
T h e Pr ince Project and its Appl icat ions

Pierre-Joseph Gailly 1 , Wolfgang Krantter 2, Christophe Bisi~re a, Sylvie Bescos 1

1 BIM, Everberg, Belgium
2 FAW, Ulm, Germany

s CEFI, Les Milles, France

Abstract , The Esprit project Prince aims at development of an industrial
Constraint Logic Programing environment based on the Prolog III language. In
parallel, the current technology is being validated within the project on repre-
sentative real-world examples. This paper describes the current status of the
three application domains which were Selected to demonstrate the applicability
and usefulness of CLP. These applications deal with industrial systems engineer-
ing, medium term banking planning and jobshop scheduling as well as multiple
plants global planning in the chemical industry.

1 General Goals of the Prince Project

The main goals of the Esprit II project Prince (P5246) are to develop a Constraint
Logic Programing (CLP) system based on the Prolog III technology and to bring it
to high industrial standards as well as to validate the technology by demonstrating
its applicability and usefulness on real life applications. Prolog III [6] was developed
by the group of Alain Colmerauer and the company PrologIA within the framework
of the Esprit I project Pl106. This previous project has demonstrated that CLP is an
attractive solution for many advanced problems [13]. This paper will focus on applica-
tion aspects but before that an outline will be given of the CLP system, called Prince
Prolog, developed in this project.

Four essential aspects can be seen. First, in terms of expressiveness, it is intended
not only to include the constraint domains already existing in Prolog III (i.e. infinite
trees, linear algebra (over both floating point and infinite precision rational numbers),
boolean algebra and lists; this last one being unique to Prolog III) but also to in-
troduce new domains based on end-users' requirements (finite domains and interval
arithmetic are being currently considered). Soundness and effectiveness of constraint
solving algorithms receive careful attention. As was already the case with Prolog III,
full integration of constraints into the kernel of the language and clear semantics of
the interaction of constraints with the rest of the system are considered very impor-
tant. Second is the efficiency issue: a completely new compiler-based system is being
developed, drawing on the experience of two major Prolog manufacturers PrologIA and
BIM and in particular the Prokog by BIM and Prolog II+ technologies. Besides a new
kernel and improved constraint solvers is the third important aspect: investigation of
global analysis and precompilation of CLP programs and incorporation of the results
into the system. This longer term research is being performed by academic partners
from the Universities of Bristol, Leuven and Madrid. Finally, the software engineering
environment should provide easy, rapid and reliable development facilities as well as
communication capabilities with the external world (Windowing, Databases, Network,
other programming languages). In particular, constraints debugging is a new field which
still requires much exploration.

55

Designing tools is one thing, putting them to practical use is another issue. This
is even more true in software engineering. Industrial partners are validating the CLP
technology by its "mise en oeuvre" to solve real life problems. The manufacturers Bosch
and MBB companies as well as the research institute FAW are involved in engineering
applications for technical systems quality assurance. Two examples are under investi-
gation', satellite attitude control and Failure Mode and Effect Analysis, the latter one
being discussed in more detail below. The CEFI research center and La Hdnin bank
are developing a Decision Support System in the field of medium term banking plan-
ning. BIM is applying CLP technology tojobshop scheduling and multiple plants global
planning tools in the chemical field. Besides showing the usability of the language, the
application partners have provided important feedback to the implementors of Prince
Prolog on the language itself, the selection of constraint domains, methodology and
tools.

The different applications do not put forward the properties of CLP languages in
the same way; however, the presentation will emphasize following characteristics:

- CLP languages are high level, making development and prototyping easier.
- Prolog enables the elaboration of reversible symbolic computer based model of

real-life applications. CLP adds the domains dimension to the scene; in particular,
Prolog III's linear numerical and boolean domains will be illustrated.

- Besides the built-in constraints, Prolog III's delayed goals can provide users with
some facilities to break the linearity limitations.

- Combinatiorial search can be pruned more efficiently with the help of constraints.

2 The FMEA Application

2.1 Objec t ives

Increasing the quality of technical systems, in particular, identifying weak points, evalu-
ating the effects of such weaknesses and the associated possible risks as well as determin-
ing their causes and investigating alternatives and improvements are very important.
Failure Mode and Effect Analysis (FMEA) is a technique aiming at that.

