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Convergence and oscillation in standardization games

EMMANUELLE AURIOL* AND MICHEL BENAIM**

Abstract. – Auriol and Benaim (2000) studied in a model inspired by
evolutionary game theory, how standards and norms emerge in decentralized econ-
omies when there are two standards. They showed that the decentralized adoption
process always converges toward a stable equilibrium (possibly an incompatibility
one). This paper explores the robustness of Auriol and Benaim (2000) convergence
results. It shows that with more than two standards the decentralized adoption
process does not necessarily converge. It can oscillate and describe cycles.

Classification Codes: C73, D62, L1.

1. Introduction

Modern economies operate under the principle of labor division and task specialization.
It allows individuals and firms to take advantage of increasing returns to scale in work
but on the other hand raises serious coordination issues. It requires a high level of stand-
ardization to make specialized entities fit together. The inability of people to coordinate
themselves and to elect a common standard creates high collective and individual costs 1.
This paper studies how decentralized individuals choose a standard. The issue is coordi-
nation because the individual benefit of adoption depends on whether other agents
choose the same standard. This is for instance the case for abstract communication stand-
ards such as international languages, traffic rules, mathematical or writing symbols. This
is also the case for physical standards such as electric norm, computer operating systems,
telephone or facsimile equipment. In a different way it applies for commodities that
require the consumption of complementary goods such as personal computers, VCR’s,
stereo components or video games (because the availability of complementary goods
depends on the number of users of primary goods). Finally as human is social, needs for
standardization arise for social reasons. 
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1 For instance the costs linked to the development of gateway technologies or “converters”, are usually
high, more importantly their performances are low.
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Choosing a standard is a collective problem. How we operate these collective choices
is not a trivial issue. In a decentralized economy the agents need a communication
system to learn about the economic decisions of others and coordinate her decision with
theirs. Usually prices play this role. Then the classical economic literature focuses on the
problem of coordination among anonymous agents through markets and prices. However
in the case of non-proprietary technologies with network externalities the relevant coor-
dinating mechanism is not the price. The individuals take their decisions according to the
market shares of each technology. In this case the non-cooperative game theory literature
relies on the Nash equilibrium concept to predict coordination – or anti-coordination –
among the strategic agents. These two approaches are static in essence (they rely on
fixed point theorems). Though relevant in many situations and extremely convenient in
use, their static nature is an obstacle to study important aspects of the problem at hand.

 Indeed in decentralized economies standardization is in general the result of indi-
vidual choices despite the collective – social – nature of the decision. This yields a
problem because society lasts longer than individuals. That is, there are two time scales:
a short one for individuals and a longer one for society. The coexistence of these two
time scales affects economic outcome. In particular, since individuals are transient and
aware of it, they are present minded. It implies that from the long run – social – perspec-
tive they behave myopically. Endowed with a short life they deal the best they can with
the present, taking the past as given. Their present behavior however influences the
future. Each adopter being concerned with her present economic situation, she does not
internalize the cost she imposes (or the benefit she brings) on future consumers while
(not) adopting a given standard. We may wonder whether successive myopic adoptions
(they might be rational from individuals short run point of view, but not from the social
long run one) lead to some kind of unconscious maximizing collective behavior? In other
words is there any long living invisible hand at work?

The industrial organization literature on technological choices in the presence of posi-
tive coordination externalities, then referred to as network externalities, does not address
this question 2. It belongs to the classic – static – game theoretic approach. It considers
the problem of equilibrium existence (i.e., characterization) but not the convergence
issue. This problem is not trivial however. A recurrent theme in the classic network
externalities literature is that increasing returns of adoption generates a multiplicity of
equilibria (at least as much as available technologies) and inefficiencies (i.e., a sub-
optimal level of compatibility or standardization on the wrong technology). In most of
the cases the authors are able to find these equilibria analytically but since their models
are static, they fail to solve what Arthur (1988) calls the selection problem. That is, how
a particular equilibrium comes to prevail. Arthur (1988, 1989) proposes to answer this
question by studying the adoption process of competing technologies subject to network
externalities in stochastic models. Arthur’s idea is that increasing returns tend to magnify
“historical events” (path-dependency property) and to trap the dynamics into dominated
standard (lock-in property). He illustrates these ideas in a random walk model with
absorbing barriers. In such a model standardization occurs with probability one (lock-in)

