
Environmental taxation, tax competition

and harmonization

Helmuth Cremer

University of Toulouse
(IDEI and GREMAQ)
Toulouse, France

Firouz Gahvari¤

Department of Economics
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

January 2003

¤We thank Hormozd Gahvari for help in computations.



Abstract

This paper studies the tax competition problem in the presence of a global negative

externality. It shows that economic integration causes the ¯rms to adopt the same or

less polluting technologies, but it nevertheless increases aggregate emissions and low-

ers welfare. Second, the paper examines the rami¯cations of partial tax harmonization

policies. It shows that harmonizing commodity taxes above their unrestricted Nash

equilibrium value may either increase or lower the equilibrium emission tax. Under

the former, ¯rms opt for less polluting technologies, aggregate emissions decrease and

welfare improves. On the other hand, if emission tax goes down, ¯rms will choose more

polluting technologies, aggregate emissions will increase and welfare deteriorates. Fi-

nally, harmonizing the emission tax above its unrestricted Nash equilibrium value, which

leads the ¯rms to adopt a less polluting technology, also causes aggregate emissions to

decline and overall welfare to increase.

JEL classi¯cation : H21; H23; H73; H87; F15

Keywords: Environmental taxation; tax competition; partial harmonization; polluting

technology, emissions



1 Introduction

A major theme of the tax competition literature, and the earlier ¯scal federalism lit-

erature on which it is based, has been the potential loss in tax revenues as a result of

tax competition. It is generally believed that the integration process will exert a neg-

ative in°uence on the ability of the member countries to generate an \adequate" level

of tax revenues to ¯nance their social policies.1 This paper takes a fresh look at the

tax competition issue, and the e®ectiveness of partial ¯scal coordination policies, in the

presence of another source of economic ine±ciency in the economy. In particular, we

have in mind cases where, because of a global externality problem, resourse allocations

are ine±cient prior to the economic integration.

The underlying reasons for the \race to the bottom" concern are simple to grasp.

International economic integration entails the dismantling of barriers to free movements

of people, capital and goods among nations. From the perspective of national govern-

ments, this increased mobility may be viewed as an opportunity to move other countries'

tax bases into one's own. Each country will then try to compete with the others in or-

der to attract the tax bases that are being made mobile. A simple and e®ective way to

achieve this is by lowering one's tax rates. As countries try to undercut one another's

tax rates, it is not di±cult to envisage an end result in which the tax rates, and the

corresponding levels of government services, will be less than optimal.2

Applying the logic of tax competition to polluting activities, it appears natural to

expect that tax competition would lead to more pollution. However, this expectation

1The literature also identi¯es a counter force in terms of a \tax exporting" e®ect. However, the
more serious concerns have been raised about the prospects of less than optimal expenditures on public
goods and redistributive policies in Europe. This is re°ected in Sinn's (1994) warning that \In the end,
all countries will settle at an equilibrium where only bene¯t taxes are charged, and no redistribution
policies are carried out" (p. 100).

2There is also the possibility of \excessive" tax rates due to tax exporting e®ect. However, it is
the less-than-optimal-tax-rates result which has received the greatest share of attention. See, e.g.,
Sinn (1994), and Edwards and Keen (1996). For recent surveys of the tax competition literature, see
Cremer et al. (1996), Wilson (1999), Wellisch (2000), Hau°er (2001) and Cremer and Pestieau (2002).
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is built on an implicit assumption that governments use the same tax instrument for

controlling emissions as for generating tax revenues. When armed with both emission

and output taxes, a centralized authority may use output taxes for tax competition,

keeping emission taxes for the control of emissions.3

Under this circumstance, there is no a priori reason to suspect that tax competition

per se should lead to more pollution. It is true that cutting output taxes (to foster tax

competition) tends to lower the consumer price of polluting goods, leading to an increase

in their consumption and with it the aggregate emission levels as well. It is equally true,

however, that increasing emission taxes to combat pollution would push the consumer

prices up, curtail consumption and lower aggregate emissions. This ameliorating e®ect

on aggregate emissions is further enhanced if an increase in emission taxes induces

the ¯rms to switch to less polluting techniques of production. The ¯nal outcome will

ultimately depend on the balance of these con°icting forces.

We consider a simple setting with two identical countries whose inhabitants con-

sume two goods: a non-polluting numeraire good and a polluting consumption good.

Every consumer has an endowment of the numeraire good, some of which he consumes,

spending the rest to purchase the polluting good and to pay taxes. Production tech-

nologies are identical in both countries. Pollution (CO2, SO2, etc.) is global and a

by-product of production. The polluting good may be produced in di®erent ways. Each

procedure entails a di®erent resource cost and a di®erent emission level.4 Emissions are

bene¯cial in that a higher level of emission reduces the private (per unit) production

costs of polluting goods. That is, the production costs of polluting goods are negatively

correlated to their emissions. This is to capture the fact that technologies which cut

3In a companion paper [Cremer and Gahvari (2002)], we show that such a targeting property depends
on whether border taxes are origin- or destination-based. For an analysis of this question within the
framework of a closed economy, See Cremer and Gahvari (2001).

4This models situations where a polluting good may be produced through di®erent production tech-
niques, or using di®erent polluting inputs where each particular input entails a di®erent emission level.
Di®erent abatement techniques also imply that a unit of polluting good is associated with di®erent
emission levels.
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emissions are more expensive to employ. Firms producing the polluting good operate in

a competitive environment. The good is produced by an industry that is comprised of

a ¯xed but su±ciently large number of identical ¯rms. It is produced, for a given unit

cost of production, by a linear technology subject to constant returns to scale.

The polluting good is produced and consumed in both countries. Prior to economic

integration, there is no trade between the two countries. Upon integration, residents of

each country will be able to purchase the polluting good from the foreign as well as the

home country. While the physical characteristics of the home- and foreign-produced

goods are identical, consumers have a preference for purchasing the home-produced

goods. We model this by assuming that consumers experience a certain disutility when

they consume one unit of the foreign-produced good. The extent of the disutility di®ers

across consumers. Individuals have otherwise identical quasi-linear preferences.

There are two (distortionary) tax instruments: commodity and emission taxes.

These are \origin-based". Thus, each country levies a certain tax on each unit of

the (polluting) consumption good that its ¯rms produce and sell (regardless of where

the purchasers come from). Second, to combat pollution, the country imposes another

tax per unit of emissions on (home) ¯rms. Each country rebates its tax revenues to its

residents in a lump-sum fashion.

Within this framework, we characterize the emission tax rates in second-best and

closed economies and show that no commodity taxes are chosen in either setup. Further,

we show that the ¯rms choose an emission technology which is more polluting than the

second best. We also show that aggregate emissions exceed their second-best levels as

well. Next, we characterize the Nash equilibrium values of commodity and emission

taxes as the economy opens up. We show that the formula for emission tax remains the

same in closed and open economies. On the other hand, there will be a subsidy on the

commodity tax.