In the Promotex project [13], FMEA of single components in stationary states has
been studied. The project has shown that Prolog III is well suited to serve as a formal
representation language to describe both the function of the components in the correct
and faulty states and the structure of the system. In the Promotex system, component
functions have been expressed in the form of systems of numerical constraints. In this
project, the type of analysis has been extended at two levels: performing FMEA at the
system rather than the component level and tackling dynamic aspects. Essentially two
tasks are to be performed:

- investigate the consequences of known component failure modes,
- determine whether some faulty (possibly hazardous) system state can be reached

as the consequence of failure modes of the components.

The first point can be addressed by classical simulation tools; the second requires
more. The '~nultidirectionality" of Prolog III constraints enable reasoning on dynamic
systems. Possible techniques are: numerical solution of differential equations, Petri
Nets, methods of qualitative physics, simulation and process theory.

Figure 1 shows an example system: a closed loop speed controlled motor. The motor
drives a sensor tooth wheel that produces 4 interrupts per revolution. The interrupt

56

routine measures the time elapsed between two interrupts and estimates the motor
speed. Each time a pulse is generated, the proportional controller changes the voltage
with respect to the nominal speed. This system contains continuous elements (motor)
as well as discrete events (pulse, interrupt): Possible failures are, for example, sensor
wheel slip or tooth breakage; these are represented by parameters in the model. Possible
failure effects are speed oscillations or deviations from the nominal speed.

t Interrupt- ~ Impulse- 1 routine wheel ~ Motor

I---- Propo io.e, I I) I contr~ I Pulse- I generator
Fig. 1. Closed loop speed-controlled motor

2.2 Con t inuous S imula t ion

In continuous simulation, differential equations are solved numerically. If the solving
methods are implemented using numerical constraints, the simulation may '(run for-
ward or backward", choosing to fix the value of some boundary conditions or system
constants, leaving the others unknown and to be found by the simulation. Values can-
not be fixed or left unknown arbitrarily as, at runtime, contraints must be linear. In
addition to the common simulation run, the Prolog III mechanism allows the following
queries:

- given the solution at certain time steps or intervals, infer single parameters of the
differential equations. For this purpose, failure modes were modelled as parameters
in the system.

- representation of parameters in input and output values as numerical intervals 4.

Example: the speed n(t) of the motor can be represented with the differential equation

dn(t) _- - n (t) + k * v(t) def= f (t , n(t))
d~ T c

where n is the speed and t is time; v, the voltage, k, an amplification factor, and Tc a
time constant are model parameters. The trapezoidal method for solving a differential
equation numerically is:

n(ti+l) n(ti) + ti+l -- tl = - - �9 (f(t , , n(ti)) + f(t ,+l , n(ti+l)))
2

This can be implemented using Prolog III as follows. The s t ep predicate has three
arguments: the first represents the initial state in the form of a tuple <Time, Speed>;
the second contains the system parameters (with Dt = (ti+z - ti)) and the third is a
list of the successive states starting from the initial one 5

4 This was done using inequality constraints and maximum and minimtm built-in predicates.
5 The number of simulation steps being specified via constraints on the size of this list.

57

step(V, c, <>).
step(<Ti, .Ni>, <Tc,K,V,Dt>, <<Tipl, Nipl>>.L) :-

step(<Tipl, Nip1>, <Tc,K,V,Dt>, 1),
{T i - Tipt + Dt,
Nip1 - Ni + Dt /2 * ((- Ni + K,V)) + (- Nip1 + K * V)) / T c) } .

Assume that the motor is initially stopped and that it should reach a speed between
5990 and 6000 during the last five steps of a 500 step simulation. The following query
determines the range of possible values for the unknown amplification factor under the
above constraints.

>step(<O,O>, <0.05, K, 6, 0.001>, L.<<T1,NI>,<T2,N2>,<T3,~I3>,<T4,N4>,<TS,N5>>)
minimum (K ,MI) maximum(K ,M2) out (<Nl ,M2>) line fail,
{L: :495,

5990<~t1<6000, 5990<N2<6000, 5990<113<6000, 5990<N4<6000, 5990<i5<6000}.

Prolog III yields the answer: K should be in the range <998.387, I000.5>. When
dealing with more complex systems (e.g. the example system), the computation time
gets critical because of the large number of choices induced by greater model complexity.

2.3 Petr i Nets

Petri Nets are a method for performing discrete-event simulation, that has also been
investigated for system safety analysis [10]. In particular, the ability to reverse the
simulation process is of interest. To represent a system as a Petri Net, the standard
Place-Token nets (that can be analyzed and reversed using linear algebra) are not
sufficient. They have to be extended in two ways: addition of delays to the transitions
to express the duration of the actions, individual firing conditions, data types and
functional instructions in the transitions.