2 See for instance Farrell and Saloner (1985) and Katz and Shapiro (1985).
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but which technology is going to prevail is not predictable (path-dependency). Since the
adoption process is non-ergodic and self-reinforcing, Arthur’s contribution suggests that
standardization in decentralized economy is totally unpredictable. This contradicts the
intuitive perception that market driven standardization is not that unpredictable, nor inef-
ficient. From a theoretical point of view it remains to explain how a particular equilib-
rium prevails; how a multitude of independent, all negligible individuals actually
coordinate.

This question lies at the core of the growing literature on evolutionary game theory and
social learning. This literature, that aims to explain how equilibrium emerges in games
that have multiple Nash equilibria, focuses on convergence results. Among the founding
papers of this literature there are Fudenberg and Kreps (1993), Ellison (1993), Kandori
et al. (1993), and Crawford (1995) to name just a few. For surveys of the literature see
the books by Weibull (1995) and Fudenberg and Levine (1997). Following this original
and fruitful line of research, the present paper studies within a dynamical model how
equilibrium is reached in a standardization game with multiple standards. It focuses on
the coordination problem faced by negligible and anonymous individuals who have to
choose among several non-proprietary standards. The agents perceive themselves as
being negligible with respect to market shares. The dynamic dimension is captured by
the fact that they adopt sequentially and in a random order. The two time scales – indi-
vidual/social – is captured by the fact that “new born” adopters who inherit a state of
standardization from their predecessors are not forward looking. Endowed with a short
life, they optimize in the short run taking the past as given. In other words adopters are
myopic.

The coordination problem we consider admits in its static version multiple equilibria
(in general as many as the number of available standards – everybody coordinates on
either one of the standards – and sometimes incompatibility ones). When there are only
two standards in competition, introducing the dynamics helps to solve the selection
problem: only stable equilibrium emerges in the long run. This result has been estab-
lished by Auriol and Benaim (2000) for utility functions that depend only on the market
share of the adopted technology. The paper generalizes this convergence result to general
utility functions. We next analyze the emergence of standards in the long run when there
are more than two standards in competition. We show that with three standards the stand-
ardization process might oscillate between equilibria and never converge. In other words,
the convergence result is not robust to the introduction of several standards. 

This paper is organized as follows. Part 2 presents the model and the main assump-
tions. Part 3 presents the dynamics of the model. Section 3.1 focuses on the two stand-
ards case. It presents general results about the convergence of the underlying stochastic
process. Section 3.2 focuses on the three standards case. It presents an example with
oscillations. Part 4 summarizes our results and offers some concluding remarks.

2. The model

The notation and the model are based on Auriol and Benaim (2000). We consider a
model in which there are  incompatible standards from which to choose, ,n 2≥ S1
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. The standards are identified by an index . The adopters have an
inelastic demand for one unit of the commodity. They have heterogeneous preferences
over alternatives . More precisely we assume that they are identified by
their location  in the  dimensional unit simplex with the standards exogenously
located at the extreme points. Let

denote the  dimensional unit simplex. Each adopter is parameterized by 
which can be interpreted as a taste parameter which indicates in the continuum of pos-
sible good characteristics the one preferred by the agent. It is the “ideal” standard of the
adopter. Each adopter has a preference for one of the standards (the closer he is to a tech-
nology the more he likes it). But despite this location predilection he may choose another
technology in order to benefit from the network externalities. Let  denoted a
market share profile of the standards where  denotes the market share associated to
standard . The preferences of a type  agent can be represented by the following
utility functions 

where  is a positive function representing the net utility function associated with
standard . This paper is not considering the issue of strategic pricing by sellers. This
assumption is consistent with either the standards being non proprietary, or the promoters
of the standard being engaged in Bertrand competition. However the analysis remains
valid even if the prices are not set at marginal cost as long as the net utility functions
satisfy the assumptions of the paper.