Our other results include the ¯nding that economic integration causes the ¯rms to
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adopt the same or less polluting technologies, but it nevertheless increases aggregate

emissions and lowers welfare. We then show that the Nash equilibrium value of the

emission tax may either increase or decrease as a result of harmonizing the commodity

tax above its unrestricted Nash equilibrium value. If the emission tax increases, ¯rms

will adopt less polluting technologies. This in turn leads to a lowering of aggregate

emissions and improvement in overall welfare. On the other hand, if emission tax goes

down, ¯rms will choose more polluting technologies. Under this circumstance, aggregate

emissions will increase and welfare deteriorates. Finally, we consider the harmonization

of emission taxes above their unrestricted Nash equilibrium value. This would not only

lead the adoption of less polluting technologies, but also to a reduction in aggregate

emissions and a rise in overall welfare.

2 The model

The residents of two identical countries, A and B consume two goods: a polluting good,

x, and a nonpolluting numeraire. Every consumer has an endowment of m units of the

numeraire good and receives Tj in lump-sum rebate from the government of j in which

he resides.

The level of pollution is determined by total (worldwide) emissions which are created

by the production process. The polluting good is produced from the numeraire according

to a linear technology with unit cost C(ei), where ei (i = A;B) denotes emission per unit

of output in country i. The more polluting a technology, the less costly it is to employ.

Thus unit cost is a decreasing function of emission ei.
5 We assume also that C(ei)

is continuously di®erentiable and convex. All ¯rms operate in a perfectly competitive

environment.
5More precisely the assumptions is that C0(:) < 0 for all ei up to some limit ¹e, and that C0(¹e) = 0,

i = A;B. This models situations where a polluting good may be produced through di®erent production
techniques, or using di®erent polluting inputs where each particular input entails a di®erent emission
level. Di®erent abatement techniques also imply that a unit of polluting good is associated with di®erent
emission levels.
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In a closed economy, consumers can buy the polluting good only from domestic

producers. Upon integration, the polluting good may be traded. While the domestic

and foreign goods are identical in their physical characteristics and in quality, consumers

have a preference for the domestic product. This means that if prices are equal, all

consumers in a given country buy the domestic product. Individuals, however, di®er in

their attachment to the home product. Put di®erently, the price di®erential required

to switch to the foreign product di®ers across consumers. Individuals are identi¯ed by

µ 2 [¡1; 1], with jµj determining a consumer's preference for domestic goods. A resident

of B is identi¯ed by a negative µ, while a positive µ corresponds to a resident of A.

Population size in each country is normalized to one and µ is uniformly distributed.

The utility of a person in j = A;B who purchases the polluting good produced in

i = A;B is given by

(
ujj = m ¡ pjx

j
j + h(xjj) + Tj ¡ '(E);

uji = m ¡ pix
j
i + h(xji ) ¡ ±jµjxji + Tj ¡ '(E); with j 6= i;

(1)

where xji is consumption of the polluting good at the consumer price of pi, E is the

global emission level, and ± > 0 is a \dislike index".6 Standard assumptions apply to

the (continuously di®erentiable) elements in the utility function: h0(:) > 0; h00(:) < 0

and '0(:) > 0; '00(:) ¸ 0:

Utility maximization yields

(
h0(xjj) = pj ;

h0(xji ) = pi + ±jµj; with j 6= i:
(2)

The right-hand side of these expression re°ect the net cost of purchasing one unit of the

good. For a resident of j who buys the domestic product, this is simply the consumer

price, pj. On the other hand, the person who buys the foreign product incurs a net

(utility) cost of pi + ±jµj. From (2) we obtain the demand for the polluting good as:

6All taxes are origin-based. Consequently the price does not depend on the location of the buyer.
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xjj = x(pj) and xji = x(pi + ±jµj). Substituting in (1) then yields ujj = u(pj; Tj; E) and

uji = u(pi + ±jµj; Tj; E).

Let ~µ denote the \marginal" consumer who is indi®erent between buying home- or

foreign-produced goods. If the marginal consumer is a resident of A (~µ > 0), we have

pA = pB + ±~µ. Similarly, if ~µ is a resident of B (~µ < 0), pB = pA ¡ ±~µ. In either case

~µ =
pA ¡ pB

±
: (3)

Observe that individuals to the left of ~µ buy the from country B while individuals to

the right of ~µ buy from country A.

Production and sale of one unit of the polluting good generate pi¡C(ei) in revenues

for the government of i. Assuming that governments refund all tax proceedings in a

lump-sum way to their residents, we have:

TA(pA; eA; pB) =

(
[pA ¡ C(eA)] (1 ¡ ~µ)x(pA) if pA ¸ pB;

[pA ¡ C(eA)]
h
x(pA) +

R 0
~µ x(pA ¡ ±µ)dµ

i
if pA < pB.

(4)

TB(pB ; eB; pA) =

(
[pB ¡ C(eB)]

h
x(pB) +

R ~µ
0 x(pB + ±µ)dµ

i
if pA ¸ pB;

[pB ¡ C(eB)] (1 + ~µ)x(pB) if pA < pB.
(5)

Similarly, total pollution, E, is given by:

E(pA; pB; eA; eB) =

8
<
:

eB

h
x(pB) +

R ~µ
0 x(pB + ±µ)dµ

i
+ eA(1 ¡ ~µ)x(pA) if pA ¸ pB;

eB(1 + ~µ)x(pB) + eA
hR 0
~µ x(pA ¡ ±µ)dµ + x(pA)

i
if pA < pB.

(6)

In what follows we are mainly interested in symmetric equilibria with pA = pB and ~µ = 0.

From that perspective, it is important to note that TA; TB and E are continuous at this

point. Furthermore, one can easily show that these functions are in fact di®erentiable

at pA = pB. (See the Appendix).
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2.1 Taxes, and the price of the polluting good

Each country has two tax instruments to combat pollution. First, a tax of ¿i on each unit

of the polluting good that its ¯rms produce (regardless of the location of the buyer).7

Second, a tax of ti per unit of emissions on (home) ¯rms. Given the constant returns

to scale assumption, pro¯t maximization is equivalent to maximizing pro¯ts per unit of

output. Consequently a ¯rm in country i chooses ei to maximize

pi ¡ C(ei) ¡ tiei ¡ ¿i;

which yields, for i = A;B,

¡C 0(ei) = ti: (7)

Equation (7) determines emissions per unit as a function of the emissions tax rate.8

Finally, competitive equilibrium requires that the price equals marginal (and average)

cost so that

pi = C(ei) ¡ C 0(ei)ei + ¿i: (8)

2.2 Welfare

Denote utilitarian welfare for country i by Wi, (i = A;B). The use of a utilitarian

measure appears natural in our setting. Given quasi-linear preferences this simply

corresponds to total surplus. De¯ne Ui(:) and F (:) by

Ui(pi; Ti; E) ´
Z 1

0
[m + h(x(pi)) ¡ pix(pi) + Ti ¡ '(E)] dµ;

= m + h(x(pi)) ¡ pix(pi) + Ti ¡ '(E); i = A;B: (9)

1

±
F (p + ±µ) ´

Z
[h(x(p + ±µ)) ¡ (p + ±µ)x(p + ±µ)] dµ: (10)

7Recall that the tax is origin based.
8The second-order condition C 00(ei) > 0 is satis¯ed from the convexity of C(:):
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We prove in the Appendix that WA and WB have the following characterizations and

that they are continuously di®erentiable everywhere.

WA =

½
UA ¡ ~µ [h(x(pA)) ¡ pAx(pA)] + 1

± [F (pA) ¡ F (pB)] if pA ¸ pB;
UA if pA < pB.