If the firing conditions and functional instructions are restricted to linear expres-
sions, transition firing can be reversed. This is a limitation, but nevertheless an im-
portant enhancement over Place-Token Nets. Figure 2 shows the representation of the
example system. The petri net is described with the help of the t r a n s i t i o n predicate

motor
speed

speed ~
, Impulse

Wheel
/ syste~
l time

,~% interrupt r
J ---t..J

(•) motor
_~.1 speed

(internal)
..j~
kMotor

Controller

I n te r rup t
, R o u t i n e

voltage

nominal
speed

measured
speed

Fig. 2. The example system represented as Petri Net

in Prolog III. For example, the controller is defined by the following clause. It indicates
that the measured and nominal speed are related to the voltage via the linear expres-
sion below, where R is retrieved from the model via the const predicate. Furthermore,
this transition does not add any delay.

58

trails it ion ("Controller",
input_places(<<"measured.speed", Ms>, <"nominal_speed", Ns>>),
output_places (<<"voltage" ,V>>),
delay(<O,O>)) :-

const ("R" ,R),
{ V " R * (2 * Ns - MS)] ' .

This transition description can be used both forward (computing output places from
input ones) and backward. One of the drawbacks of Petri Nets is their emphasis on the
event-oriented aspects of a system, while continuous processes are rather difficult to
integrate. Furthermore, describing an industrial system in form of places and transitions
requires a rather high level of abstraction.

2 .4 Q u a l i t a t i v e M e t h o d s

In addition to traditional simulation methods, using qualitative reasoning for syste m
analysis purposes is being investigated. Qualitative reasoning describes a system and
predicts its behaviour in qualitative terms, e.g. '~aising", "oscillating" or "constant".
This requires a higher level of abstraction than for a numerical simulation. Various
qualitative methods have been proposed; for an overview see [14]. The possible use of
Prolog III will be described on two examples:

- Kuiper's QSIM system [7] describes a system in terms of qualitative states, consist-
ing of a qualitative value and a qualitative direction (one of decreasing, increasing
and steady) at a time instance or during an interval. The behaviour of the system
is then simulated by examining possible state transitions. Allowed transitions are
held in a table. Between the functions the relations addition, multiplication, mi-
nus , proportionality and derivation may hold. QSIM then gives rules constraining
qualitative values and direction of changes. Expressing these rules using Prolog III
equality and disequality constraints makes both the programming easy and effi-
ciently filters out forbidden states or transitions combinations.

- Allen's Calculus of Time [1] proposes a model based on time intervals. The rela-
tionship between two intervals can be expressed using 7 base relations and their
inverses. The goal is to find the transitive relation between more than two intervals.
In Prolog III, time intervals can be represented as tuples of two variables repre-
senting the start and end points. Constraints are used to express relations between
intervals. The modelling of a relation will require to describe explicitly when the re-
lation holds and when it does not hold. For example, the predicate re la t ion(Name,
T r u t h _ v a l , In t_ l , In t .2) will succeed whenever the relation called Name between
intervals Int_l and In t .2 has truth value Truth_val. The following clauses describe
the during relationship which is satisfied if and only if the first interval is strictly
enclosed in the second (where 1' and 0 ' represent the booleans true and false).

relation(during, I', <S1,EI>, <$2,E2>) :- (S1 > $2, E1 < E2 }.
relation(during, 0 ~, <S1,EI>, <$2,E2>) :- ~ SI <ffi $2 }.
relation(during, 0', <S1,EI>, <$2,E2>) :- { E1 >ffi E2 }.

With boolean constraints, all propositional logic operators can be used. For exam-
ple, assume three intervals il, i2, i3; also assume that one of the relations equal ,
dur ing, overlapped_by, s t a r t , s t a r ted_by , f i n i s h holds between il and i2.
The following query determines which relations may hold between il and i3?

59

posi t ive(<II , I2 , I3>) ,
re la t ion(equal, BI,
re la t ion(during, B2,
relation(overlapped_by, B3,
re la t ion(s t a r t , B4,
relation(started_by, B5,
relation(finish, B6,
relation(meet, 1 ' , I2, I3),

7, intervals must have a posi t ive length
I1, I2) ,
I1, I2),
I1, I2),
I I , 12),
I I , 12),
I1, I2),

f indall(R, relation(R, 1' I1 I3) L) , , p ,

{ B1] B2 I B3 I B4 I B5] Be = 1 ' } .