 Term  can be interpreted as a discount factor which reflects the adaptation cost
incurred by the agent when she cannot consume her ideal standard, located at , but an
imperfect substitute. Note that the utility derived from the adoption varies across tech-
nologies (in general,  for ). We assume that the utility functions entail
positive network externalities. That is, the utility associated with the adoption of tech-
nology  is positive and strictly increasing with the market share  (the essence of net-
work externalities): 

Proposition 1. An agent located at  confronted with the vector of
market share  will adopt standard  if and only if: 

Proof. See Appendix 1. 
This simple framework captures the basic trade-off between diversity and compati-

bility. So, once an agent enters the market, she compares the current market shares of the
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different standards and, based on that, she makes her choice. Conditionally to the past
she adopts  if . Such behavior is referred to as myopic
because the agent does not try to integrate in her decision the future evolution of the
standard. That is, as in Auriol and Benaim (2000), we make the extreme assumption that
the agents’ discount rate is infinite. In the case of standard adoption this might be
explained by the fact that they are constantly confronted with innovations. Anticipating
obsolescence they discount the future heavily. This is especially true when the obsoles-
cence or break down rate is perceived to be much higher than market shares’ motion. In
practice experiments suggest that individuals display hyperbolic discounting function 4.
As a result of the infinite discount rate, once they enter the market individuals' adoption
choice is deterministic. On the contrary, the law driving their entry, and thus the adopter
sequence, is assumed to be exogenous and random. It can be explained by the need to
replace obsolete (broken) technology or by a demographic law. To keep the analysis
simple we assume that each agent is equally likely to enter the market at time t. That is
the candidates for adoption are uniformly distributed over . 

In the next section, we present the dynamics of the market shares allocation.

3. The dynamics

The dynamics of the model are as follows. At each round of adoption, identified by t,
t + 1, and so on, an agent, identified by , is drawn randomly from the population of
potential adopters. This agent decides, according to the current market shares and his indi-
vidual preference, which technology to choose. The sequence of adopter is exogenous and
random, but the adoption choice is endogenous and, for a given consumer at a given date,
deterministic (at date t + 1 consumer  adopts  if ). Remark
that in this model the rate at which adopters arrive on the market, contrary to the order that
may matter, is unimportant. The relevant time is not that of the clock. Period t designates
the tth round of adoption. The probability that technology i is going to be chosen at round
t + 1 of adoption is derived in the next proposition. For  define the function 

Proposition 2. Suppose  is a random variable uniformly distributed over . Let
 denote the vector of market share. Then 

4 For a review of the literature and of the empirical evidences on this point see Ainslie (1992) and Loewen-
stein and Prelec (1992).
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where 

Proof. See Appendix 2.
In what follows we are going to focus on two cases, n = 2 and n = 3.
• For n = 2 we deduce from Proposition 2 

This generalized the Auriol and Benaim (2000) model where  
which gives 

• For n = 3 we deduce from Proposition 2 

Let  be the initial number of adopters of standard . From a technical
point of view, this can be any integer larger than one. Moreover, let  denote the
cumulative number of agents that have adopted standard i at time t, and  denote the
cumulative number of adoptions which have occurred till time t. Observe that

. The market share of standard i at time t is .

Let  denotes the probability that standard i will be selected at round t + 1 of adoption
(see Prop. 1). 

The dynamics of market share are given by the following equation : 

Let . Then system (1) can be rewritten in the form: 
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The interpretation of equation (3) is straightforward. The market share of standard i
increases in expectation if the probability of standard i being adopted is greater than its
current market share. Otherwise, it declines; term  is positive when 
and negative when . Indeed, if the market share of one standard is much smaller
than its probability of being adopted, then this standard will be chosen on average more
than proportionally to its current market share, and thus its market share will grow. By
the same reasoning, if the market share of one standard is much larger than its probability
of being adopted, then this standard's market share will decline. Intuition suggests that
the stochastic system should converge in the long run towards a state where adoption
probability and market share equalize. In other words, the long run behavior of the sto-
chastic process (2) is related to the behavior of the following deterministic dynamical
system defined on : 

where 

is defined Proposition 2.
Then with the stochastic process (2), we associate the deterministic dynamical system 4

which can be equivalently written (taking into account the condition )