(11)

WB =

½
UB if pA ¸ pB;

UB + ~µ [h(x(pB)) ¡ pBx(pB)] ¡ 1
± [F (pA) ¡ F (pB)] if pA < pB.

(12)

where Ti and E are given by equations (4){(5) and (6).

Note that the middle expression in the right-hand side of (11) [when pA ¸ pB;]

measures the consumer surplus that country A does not get because some of its residents

do not buy the home-produced good. These are the people with a µ 2 [0; ~µ). Instead,

by buying from B, these individuals attain a surplus given by the last expression in the

right-hand side. The same interpretation applies to (12) and residents of B.

2.3 First-best benchmark

The ¯rst-best (utilitarian) solution is obtained by maximizing worldwide welfare, i.e.,

the sum of utilities of both countries' residents. Given symmetry, one can determine the

¯rst-best benchmark by assuming that the two countries cooperate fully in their ¯scal

policies. That is, they set ¿i and ti taking the welfare of the citizen of both countries

into account. Denote the welfare of country i (i = A;B) at a symmetric allocation by

W S
i . From (11) or (12), this is given by

WS
i (pi; Ti; E) = m ¡ pix(pi) + h(x(pi)) + Ti ¡ '(E): (13)

Similarly, country i's budget constraint at a symmetric allocation is obtained from (4)

or (5) and requires

Ti = [pi ¡ C(ei)]x(pi): (14)

The ¯rst-best solution is obtained by maximizing WS
i subject to (14) and

E = 2eix(pi): (15)

We prove in the Appendix that
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Proposition 1 The ¯rst-best (utilitarian) allocation, and the supporting prices and tax

instruments, are characterized by equations (2), (7), (8), (14), (15), and

¿i = 0; (16)

ti = ¡C0(ei) = 2'0(E): (17)

3 Closed borders

We now study the Nash equilibrium when the borders are closed. Governments choose

the values of their ¯scal instruments (which determine their emission levels) simulta-

neously and non-cooperatively. A government's objective function is the welfare of its

own residents. Consequently, it does not account for the impact of domestic emission

on residents of foreign countries. This indicates that the problem facing each country

is not the same as the \¯rst-best benchmark" problem studied earlier.

Without trade, everyone buys the domestic good and we have ~µ = 0. Consequently,

the government budget constraint continues to be given by equation (14). Turning to

the expression for aggregate emissions, it is given by

E = eAx(pA) + eBx(pB): (18)

This is obtained from (6) by setting ~µ equal to zero.

The best reply of government i is determined by maximizing Ui, as speci¯ed in

equation (9), with respect to ¿i and ti, subject to (14) and (18). Solving the problem,

setting ¿A = ¿B and tA = tB yields the symmetric Nash equilibrium. We have

Proposition 2 (i) The symmetric Nash equilibrium in a closed economy is character-

ized (for i = A;B) by equations (2), (7), (8), (14), (18), and

¿i = 0; (19)

ti = ¡C 0(ei) = '0(E): (20)
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(ii) Per-unit emissions are higher than in the ¯rst best so that more polluting tech-

nologies are adopted.

(iii) Worldwide emissions exceed their ¯rst-best levels.

Condition (19) shows that the equilibrium solution for ¿i is equal to its second-best

value of zero. This should not be surprising. With closed borders, there is no tax

competition between the countries. Hence the optimal tax rule for setting ¿i remains

una®ected. On the other hand, the rule for setting emission taxes now di®ers from

the ¯rst-best benchmark case. Condition ¡C0(ei) = '0(E) in (20) replaces condition

¡C 0(ei) = 2'0(E) of the ¯rst-best. Thus, the environmental tax is set at one half the

full marginal social damage of emissions. This re°ects our earlier observation that each

country, when determining its emissions policy, considers the damage to its own citizens

only. Part (ii) follows intuitively from this last observation and the fact that C(:) and

'(:) are convex. Part (iii) is ensured by the fact that the price of the polluting good

increases and its consumption declines; see the Appendix.

4 Open borders

We now turn to the general speci¯cation of the model with the possibility of buying

foreign-made products. Trade has important implications for a country's potential tax

revenues. With open borders, some residents of one country may ¯nd it advantageous

to buy from the other country. Consequently, the tax bases of the di®erent countries

becomes \more elastic". With closed borders, a change in the tax policy (and the

induced price variation) a®ects the demand (taxable transaction) of a given set of tax-

payers. With open borders, this may also a®ect the number of e®ective taxpayers in

the country. Put di®erently, tax revenues are a®ected at the extensive as well as at

the intensive margin. Formally, the extensive margin is re°ected by variations in ~µ, the

index of the marginal consumer; see Section 2. This changes the nature of the strategic
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interaction between the countries. In addition to the global pollution aspect, there is

now a potential for tax competition as well.

We determine the symmetric Nash equilibrium of this rede¯ned game. The strate-

gic variables continue to be the tax rates ti; ¿i which are set simultaneously with each

government maximizing welfare of its residents. >From the problem of country i, we de-

termine its best-reply functions. Setting ¿A = ¿B and tA = tB then yields the symmetric

Nash equilibrium. We have

Proposition 3 Denote the absolute value of the elasticity of demand for the polluting

good in country i, i = A;B, by "i ´ ¡x0(pi)pi=x(pi).9 The symmetric Nash equilibrium

in an open economy is characterized (for i = A;B) by equations (2), (7), (8), (14),

(18), and

¿i
pi

= ¡ei'0(E)

pi + ±"i
; (21)

ti = ¡C 0(ei) = '0(E): (22)

Comparing these expression with their closed economy counterparts, (19) and (20),

shows the impact of tax competition. While xi goes untaxed in a closed economy,

this is no longer the case when the economy opens up. Commodity tax competition

pushes the equilibrium value of ¿i down to a negative value. It is important to note

that the feasibility of this solution is due to the existence of positive emission taxes. No

country would want to push its consumer price of xi below its marginal cost. A positive

ti = ¡C 0(ei) allows ¿i to be negative as long as ¿i ¡ C 0(ei)ei = pi ¡ C(ei) > 0.10 Also

observe that equation (21) re°ects the well-known \inverse elasticity rule" of optimal

commodity taxes: The higher is ", the smaller will be the required tax.

9To be precise, this is the elasticity of demand at a symmetric equilibrium.
10In the traditional tax competition literature (without emissions), the fact that pi ¡ C(ei) cannot

be negative implies that the Nash equilibrium value of ¿i is zero when lump-sum taxes can be used to
¯nance the provision of public goods. This is why the literature rules lump-sum taxes out.
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Turning to optimal emission rule, it remains the same as under the closed-economy

solution. This is because the marginal social damage of emissions to a citizen of i is

evaluated the same way by its government whether the economy is closed or open. How-

ever, this result in itself is not su±cient to compare the equilibrium levels of emissions

(ei and E) with their values in the absence of trade. This is an even more interesting

question to which we now turn.

4.1 Pollution technologies, emissions, and welfare

To address this question, we shall use the property that the closed border solution is

e®ectively a special case (or more precisely the limit) of the open border equilibrium as ±

goes to in¯nity. Intuitively, this property is not surprising: as the dislike for the foreign

good intensi¯es, it e®ectively ceases to be a viable alternative to the home-produced

good. Consequently, all individuals buy from their country of residence and one is back

in an autarchic world. Formally, this convergence property follows directly from the

expressions that characterize the closed- and open-economy equilibria. To see this, ¯rst

note that except for ¿i, the two sets of equilibria are de¯ned by identical equations,

namely, (14), (15) and (22). The ¿i itself is equal to zero in a closed economy and given

by (21) in an open economy. The convergence then follows directly from the property

that the right-hand side of equation (21) tends to zero as ± tends to in¯nity.