The answer is: L = [f in ished_by, con ta ins , overlaps, before, meet]

Prolog III is well suited to implement the methods of qualitative physics. Yet, the loss
of information as a consequence of abstraction is a problem inherent to qualitative
methods. It is not yet clear if they can be used for FMEA purposes.

3 The Banking Application

3.1 Gene ra l Overv iew

The central point in the development of a Decision Support System (DSS) in the field
of medium term banking planning is reversibility, i.e. to bypass the existing frontier
between simulation and decision systems in the financial domain. The DSS has been
specified and a Prolog III prototype is being developed.

The application relies on a medium term banking model, mainly oriented towards
interest rate risk management. Interest rate risk comes from a possible mismatch be-
tween asset and liability structure of the bank's balance sheet: if a loan is refunded
by a borrowing of a different nature (i.e. short/long maturity, fixed/floating interest
rate, etc.), the future net income of this production will be affected by fluctuations in
interest rates. Because such a mismatch usually increases expected earnings and risk at
the same time, funding decisions wilt be stated according to the bank's global risk pref-
erence. The model has been built in collaboration with the La ttdnin bank. Basically,
it can be viewed as a se tof interconnected modules, each of them dealing in detail with
a particular aspect of banking activity: outstanding loans evolution, funding policy,
evaluation of potential risks, expected earnings, environmental constraints, etc. When
used in simulation, this model is fed with a set of hypotheses and decisions. It then
works out a medium term forecast for the main banking aggregates, under the form
of a balance sheet, as well as an evaluation of the risk-return position that has been
reached.

Of course, analysis of the consequences induced by alternative decisions (i.e. "what
if" analysis) is an important step of the banking planning process. Nonetheless, this
procedure remains limited, because the ultimate goal of decision makers is to choose
an action which allows them to reach a given objective (i.e. "whai/or ~' analysis). Using
conventional languages and approaches, two different methods can be used to perform
this goal-oriented search. The first one is to repeatedly run the simulation algorithm
with slight variations on the decision variables values (in particular, the funding pol-
icy), in order to get closer to the expected risk-return position. This method is time
consuming and, moreimportant, has little chance to "smoothly converge" to the de-
sired point, because of the complicated form of a real-life banking model equations.

60

The second approach is to build a "reverse" version of the simulation model, which can
generate the funding decision according to a given and specific risk-return position.
The model has then to be rewritten for this particular purpose, and will have to be
rewritten each time the head management wishes to ask another type of query. Besides
development and maintenance costs, this solution also implies knowledge duplication.

In this context, CLP languages are of high interest. Their original features seem
able to facilitate the development of flexible and powerful DSS in the financial domain
[4, 5, 9]. Their declarative aspect and reversibility, extended to the numerical domain,
leads to faster and more straightforward implementation of the model. The resulting
'knowledge base" remains unique, but can be used for simulations as well as for goal
seeking queries ([3] for a qualitative reasoning approach). The search space exploration
algorithm, combined with pruning facilities, helps to efficiently solve complicated cases
of goal seeking queries (involving piecewise linear, or non-monotonous functions), In
addition, the goal delaying mechanism provided by Prolog III can be used to improve
the treatment of non-linear equations; [8] provides a formal treatment of this problem.

How the linear part of the model is tackled will be explained first; then the treatment
of nonlinearities will be explained. Because of the application domain involved, focus
will be on numerical constraints.

3.2 Using CLP in t he Linear Case

Prolog III cannot deal directly with non-linear constraints and uses a delayed constraint
mechanism to handle multiplicative non-linearities 6. Assume, for the moment, that the
banking model is just a set of linear equations and inequalities. Then, this set can be
directly implemented as a set of numerical constraints (S), which therefore represents
the structure of the bank's behaviour. In this context, to '~un" the model means to
add to S another set (Q), which represents the user's query. This last set is mainly
made of simple equations of the form variable = value. The resulting set A = S tJ Q
then represents the "answer" to the user's query. This very simple approach allows to
integrate simulation and decision model, because of reversibility. The user is therefore
free to ask any question that make sense to him.

Furthermore, this approach can be combined with the backtracking mechanism of
CLP languages in the following way. When the banking application is started, the set
S is created. From this unique '~root", the software then develops small branches, each
of them corresponding to a user's query. At each step, the system follows a branch
in order to solve a query (i.e. to add a set Q and to display the result), and then
backtracks to the root, ready for the next step. By doing so, it is possible to avoid an
important part of the computational cost overhead induced by the non-specialisation
of the decision support system. All this is summarised in Fig. 3.