In what follows we check on two cases that the long run behavior of the stochastic
process (1) is related to the behavior of the deterministic dynamical system (4). This
implies that if the deterministic dynamical system (4) always converge towards a stable
equilibrium, then the stochastic process (1) will converge. On the other hand, if the deter-
ministic dynamical system (4) admits periodic solutions, then one has to expect a peri-
odic behavior for the stochastic process (1). We next define what a stable equilibrium is.
Let 

denote the equilibrium set of (4). An equilibrium  is called linearly stable if all the
eigenvalues of the matrix 

have their real parts < 1. It is called linearly unstable if at least one eigenvalue has a real
part > 1.

In the sequel of the paper we show that with two standards in competition whatever the
utility functions the stochastic adoption process always converge. This generalizes the
Auriol and Benaim (2000) convergence result. On the other hand, when there are three
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standards in competition we show that this convergence result does not hold anymore.
The stochastic adoption process can describe cycles.

Remark. The network externalities literature considers the number of adopters rather
than the market shares. This distinction is empty in these models where the population of
adopters is fixed. Conditionally on N the total population of adopters, it is equivalent to
know the market share of standard k or its number of adopters. Here as we consider a
dynamical model where the cumulative number of adoptions  increases over time, the
market share of one standard and its number of users do not convey the same information
(it is not the same to know that there are 1 million of users of one standard when this
standard represents 70% of total users and when it represents 10% only). Since in decen-
tralized economies it is impossible to keep track of the exact number of users of one
standard, and since these numbers are too large anyway to be easily advertised or memo-
rized, the information in general available in the economy concerns market shares. As a
result individuals base their adoption decisions on these values 5.

3.1. Convergence with 2 standards

The next Proposition establishes that the vector of market shares  of system (2)
converges towards the stable equilibria of (4) ( , ).

Proposition 3. i) With probability one 

ii) Suppose  is finite (or countable). Then  converges almost surely toward an
equilibrium point . 

iii) Let  denote an equilibrium. If  is linearly stable, then 

iv) If  is linearly unstable, then 

5 Even if the market share assumption is consistent with facts, we want to emphasize that in the case n = 2
considering a fixed population of adopters over time (rather than an increasing one) would lead to the same
qualitative results while involving different mathematical analysis. In this new setting the current number
of users of one of the two standards is assumed to be fix and large . The market share of stand-
ard k at time t, which in this case is equivalent to the number of adopters, is . Let , by
similar arguments as the ones developed to obtain equation (3) we obtain: (3´) 

. The main difference is that the process (3´) is now an homogeneous Markov process (i.e.
time independent) and therefore we cannot expect to obtain almost sure convergence properties as stated in
Proposition 3. However the long term behavior of this new process is qualitatively very similar to the long
term behavior of the process (3). That is, when t goes to infinity the market share  tends to concentrate
with a large probability in the neighborhood of the stable equilibria of (4). This result is a consequence of
the Large deviations Theory for recursive algorithms (see Dupuis, 1998).
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Proof. The proof is a consequence of results on stochastic approximations: The almost
sure convergence (assertions i), ii)) follows from the fact that (5) is a one dimensional
equation combined with Corollary 6.7 in Benaim (1999). Statements iii) and iv) are
direct consequences of Proposition 7.5 and Theorem 9.1 in Benaim (1999).

Proposition 3 generalized the Auriol and Benaim (2000) convergence result to the case
where the utility functions depend on the total vector of market shares. It thus establishes
that with two standards in competition the stochastic decentralized process of adoption (1)
always converges towards a stable equilibrium of (4). This result olds independently of
the particular shape of the utility functions. However to analyze the exact nature of the
equilibrium it is necessary to be more specific about the utility functions. To illustrate
this point we consider next an example based on Auriol and Benaim (2000).

