactly the same net income as cIAB (y, yB + δ, yA) to people with

gross income yB + δ. Therefore there exists a tax schedule in the family cIIAB that is at

least as good as cIAB for individuals with income yB + δ. This means that cIIAB is weakly

preferred to cIAB and thus that the equilibrium cannot be IA to the right of ΦA (either

the curve ΦA is flat or the equilibrium is IIA).

Finally we prove that ΦA cannot cross the horizontal axis yA = y−, that is ΦA(y+) >

y− for any yB ≤ y+. To do so, it is sufficient to show that B strictly prefers cIAB to cIIAB

when yA → y−. When yA = y−, A’s optimal tax policy consists in giving the same

net income, y, to everyone (the function cIAA is flat). This has a direct implication for

strategy cIIAB : when yA gets arbitrarily close to y−, B has no other choice than proposing

a tax schedule cIIAB arbitrarily close to cIAA . It is then easy to see from Figure 3 why

party B prefers the schedule cIAB : this schedule gives less than ȳ to individual with

income y < ym in order to increase after-tax consumption of individuals y′B < y ≤ y+.

We then have that cIAB (yB, yB, y−) > cIIAB (yB, yB, y−).

Step 3: The function ΦB(yB)

The technique used for constructing ΦB is similar to the one used for ΦA.
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Figure 3: Party A proposes its unconstrained optimal policy
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Figure 4: Partition of equilibria
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