This property enables us to compare the values of the relevant variables under the

two equilibria. We do this by studying their comparative statics properties with respect

to ±. Speci¯cally, assuming a constant elasticity of demand for x, we show in the

Appendix, that as ± increases, the open-economy equilibrium values of t and E decrease

while those of e and p increase. This tells us that the open economy values of t and E

exceed, and those of e and p fall short of, their closed-equilibrium values. The interesting

aspect of this is that it suggests that international trade makes the countries to switch

to less polluting technologies (less e) but causes total levels of emissions to increase. In
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the special case of a constant marginal social damage of emissions, e remains unchanged

but p continues to decrease resulting in an increase in consumption of polluting goods

and consequently in aggregate emissions; see the appendix. The appendix also shows

that a country's level of welfare will unambiguously decline as the economy opens up.

We summarize the results of this subsection as

Proposition 4 Economic integration (i) causes the ¯rms to adopt the same or less

polluting technologies; (ii) results in price subsidies to polluting goods, (iii) lowers the

price of polluting goods; (iv) increases aggregate emissions and (v) lowers welfare.

5 Harmonization of output taxes

We have seen in the previous sections that the closed and open border solutions are

both ine±cient and that this is due to a failure of coordination between the countries.

It is plain that in the context of our model, the ¯rst-best can be restored if the countries

set both instruments, output and emission taxes, in a coordinated way. Given symme-

try, this can be achieved through a \harmonization" of both tax instruments, i.e., by

setting their respective values at a common speci¯ed level. In practice, however, such

a full coordination may be di±cult to achieve. Instead, countries may have to resort to

\partial" harmonization of policies i.e., a harmonization which pertains only to a subset

of the policy instruments. In our setting this may occur in two ways. On the one hand,

one can harmonize output taxes while emission taxes continue to be set independently.

On the other hand, it is possible to think of a harmonization of emissions taxes only. In

either case, one may wonder whether such partial harmonization is (necessarily) desir-

able. In particular, one would like to know if it would have the intended impact on the

environment and on welfare. Intuitively, the possible concern is that the neutralization

of one variable of ¯scal competition, may make competition in the other variable even

¯ercer and that this may give rise to perverse results. For instance, a harmonization of

output taxes could result in a lowering of emission taxes and thus in a switch to more
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polluting technologies. This section discusses the harmonization of output taxes; the

harmonization of emission taxes is considered in the next section.

Assume that output taxes are set at ¿ = ¿̂ while emission taxes continue to be set

non-cooperatively, exactly as in Section 4. The Nash equilibrium is then contingent on ¿̂

and we write the solutions as tN(¿̂), eN (¿̂), EN (¿̂); pN (¿̂) and TN(¿̂): Further, denote all

unrestricted Nash equilibrium values by the superscript N (¿N ; tN ; eN ; EN ; pN and TN).

It is clear that if one were to harmonize ¿ at its unrestricted Nash equilibrium value,

¿N , t and all the other variables will also take their (unrestricted) Nash equilibrium

values.

It is easy to show that the Nash equilibrium value of ti, conditional on ¿ = ¿̂ , is the

solution to11

¡
·
pi ¡ C(ei)

± "i
+

¿i
pi

¸
+

·
ei
pi

+
1

C 00(ei)ei"i

¸ £
C0(ei) + '0(E)

¤
= 0: (23)

Observe that when ¿̂ = ¿N , the ¯rst bracketed expression in the right-hand side of (23)

will be zero so that eN(¿̂) = eN .

5.1 Harmonization and the environment

To study the e®ects of harmonization on the environment, we have to ¯rst determine

how harmonization impacts tN (¿̂). To this end, di®erentiate (23) with respect to ¿̂

and evaluate the resulting expression at (tN ; ¿N ). To simplify the derivations, we will

assume that the marginal social damage of emissions is constant. We have (see the

Appendix)
dtN(¿̂)

d¿̂
=

¡1

e + C0(e)e+±

C00(e)e
£
1+(1¡¿=p)±"=p

¤ : (24)

It is clear from (24) that dtN(¿̂)=d¿̂ can take both positive as well as negative values. The

numerical example at the end of this section further demonstrates this point. Now with

11The best-reply function for i is given by equation (A45) in the Appendix when ¿i is set at ¿̂ . Of
course, one must solve (23) in conjunction with equations (2), (7), (8), (14), and (18).
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eN(¿̂) moving in opposite direction to tN(¿̂), equation (24) indicates that harmonizing ¿

at \just above" its Nash equilibrium value may have a bene¯cial as well as a detrimental

e®ect on the choice of a polluting technology.

Next, to determine what happens to aggregate emissions, di®erentiate E = 2ex(p)

with respect to ¿̂ . After a bit of algebraic manipulation, we get

dEN(¿̂)

d¿̂
= 2x(p)

2
4
1
±" ¡ C0(e)e

±p ¡ ¿
p2

1
±" + 1

p ¡ ¿
p2

3
5 deN (¿̂)

d¿̂
: (25)

The bracketed expression in the right-hand side of (25) is positive due to the negative

signs of ¿ and C 0(e). Consequently, with the e®ect of harmonization on eN (¿̂) being am-

biguous, equation (25) indicates that the e®ect of harmonization on E is also ambiguous.

Nevertheless we have that e and E always move positively together.

5.2 Harmonization and welfare

So far, we have shown that harmonizing ¿i at a level which is above the unrestricted

Nash equilibrium does not necessarily improve the environment. Let us now study the

impact of such a policy on overall welfare. This is of course a®ected by what happens

to the environment; but it also depends on other factors, particularly tax distortions.

From (13), a country's welfare at a (restricted) symmetric Nash equilibrium with ¿ = ¿̂

is given by

WS
¡
tN(¿̂); ¿̂

¢
= m ¡ pN(¿̂)x

¡
pN(¿̂)

¢
+ h

¡
x

¡
pN (¿̂)

¢¢
+ TN (¿̂) ¡ '

¡
EN (¿̂)

¢
; (26)

where we have dropped the i subscript for simplicity. Di®erentiating this expression

totally with respect to ¿̂ yields:

dWS
¡
tN (¿̂); ¿̂

¢

d¿̂
=

@W S
¡
tN (¿̂); ¿̂

¢

@¿̂
+

@WS
¡
tN(¿̂); ¿̂

¢

@tN (¿̂)

dtN (¿̂)

d¿̂
: (27)
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In the Appendix, we derive the expressions for @W S=@¿̂ and @W S=@tN(¿̂). It follows

from these expressions and (24) that at ¿̂ = ¿N ,

dWS
¡
tN(¿̂); ¿̂

¢

d¿̂
= ¡x(p)

8
<
:

'0(E)
£p¡C(e)

±2"
+ '0(E)e

±p ¡ ¿̂
p2

¤
¡ ¿̂

±"e

1
±" + 1

p ¡ ¿̂
p2

9
=
;

deN (¿̂)

d¿̂
: (28)

Note that the bracketed expression in the right-hand side of (28) is always positive.