3.3 Deal ing wi th H a r d Cons t ra in t s

The actual model also contains non-linear equations. Two classes of non-linear equa-
tions can be distinguished: those corresponding to disjunctive constraints which can
therefore induce a whole search process during goal seeking analysis (e.g. non-strictly
monotonous functions, piecewise linear functions,...) and the others (e.g. involving
logarithmic or exponential function or quadratic functions over positive numbers).

s I.e. when, at runtime, the added constraint involves the product of two unknown variables.

61

Start

Initialisation phase Running phases

~Backtrack

Answer
A = S U Q

F i g . 3 . F u n c t i o n i n g o f t h e a p p l i c a t i o n i n t h e l i n e a r c a s e

Consider a model made of linear equations and non-linear equations of the second
class. During the initialisation phase of the application, only linear equations can be
introduced in the set S application. The others have to be delayed, hoping that each
set Q will bring enough information to introduce them in the whole set A. Consider
the following non-linear equation:

C N R - C
P = R § R(1 § R)"

Depending on the known variables, the following methods can be used:
- if R and n are known, the equation becomes linear,
- if all variables except n are known, n can be determined by calculus,
- if all variables except R are known, it can be iteratively approximated.

This simple strategy has been programmed in a generic way, using the f r e e z e mech-
anism of Prolog III. A set of predicates has been designed, which facilitate the im-
plementation of these non-linear equations. Using this toolbox, it is only necessary to
"declare" the methods which can be used to incorporate an equation under the form of
a linear constraint in A, and the conditions under which each method can be activated.
Of course, this approach does not transform a CLP language into a general purpose
mathematical solver, counter-examples (leading to "deadlocks") can be found easily.
However, because of the particular semantics of the models which must be dealt with,
these deadlocks can be precisely identified, and then solved according to the previous
strategy.

Non-linear equations of the first class are handled in nearly the same way, taking
care of the virtual combinatorial explosion they could induce in goal seeking mode.
In the case of a piecewise linear function, this danger is clearly shown by the corre-
sponding disjunctive writing. For a classical non-monotonous function, the problem
arises from the fact that its inverse function is not univoque. Obviously, these equa-
tions cannot be activated during the initialisation phase of the application (see Fig. 3).
The corresponding goals are therefore delayed, waiting for more information. Then, a
strategy should be stated to organise for their best handling. In the application, a set
of heuristics has been designed to achieve this task. This additional feature leads to
the general structure drawn in Fig. 4.

The presentation only showed some particular aspects of the financial application.
Other aspects include temporal shift detection or sensitivity analysis. In the future,
one of the most ambitious features which will be addressed is the design an interface
module, aimed at assisting users in their quest for a good decision. To do so, this
module will have to "interpret" sets of constraints returned by the system.

62

Start

Initialisation

second-class
delayed goals

first-class
delayed goals

First S tep Deterministic Search Tree
Step Development

 swer
--~ ~ ~ Answer

Undelaying 1-
Stategics I

Fig. 4. Functioning of the application in the general case

4 Scheduling Applications

Job-shop scheduling of a chemical plant is a real-life example taken from the background
of the EUREKA project PROTOS [2, 11]. A set of products has to be produced on dif-
ferent apparatus. A given apparatus can be used in the production of several products
(multipurpose apparatus environment). Each of the products is produced in a single
process where each process may have several (1 to 3) production variants (i.e. recipes).
Each production variant is decomposed into a finite number (from 5 to 20) of steps.
For each production step, one apparatus will be chosen from a set of alternatives. The
production steps have to be performed in a specific continuous sequence (production
cycle). When a larger quantity than the one delivered in one production cycle is re-
quired, the cycle is repeated. The problem consists in finding a time interval within the
earliest possible starting date (all inputs have to be available) and the latest possible
due date (management requirement) for the production process of each product.

The second example deals with the global planning of several plants. The whole
production of a large Swiss pharmaceutical company is split over several plants. The,aim
is to compute a global production plan for all these plants. Up to now, no such global
plan existed and all the coordination and production process adjustments between the
different plants are achieved through phone calls between plant managers; there is no
global control. This scheme works because of the plant managers' experience, but there
is a high risk of the result not being optimal. If a good global plan could be provided,
ensuring that no major coordination problem should occur, then each plant could make
local optimisations as long as the constraints imposed by the global plan are respected;
also the resulting production process would become much closer to optimality. As a side
effect, this global plan would also reduce the need for the phon e call based coordination,
although it is not expected to suppress it totally.