Example. In Auriol and Benaim (2000) framework, the net utility functions depend on
the market share of the relevant standard only. That is: 

Moreover it is assumed that 

Assumption A1 captures the “network externalities” assumption. The larger the market
share of a given standard, the greater the gross benefit of adopting it. On the other hand,
if there is no adopter of one standard it has no use, the gross utility is null. Under
assumption A1 and A2 Auriol and Benaim (2000) show that standardization outcome
depend on the adopters' attitude to problems raised by incompatibility which is related
to the concavity/convexity of the utility functions. To illustrate their results let consider
that , and , with , and  either convex or
concave. This formalization allows us to parameterize the problem. That is, we can study
in function of the parameter  the different standardization equilibria which might
emerge in the long run. Note that for , standard 1 perfoms better than standard 2,
and that it is the contrary for . 

Consider first the convex/linear case (i.e.,  convex or linear in x). It is easy to
check that the conditions AN1, AN2, and AN3 in Auriol and Benaim (2000) become 6: 

By virtue of Proposition 3, and the above definition of stability, standardization occurs
on standard 1 under AN2, on standard 2 under AN3, and either on standard 1 or 2 (path
dependency) under AN1. The interpretation of this result is as follows. When the utility
functions are convex in market share, individuals display aversion to incompatibility.
When standardization failure puts individuals at risk, they display intolerance to incom-
patibility. This covers standards that raise safety concern such as electrical norms, drug

6 The convexity of  implies .
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formula, air, see or road traffic rules and signs. In this case standardization is systematic,
but it is not always possible to predict which standard will prevail. In their haste to coor-
dinate, they sometimes erroneously select the dominated standard. 

When the utility functions are linear, individuals display neutrality to incompatibility.
Neutrality to incompatibility arise when the benefit received from the adoption of a
particular technology or standard increases proportionally with the aggregate number of
agents who adopt the same standard. The consumers search for compatibility because it
gives them access to a larger physical network. For instance, the value of access to a fac-
simile equipment, real estate listing service, telephone network, yellow page directory, or
electronic mail service, depends on the total number of other households or businesses
with similar access. In this case standardization occurs and is always predictable. Indi-
viduals always select the best standard. There is neither path-dependency, nor a lock-in
problem. In fact the standardization outcome is optimal.

Let next consider the concave case (i.e.,  strictly concave in x). It is easy to check
that the conditions T1, T2, and T3 in Auriol and Benaim (2000) become 7: 

By virtue of Proposition 3 and the definition of stability, the standardization equilibrium
is always predictable. Standardization occurs on standard 1 under T2, on standard 2
under T3, and there is an incompatibility equilibrium under T1. That is, when individuals
display tolerance to incompatibility, which corresponds to concave utility functions, the
adoption process is predictable. The basic trade off between diversity and network exter-
nalities does not necessarily lead to standardization though. Nevertheless, since in this
case consumers take time to experiment they never take a bad for a good. When stand-
ardization occurs it is always on the dominant standard. Tolerance to incompatibility
occurs when the standardization benefits are indirect. When the consumption of a
durable good, “hardware”, requires the consumption of complementary goods, “soft-
ware”, the utility that an agent derives from the acquisition of the durable good is
enhanced as the availability of complementary goods increases. An agent is concerned
with the number of other agents purchasing similar durable good because a larger in-
place base of users of a particular hardware implies a greater variety of compatible soft-
ware. This concerns personal computers, video cassette players-recorders, stereo compo-
nents, video games. 

The convergence results, which depend upon the value of , are summarized Figure 1.
The figure contrasts the different standardization outcomes which are going to emerge in
the long run in function of  when the utility functions are concave and when they are
convex. The dash lines represent the unstable equilibria, the continuous lines the stable
equilibria.

7 The concavity of  implies .
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We now turn to the case n = 3.

3.2. Oscillations with 3 standards

The main purpose of this section is to show that, in contrary to the global convergence
result given by Proposition 3, the dynamics associated to a system with 3 standards can

Fig. 1.
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oscillates with positive probability. In order to prove this result it is sufficient to find an
example where indeed oscillations occur. 