Equation (28) thus tells us that welfare always moves negatively with e (and E since e

and E move together).

5.3 Numerical illustration

Consider a speci¯cation of our model with quadratic per unit costs, constant marginal

social damage (of total emission) and constant elasticity demand. We thus assume the

following functional forms:

C(e) =
b(1 ¡ e)2

2
; (29)

'(E) = 'E; (30)

h(x) =
x1¡1="

1 ¡ 1="
: (31)

Observe that demand for x is given by

x = p¡"; (32)

where " is the constant elasticity of demand equal (in absolute value).

Given these speci¯cations, we derive the Nash equilibrium allocations under open

international borders (from equations (2), (7), (8), (14), (18), (21), and (22)). Then,

we solve the problem again at a value exceeding its unrestricted Nash equilibrium value

(by dropping equations (21){(22) and replacing them with the set value of ¿ and (23)).

Table 1 reports the equilibrium with and without harmonization for two di®erent values

of ±: 0.1 and 0.01. All other parameters take the same values of b = 0:40; ' = 0:25 and

" = 0:20. In the ¯rst example, tN (¿̂) decreases. The result is a higher value for e and

16



Table 1. Commodity tax harmonization

(± = 0:1)
¿ t e E WS p x(p)

Absent harmonization -0.07737 0.25000 0.37500 1.20219 3.53635 0.09450 1.60292

With harmonization -0.07700 0.24907 0.37732 1.20955 3.53544 0.09453 1.60284

(± = 0:01)
¿ t e E WS p x(p)

Absent harmonization -0.09147 0.25000 0.37500 1.24168 3.52696 0.08040 1.65557

With harmonization -0.09130 0.25111 0.37223 1.23072 3.52855 0.08099 1.65316

E, and a lower value for welfare. In the second example, tN(¿̂) increases. The result is

a lower value for e and E, and a higher value for welfare.

The results of this section are summarized as

Proposition 5 Assume countries A and B harmonize their commodity tax rates, at

¿ = ¿̂ which is \just above" its unrestricted Nash equilibrium value, ¿N ; they continue

to compete in emission taxes. We have, assuming a constant marginal social damage of

emissions,

(i) Harmonizing ¿i at ¿̂ > ¿N may increase ti. Under this circumstance, ¯rms

opt for less polluting technologies. Then, aggregate emissions also decrease and welfare

improves.

(ii) Harmonizing ¿i at ¿̂ > ¿N may lower ti. Under this circumstance, ¯rms opt

for more polluting technologies. Then, aggregate emissions also increase and welfare

deteriorates.

6 Emission tax harmonization

We now turn to the harmonization of taxes at t = t̂. Output taxes continue to be

set non-cooperatively with each country maximizing its own residents' welfare. We

study the restricted Nash equilibrium conditional on t = t̂. The equilibrium value of ¿i,

17



denoted ¿N (t̂); is the solution to12

¡
·
pi ¡ C(ei)

± "i
+

¿i
pi

¸
+

ei
pi

£
C 0(ei) + '0(E)

¤
= 0: (33)

We also introduce the obvious notations eN (t̂), EN (t̂) and pN(t̂). Observe that when

t is unrestricted, the bracketed expression in the left-hand side of (33) will be zero so

that ¿ will also take its unrestricted Nash equilibrium value, ¿N .

6.1 Harmonization and the environment

With ti ¯xed, per unit emission, ei; is determined. Consequently, when the emission tax

rate is set above its unrestricted Nash equilibrium value, it follows immediately that less

polluting technologies will be used. However, the impact of this on E, and thus on the

overall environmental quality, is not as obvious. There is another factor here; namely

what happens to the aggregate production of the polluting good. This in turn depends

on p and thus on the Nash equilibrium level of ¿; ¿N(t̂). To study these additional

e®ects, we di®erentiate (33) with respect to t̂ and evaluate the resulting expression at

(tN ; ¿N ). To simplify the derivations, we continue to assume that the marginal social

damage of emissions is constant. We have (see the Appendix)

d¿N(t̂)

dt̂
= ¡e ¡ C 0(e)

C00(e)
£
1 + (1 ¡ ¿=p)±"=p

¤ : (34)

It is clear that the sign of the above expression is ambiguous. Nevertheless the value

of d¿N (t̂)=dt̂ implies that pN(t̂) is increasing in t̂ at t̂ = tN . To see this, di®erentiate

p = C(e) ¡ C 0(e)e + ¿ with respect to t̂:

dp

dt̂
= e +

d¿

dt̂
:

Substituting from (34) in above yields

dpN (t̂)

dt̂
= ¡ C0(e)

C 00(e)
£
1 + (1 ¡ ¿=p)±"=p

¤ ; (35)

12The best-reply function for i is given by equation (A46) in the Appendix when ti is set at t̂. Of
course, one must solve (33) in conjunction with equations (2), (7), (8), (14), and (18).
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which is positive when evaluated at t̂ = tN . This follows from the convexity of C(:) and

the fact that ¿N < 0.

Armed with this result, one can easily determine the e®ect of harmonization on

aggregate emissions. Di®erentiate E = 2ex(p) with respect to t̂. After a bit of algebraic

manipulation, we get

dEN (t̂)

dt̂
= ¡2x(p)

·
1

C 00(e)
+

e"

p

dpN (t̂)

dt̂

¸
: (36)

With dpN (t̂)=dt̂ > 0, the bracketed expression in the right-hand side of (36) will also

be positive. Consequently, equation (36) indicates that harmonizing t at just above its

unrestricted Nash equilibrium value, reduces aggregate emissions.

6.2 Harmonization and welfare

We have shown that harmonizing the emission tax rate reduces per unit as well as aggre-

gate emissions. Consequently, one would expect that this form of partial harmonization

does have a positive impact on overall welfare. We now show that this conjecture is

indeed correct.

Use (13) to write a country's welfare, at a symmetric Nash equilibrium with t = t̂,

as13

WS
¡
¿N (t̂); t̂

¢
= m ¡ pN(t̂)x

¡
pN (t̂)

¢
+ h

¡
x

¡
pN (t̂)

¢¢
+ TN(t̂) ¡ '

¡
EN(t̂)

¢
: (37)

Di®erentiate WS
¡
¿N(t̂); t̂

¢
totally with respect to t̂ to get

dWS
¡
¿N(t̂); t̂

¢

dt̂
=

@WS
¡
¿N(t̂); t̂

¢

@t̂
+

@WS
¡
¿N (t̂); t̂

¢

@¿N (t̂)

d¿N (t̂)

dt̂
: (38)

Next, substitute the expressions for @WS=@¿̂ and @WS=@tN (¿̂) (derived in the Appen-

dix), and d¿N (t̂)=dt̂ from (34), in (38) and simplify. We have at t̂ = tN ,

dWS
¡
¿N (t̂); t̂

¢

dt̂
= x(p)"

·
p ¡ C(e)

±"
+

'0(E)e

p

¸
dpN(t̂)

dt̂
+

x(p)'0(E)

C00(e)
> 0: (39)

13We have again dropped the i subscript for ease in notation.
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The sign of (39) follows from the fact that dpN (t̂)=dt̂ > 0 and the convexity of C(:).