As it is far too complex to take into account all details of the local data of each
individual plant, the considered global planning tool is based on an approximation of
the local reality: the abstraction of individual machines in machine groups (A machine
group is a set of machines located physically close to each other, and each order can be
completely executed using only machines within one machine group). Thus, the output
of this tool is only a "rough" global plan, that will then be further refined at each
plant, by the local scheduling tool.

Both examples were implemented; essentially, two types of constraints were used:
precedence constraints, straightforwardly expressed by numerical inequalities, and non-
overlapping tasks sharing the same resource, which can only be expressed by choices.

63

5 Conclusions

The previous examples have shown the interest of Constraint Logic Programming in
several real life application fields. The experience of the end-users who developed these
examples is that CLP and Prolog III are good software-engineering tools for dealing
with such problems, leading to reasonably concise and elegant solutions. In particular,
the ease to implement, and hence compare, variations of algorithms combining heuristic
and symbolic computation with constraints, has been appreciated.

Both the technical systems and banking applications have shown CLP's adequacy to
define models which encode both structure and functionnality. The possibility of avoid-
ing as much operational aspects in the model's definition is very important and enables
to use the same model in several ways: direct execution or simulation and backward
execution or goal seeking analysis. This form of reversibility extends the knowledge
representation paradigms and increases their declarativity for non-symbolic domains;
linear numerical and boolean examples were given. Non linearities raise difficulties but
some practical, even if not general, methods to deal with them were outlined.

Applications have also shown the current limitations of the Prolog III interpreter.
Efficiency, a common concern, is being improved by the development of the Prince
compiler. Having other or more speciMised constraint domains (such as being able to
use constraints as choices in scheduling) would increase the expressive power, and hence
the ease of use of the language. Such topics are currently being intensively studied in
the framework of the Prince project, but this falls outside the scope of this paper.

The authors would like to thank the members of the Prince teams and in particular
Paul A. Massey, for fruitful discussions and comments on earlier drafts of this paper.

References

1. Allen, J.: Towards a General Theory of Action and Time. AI V.23, pp.123-154, 1984.
2. Appelrath, H.-J.: PROTOS: Prolog Tools for Building Expert Systems - a Project Over-

view. Procs. of the 1st. PROTOS Workshop, September 1989.
3. Berndsen, R., Berthier, F.: Goal Seeking in Qualitative Reasoning: an Implementation in

CHIP. in Procs. of IMACS international symposium, March 1991.
4. Berthier, F.: Solving Financial Decision Problems in CHIP. Procs 2nd Conf. on Economics

and Artificial Intelligence - CECOIA 2, pp. 233-238, 1990.
5. Broek, ~., Daniels, H.: A Constraint Logic Programming Approach to ALM Modeling in

Banks. Comp. Sci. in Economics and Management, Kluwer Acad. Press, 4(2), 1991.
6. Colmeraner, A.: An Introduction to PROLOG-III, CACM, Vol. 33, N. 7, July 1990.
7. Kuipers,B.: Qualitative Simulation. AI, V. 29, pp.289-338, 1986.
8. Jaffar, J., Michaylov, S., Yap, R.: A Methodology for Managing Hard Constraints in CLP

Systems. Procs. of the ACM SIGPLAN PLDI Conf., pp. 306-316, June 1991.
9. Lassez, C., McAloon, K., Yap, R.: Constraint Logic Programming and Option Trading.

IEEE Expert, 2(3), 1987.
10. Leveson, N.G., Stolzy, J.L.: Safety Analysis Using Petri Nets. IEEE Trans. on Software

Engineering, Vol. SE-13, No.3 (1987), pp.386-397.
11. M. Nussbaum and L. Slahor. Production Planning and Scheduling: A Bottom-up Ap-

proach. Procs. of the 1st PROTOS Workshop, September 1989.
12. ESPRIT-Project 5246: PRINCE. Report 17: Specification of the FMEA application.
13. ESPRIT-Project 1106: Further Development of Prolog and its Validation by KBS in

Technical Areas. Final Report Part 2: Validation. 1990
14. Weld,D.S.,de Kleer;:I.: Readings in Qualitative Reasoning about Physical Systems. Mor-

gan Kaufmann, 1990.