The results of this section are summarized as

Proposition 6 Assume countries A and B harmonize their emission tax rates, at t =

t̂ which is \just above" its unrestricted Nash equilibrium value, tN ; they continue to

compete in commodity taxes. We have, assuming a constant marginal social damage of

emissions, (i) ¯rms opt for a less polluting technology, (ii) aggregate emissions decline

and (iii) overall welfare increases.

7 Conclusion

This paper has studied competition in environmental taxes in the presence of a global

negative externality. The distinctive feature of the study has been in its di®erentiation

between the choice of polluting technologies and aggregate emissions. The two need

not move positively together. Indeed, one main lesson that has emerged is that the

possiblity of trade causes the ¯rms to adopt the same or less polluting technologies, but

it nevertheless increases aggregate emissions and lowers welfare.

Secondly, we studied the rami¯cations of partial harmonization policies. With com-

modity tax harmonization, we found that if one were to harmonize the tax on the

polluting good at its unrestricted Nash equilibrium value, it will lead the equilibrium

emission tax to either increase or decrease. If the emission tax increases, ¯rms will adopt

less polluting technologies. In turn, this will lead to a lowering of aggregate emissions

and improvement in overall welfare. On the other hand, if emission tax goes down, ¯rms

will choose more polluting technologies. Under this circumstance, aggregate emissions

will increase and welfare deteriorates.

Turning to harmonization of emission taxes, it is plain that harmonizing emission

taxes at a value above their unrestricted Nash equilibrium, would lead the ¯rms to

adopt a less polluting technology. Interestingly, we showed that this policy also causes

aggregate emissions to decline and overall welfare to increase.
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Appendix

Derivation of (4),(5), (6): We have

TA =

( R 1
~µ [pA ¡ C(eA)]xAAdµ if pA ¸ pB;R 0
~µ [pA ¡ C(eA)]xBAdµ +

R 1
0 [pA ¡ C(eA)]xAAdµ if pA < pB,

(A1)

TB =

( R 0
¡1 [pB ¡ C(eB)]xBBdµ +

R ~µ
0 [pB ¡ C(eB)]xABdµ if pA ¸ pB;

R ~µ
¡1 [pB ¡ C(eB)]xBBdµ if pA < pB.

(A2)

And

E =

( R 0
¡1 eBxBBdµ +

R ~µ
0 eBxABdµ +

R 1
~µ eAxAAdµ if pA ¸ pB ;

R ~µ
¡1 eBxBBdµ +

R 0
~µ eAxBAdµ +

R 1
0 eAxAAdµ if pA < pB .

(A3)

Simplifying yields equations (4){(5) and (6) in the text.

Di®erentiability of TA(pA; eA; pB); TB(pB; eB ; pA) and E(pA; pB; eA; eB): Partially

di®erentiate equations (4) and (6) with respect to pA and eA, and equations (5) and (6)

with respect to pB and eB. We have

@TA
@pA

=

½
(1 ¡ ~µ)x(pA) ¡ 1

± [pA ¡ C(eA)]x(pA) +
£
pA ¡ C(eA)

¤
(1 ¡ ~µ)x0(pA) if pA ¸ pB ;

x(pA) +
R 0
~µ x(pA ¡ ±µ)dµ + [pA ¡ C(eA)]

£
x0(pA) ¡ 1

±x(pA)
¤

if pA < pB .
(A4)

@TB
@pB

=

(
x(pB) +

R ~µ
0 x(pB + ±µ)dµ + [pB ¡ C(eB)]

£
x0(pB) ¡ 1

±x(pB)
¤

if pA ¸ pB ;

(1 + ~µ)x(pB) ¡ 1
± [pB ¡ C(eB)] x(pB) + [pB ¡ C(eB)] (1 + ~µ)x0(pB) if pA < pB .

(A5)
@E

@pA
=

½
1
± eBx(pB + ±~µ) ¡ 1

± eAx(pA) + (1 ¡ ~µ)eAx0(pA) if pA ¸ pB;
1
± eBx(pB) + eA

£
x0(pA) ¡ 1

±x(pA)
¤

if pA < pB.
(A6)

@E

@pB
=

½
eB

£
x0(pB) ¡ 1

±x(pB)
¤
+ 1

± eAx(pA) if pA ¸ pB ;

¡1
± eBx(pB) + (1 + ~µ)eBx0(pB) + 1

± eAx(pA ¡ ±~µ) if pA < pB .
(A7)

@TA
@eA

=

(
¡C 0(eA)(1 ¡ ~µ)x(pA) if pA ¸ pB ;

¡C 0(eA)
h
x(pA) +

R 0
~µ x(pA ¡ ±µ)dµ

i
if pA < pB .

(A8)

@TB
@eB

=

(
¡C0(eB)

h
x(pB) +

R ~µ
0 x(pB + ±µ)dµ

i
if pA ¸ pB;

¡C0(eB)(1 + ~µ)x(pB) if pA < pB.
(A9)
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@E

@eA
=

½
(1 ¡ ~µ)x(pA) if pA ¸ pB ;R 0
~µ x(pA ¡ ±µ)dµ + x(pA) if pA < pB .

(A10)

@E

@eB
=

( R ~µ
0 x(pB + ±µ)dµ + x(pB) if pA ¸ pB;

(1 + ~µ)x(pB) if pA < pB.
(A11)

where, in the derivations of (A4){(A7), we have utilized the following expressions:

@

@pA

Z 0

~µ
x(pA ¡ ±µ)dµ =

Z 0

~µ
x0(pA ¡ ±µ)dµ ¡ x(pA ¡ ±~µ)

@~µ

@pA

= ¡1

±

h
x(pA ¡ ±µ)

iµ=0
µ=~µ

¡ 1

±
x(pA ¡ ±~µ) = ¡1

±
x(pA); (A12)

@

@pB

Z ~µ

0

x(pB + ±µ)dµ =

Z ~µ

0

x0(pB + ±µ)dµ ¡ x(pB + ±~µ)
@~µ

@pB

=
1

±

h
x(pB + ±µ)

iµ=~µ
µ=0

¡ 1

±
x(pB + ±~µ) = ¡1

±
x(pB): (A13)

Evaluating expressions (A4){(A11) at pA = pB and simplifying, we get an identical

expression for the left- and the right-hand derivatives of each of the functions TA(:); TB(:)

and E(:). They are all continuous and given by, for i = A;B,14

@Ti
@pi

= x(pi) ¡ [pi ¡ C(ei)]

·
x(pi)

±
¡ x0(pi)

¸
; (A14)

@E

@pi
= eix

0(pi); (A15)

@Ti
@ei

= ¡C 0(ei)x(pi); (A16)

@E

@ei
= x(pi): (A17)

Characterizations and di®erentiability of WA(pA; TA; E; pB);WB(pB; TB; E; pA):

To simplify the exposition of the proof, ¯rst calculate the following expressions based

on the de¯nition of F (p) in (10).

Z ~µ

0

[h (x(pB + ±µ)) ¡ (pB + ±µ)x(pB + ±µ)] dµ =
1

±
[F (pA) ¡ F (pB)] ; (A18)

14One can easily show that the same properties hold for all other partial derivatives of TA(:); TB(:)
and E(:).
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Z 0

~µ
[h (x(pA ¡ ±µ)) ¡ (pA ¡ ±µ)x(pA ¡ ±µ)] dµ = ¡1

±
[F (pA) ¡ F (pB)] : (A19)

F 0(pi) = h(x(pi)) ¡ pix(pi); i = A; B: (A20)

@

@pA
~µ [h(x(pA)) ¡ pAx(pA)] =

1

±
[h(x(pA)) ¡ pAx(pA)] + ~µ

£
h0(x(pA))x0(pA)

¡ x(pA) ¡ pAx0(pA)
¤

=
1

±
F 0(pA) ¡ ~µx(pA); (A21)

@

@pB
~µ [h(x(pB)) ¡ pBx(pB)] = ¡1

±
[h(x(pB)) ¡ pBx(pB)] + ~µ

£
h0(x(pB))x0(pB)

¡ x(pB) ¡ pBx0(pB)
¤

= ¡1

±
F 0(pB) ¡ ~µx(pB): (A22)

Characterizations of WA(pA; TA; E; pB);WB(pB; TB; E; pA): Consider the case where

pA ¸ pB . We have ~µ ¸ 0 and

WA =

Z ~µ

0
[m + h(x(pB + ±µ)) ¡ (pB + ±µ)x(pB + ±µ) + TA ¡ '(E)] dµ +

Z 1

~µ
[m + h(x(pA)) ¡ pAx(pA) + TA ¡ '(E)] dµ;

= UA ¡
Z ~µ

0
[h(x(pA)) ¡ pAx(pA)] dµ +

Z ~µ

0
[h(x(pB + ±µ)) ¡ (pB + ±µ)x(pB + ±µ)] dµ;

= UA ¡~µ [h(x(pA)) ¡ pAx(pA)] +
1

±
[F (pA) ¡ F (pB)] : (A23)

WB =

Z 0

¡1
[m + h(x(pB)) ¡ pBx(pB) + TB ¡ '(E)] dµ;

=UB: (A24)

where we have made use of equations (A18){(A19) and the de¯nition of Ui (i = A;B)

in (9).

Similarly, using (A18){(A19) and the de¯nition of Ui (i = A; B) for the case pA < pB,

we have

WA =

Z 1

0
[m + h(x(pA)) ¡ pAx(pA) + TA ¡ '(E)] dµ;

=UA: (A25)
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WB =

Z ~µ

¡1
[m + h(x(pB)) ¡ pBx(pB) + TB ¡ '(E)] dµ +

Z 0

~µ
[m + h(x(pA ¡ ±µ)) ¡ (pA ¡ ±µ)x(pA ¡ ±µ) + TB ¡ '(E)] dµ;

= UB ¡
Z 0

~µ
[h(x(pB)) ¡ pBx(pB)] dµ +

Z 0

~µ
[h(x(pA ¡ ±µ)) ¡ (pA ¡ ±µ)x(pA ¡ ±µ)] dµ;

= UB +~µ [h(x(pB)) ¡ pBx(pB)] ¡ 1

±
[F (pA) ¡ F (pB)] : (A26)

Continuous di®erentiability: Di®erentiating equation (11) with respect to pA and equa-

tion (12) with respect to pB, making use of (A21){(A22), yields

@WA

@pA
=

(
@UA
@pA

+ 1
±F

0(pA) ¡
£
1
±F

0(pA) ¡ ~µx(pA)
¤

if pA ¸ pB;
@UA
@pA

if pA < pB.
(A27)

@WB

@pB
=

(
@UB
@pB

if pA ¸ pB ;
@UB
@pB

+ 1
±F

0(pB) ¡ 1
±F

0(pB) ¡ ~µx(pB) if pA < pB .
(A28)

The equality of left- and right-hand derivatives result follows immediately from the fact

that at pA = pB , ~µ = 0:15

Proof of Proposition 1: The ¯rst-order conditions are:

@W S
i

@¿i
=

@WS
i

@pi
= ¡x(pi) +

@Ti
@pi

jei ¡ '0(E)
@E

@pi
jei = 0; (A29)

@W S
i

@ti
=

@WS
i

@pi

@pi
@ti

j¿i +
@WS

i

@ti
jpi =

@WS
i

@pi

@pi
@ti

j¿i +
@Ti
@ti

jpi ¡ '0(E)
@E

@ti
jpi = 0: (A30)

Simplifying (A29){(A30), via di®erentiation of equations (14){(15), we have

@WS
i

@¿i
= ¡x(pi) + x(pi) + [pi ¡ C(ei)]x

0(pi) ¡ '0(E)2eix
0(pi) = 0; (A31)

@WS
i

@ti
=

@WS
i

@pi

@pi
@ti

j¿i ¡ C 0(ei)
@ei
@ti

x(pi) ¡ '0(E)

·
2
@ei
@ti

x(pi)

¸
= 0: (A32)

Further algebraic manipulation of (A31){(A32) simpli¯es these equations into:

@W S
i

@¿i
=

©
¿i ¡

£
C0(ei) + 2'0(E)

¤
ei

ª
x0(pi) = 0; (A33)

@W S
i

@ti
=

@W S
i

@¿i
ei +

x(pi)

C00(ei)

£
C 0(ei) + 2'0(E)

¤
= 0; (A34)

15One can easily show that the same properties hold for all other partial derivatives of Wi (i = A;B).
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where we have substituted ¿i ¡ C 0(ei)ei for pi ¡ C(ei).

To prove (17), set @WS
i =@¿i = 0 in (A34) and simplify. Second, to prove ¿i = 0, set

¡C 0(ei) = 2'0(E) in (A33) and simplify.

Proof of Proposition 2: Part (i). Summarize country i's problem through the La-

grangian

¢i = m + h(x(pi)) ¡ pix(pi) + Ti ¡ '(E); (A35)

where E = eix(pi) + ejx(pj). Thus the di®erence with the optimization problem of

Proposition 1 is only in the treatment of E. The proof will then be identical to the

proof of Proposition 1 except that '0(E) replaces 2'0(E) everywhere.

To prove parts (ii){(iii), consider the system of equations

¡C0(e) = ®'0(E); (A36)

E = 2ex(p); (A37)

p = C(e) ¡ C 0(e)e; (A38)

where ® is a positive constant. These equations determine e;E and p as a function

of ®. These values correspond to the second-best when ® = 2 and the closed-economy

solution when ® = 1. (Recall that in both cases, ¿ = 0).

Next, di®erentiate equations (A36){(A38) totally with respect to ® and simplify.

We have

de

d®
=

¡'0(E)

C 00(e) + 2x(p)®'00(E) [1 + C00(e)e2"=p]
< 0; (A39)

dp

d®
=

C00(e)e'0(E)

C 00(e) + 2x(p)®'00(E) [1 + C00(e)e2"=p]
> 0; (A40)

dE

d®
=

¡2x(p)'0(E)
£
1 + C 00(e)e2"=p

¤

C 00(e) + 2x(p)®'00(E) [1 + C00(e)e2"=p]
< 0: (A41)

Parts (ii){(iii) follow immediately from the signs of (A39){(A41) which hold for all

values of ® > 0, given the convexity of C(:) and '(:).
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Proof of Proposition 3: To derive the best-reply functions of each country, di®eren-

tiate equations (11){(12) with respect to the instrument employed. Thus, let Ii stand

for ¿i; ti or ei. We have:

@WA

@IA
=

(
@UA
@IA

+ @
@IA

h
1
± [F (pA) ¡ F (pB)] ¡ ~µ [h(x(pA)) ¡ pAx(pA)]

i
if pA ¸ pB

@UA
@IA

if pA < pB.

(A42)

@WB

@IB
=

( @UB
@IB

if pA ¸ pB
@UB
@IB

+ @
@IB

h
¡ 1

± [F (pA) ¡ F (pB)] + ~µ [h(x(pB)) ¡ pBx(pB)]
i

if pA < pB .

(A43)

The ¯rst-order conditions are found by setting the above equations equal to zero.

Note, however, that in (A42){(A43), only @Ui=@Ii (i = A;B) terms matter. Any

additional term will vanish at a symmetric equilibrium.

The ¯rst-order conditions for country A are then given by,

@UA
@¿A

=
@UA
@pA

= ¡x(pA) +
@TA
@pA

¡ '0(E)
@E

@pA
= 0; (A44)

@UA
@tA

=
@UA
@pA

@pA
@tA

j¿A +
@UA
@tA

jpA

=
@UA
@pA

@pA
@tA

j¿A +
@TA
@tA

jpA ¡ '0(E)
@E

@tA
jpA = 0: (A45)

At pA = pB; eA = eB, one can simplify equations (A44){(A45) by substituting from

(A14){(A15) in (A44) and from (A16){(A17) in (A45). Same conditions hold for country

B and we have:

@Ui
@¿i

= x(pi)"i

½
¡

£pi ¡ C(ei)

± "i
+

¿i
pi

¤
+

ei
pi

£
C 0(ei) + '0(E)

¤¾
= 0; (A46)

@Ui
@ti

=
@Ui
@¿i

ei +
x(pi)

C00(ei)

£
C 0(ei) + '0(E)

¤
= 0; (A47)

where we have substituted "i for ¡pix0(pi)=x0(pi). Substituting @Ui=@¿i = 0 from (A46)

into (A47) gives us equation (22). Setting ¡C0(ei) = '0(E) in (A46) then yields (21).

Variation in ±, the open-economy equilibrium and proof of Proposition 4:

To simplify the calculations, we assume here that the elasticity of demand is constant.
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Substitute the optimal value of ¿ from (21) in (8) and insert ¡C0(ei) for '0(E). This

yields

p ¡ ±" [C(e) ¡ C 0(e)e]
p

= C(e) ¡ ±"; (A48)

where we have dropped the subscript i for simplicity in exposition. Di®erentiate equa-

tions (7), (15), (22) and (A48) totally with respect to ±.16 We have

de

d±
=

¡1

C00(e)
dt

d±
; (A49)

dp

d±
= ¡ p

"e

·
1

2x(p)'00(E)
+

1

C 00(e)

¸
dt

d±
; (A50)

dE

d±
=

1

'00(E)

dt

d±
; (A51)

with

dt

d±
=

¡"e'0(E)
p+±"n

p
"e + ±[C(e)¡C0(e)e]

ep

oh
1

2x(p)'00(E) + 1
C 00(e)

i
+ ±"e

p ¡ C 0(e)
C00(e)

< 0: (A52)

The negative sign of (A52) follows from the convexity of C(e) and '(E). Consequently,

de=d± > 0; dp=d± > 0 and dE=d± < 0.

Turning to welfare, di®erentiate equation (13) totally with respect to ±. We have

dW S

d±
=

dT

d±
¡ x(p)

dp

d±
¡ '0(E)

dE

d±
: (A53)

Next, di®erentiate T = [p ¡ C(e)]x(p) totally with respect to ±, substitute the resulting

expression in (A53) and simplify. We get

dWS

d±
= ¡C0(e)x(p)

de

d±
+

£
p ¡ C(e)

¤
x0(p)

dp

d±
¡ '0(E)

dE

d±
: (A54)

Finally, substitute from (A49){(A51) in (A54). After a bit of simpli¯cation, one arrives

at
dW S

d±
=

·
x(p) ¿

C 00(e)e
+

¿ ¡ e'0(E)

2e'00(E)

¸
dt

d±
> 0: (A55)

16Details of the derivations can be obtained from the authors on request.
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The sign of (A55) follows from, among other things, the fact that ¿ < 0.

In the special case of a constant '0(E), the relationship t = ¡C0(e) = '0(E) implies

that t and e are also constant so that

de

d±
= 0: (A56)

Equation (A48) then determines p as a function of ± only. Di®erentiating (A48) with

respect to ± yields

dp

d±
=

"e'0(E)
p+±"

1 + [C(e) ¡ C 0(e)e] ±"=p2
> 0: (A57)

In turn, this implies that
dE

d±
= 2ex0(p)

dp

d±
< 0: (A58)

To determine the implication for welfare, consider equation (A54) again. Set de=d± = 0

from (A56), substitute for dE=d± from (A58), and set ¡C 0(e) = '0(E) from Proposi-

tion 3. We will have
dWS

d±
= (¿ ¡ e'0(E))x0(p)

dp

d±
> 0: (A59)

Derivation of (24): Di®erentiate (23) with respect to ¿̂ , evaluate the resulting expres-

sion at (tN ; ¿N) and simplify. We get

¡ ¿

p2
¡ 1

±"

¢dp

d¿̂
+

½
C 0(e)
±"

+ C 00(e)
£e

p
+

1

C 00(e)e"

¤¾ de

d¿̂
=

1

p
: (A60)

Next, from di®erentiating p = C(e) ¡ C 0(e)e + ¿ , we have

dp

d¿̂
= ¡C 00(e)e

de

d¿̂
+ 1: (A61)

Substituting from (A61) into (A60) and simplifying yields

deN(¿̂)

d¿̂
=

1

C 00(e)e +
£C 0(e)
±" + 1

e"

¤
=
£
1
±" + 1

p ¡ ¿
p2

¤: (A62)

Equation (24) follows immediately from (A62).
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Derivation of @WS(¿N ; tN)=@¿ and @WS(¿N ; tN)=@t: Compare equations (A33){

(A34) with (A46){(A46). This reveals that

@WS
i

@¿i
=

@Ui
@¿i

+ x(pi)"i

·
pi ¡ C(ei)

±"i
+

ei
pi

'0(E)

¸
; (A63)

@WS
i

@ti
=

@Ui
@ti

+ eix(pi)"i

·
pi ¡ C(ei)

±"i
+

ei
pi

'0(E)

¸
+

x(pi)'
0(E)

C 00(ei)
: (A64)

Now at (¿N ; tN), @Ui=@¿i = @Ui=@ti = 0: Equations (A63){(A64) then reduce to

@W S
i

@¿i
= x(pi)"i

·
pi ¡ C(ei)

±"i
+

ei
pi

'0(E)

¸
; (A65)

@W S
i

@ti
= eix(pi)"i

·
pi ¡ C(ei)

±"i
+

ei
pi

'0(E)

¸
+

x(pi)'0(E)

C00(ei)
: (A66)

Derivation of (34): Di®erentiate (33) with respect to t̂, evaluate the resulting expres-

sion at (tN ; ¿N) and simplify. We get

¡ ¿

p2
¡ 1

±"

¢dp

dt̂
¡ 1

p

d¿

dt̂
=

e

p
+

C 0(e)
±"C 00(e)

: (A67)

Substituting e + d¿=dt for dp=dt in above and simplifying yields (34).
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