To analyze the 3 standards system it is convenient to introduce the following variables

so that 

We then define the functions

It is then easy to verify that , ,  and .
Therefore the dynamical system (5) takes the form  

where 

A full analysis of this dynamics is hopeless, nevertheless a local analysis is possible.
 Let m denote the points with coordinates . From now on we will

assume that the function  satisfy the property that . In other
words: the net utility functions of the standards are identical when the market shares are
identical. Under this assumption it is not hard to verify the following preliminary result.
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and 

We have the following local result:

Proposition 4. Suppose . If  and  then  with positive proba-
bility, while in the other situations  never converges to m.

Proof. If , the condition  and  is equivalent to the linear stability of m.
The result then follows from Propositions 7.5 and Theorem 9.1 in Benaim (1999). 

As an illustration of Proposition 4 suppose that the three standards have the same net
utility function. That is . Let . Then 

In view of Proposition 4 we then have 

with positive probability provided  while, if ,  never
converges to m.

Proposition 4 establishes that if  is a stable equilibrium of the
deterministic dynamical system given by (6), then the stochastic dynamical system 1
converges with positive probability to m. More generally the long run behavior of the
stochastic dynamical system 1 can be related to the behavior of the deterministic dynam-
ical system 6. This implies that when the deterministic dynamical system always con-
verges to an equilibrium, the stochastic system also converge. By the same reasoning if
the deterministic dynamical system describes cycles, the long run behavior of the sto-
chastic system is likely to be cyclical. This result is proven in the next section.

3.2.1. Oscillation with 3 standards

In order to shows the non convergence result in the case of 3 standards we suppose that
the function  and  have the form 

and 

where ,  is a smooth function such that 

and  is a real number. To be consistent with assumption A1 the function  and
 have to satisfy  and . This implies . It

D 1– 5
36
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36
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α x y,( ) 12
5
------ 2µ 3+( ) x 1

3
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3
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1
3
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is sufficient to restrict the analysis to non negative . Then by virtue of Lemma 1 the
Jacobian matrix at m is then given as 

The solution to the linear differential equation  with initial condition
 is given by  

For  these are periodic solutions. Thus one may expect a periodic behavior for ,
when  is close to zero. Indeed

Proposition 5. For  small enough, there exists a periodic orbit
, solution to the differential equation (5) such that 

with positive probability. 

Proof. The dynamical system (4) satisfies the assumptions of the Hopf bifurcation
Theorem (see e.g. Guckenheimer and Holmes, 1983, Th. 3.4.2). Therefore there exists a
linearly stable periodic orbit  for  small enough. The proposition then follows
from Propositions 7, 5 and Corollary 8.9 in Benaim (1999).

Proposition 5 makes a very important point. It establishes that with three standards in
competition the stochastic process of adoption might never converge. It might describe
cycles between two equilibria, spending some time (possibly very long period of time)
close to an equilibrium (e.g., ) and then moving to the other (e.g., ), spending some
time there, and then moving again, and so on. These equilibria need not to be standardi-
zation ones. They might be incompatibility equilibria.

The global convergence result of Proposition 3 does not hold once we consider more
than two standards. This is an important result because the literature on evolutionary
game theory and social learning has focused on convergence results. Yet it is relatively
easy to find examples where such results do not hold. These examples are not particu-
larly complex, nor 'pathological'. This means that cyclical behaviors are indeed very
likely. Then both the literature on standardization and the literature on evolutionary game
theory and social learning are missing an important aspect of the dynamics in equilib-
rium selection. 

4. Conclusion

Standardization is often the result of successive individuals' choice. That is, standardiza-
tion is generally market driven and decentralized. This paper studies in a dynamic model
inspired by evolutionary game theory the convergence of market share of non proprie-
tary standards. It generalizes the Auriol and Benaim (2000) convergence result in the

µ

A µ( ) µ 1–
1 µ 

 
 

.=

X′ A µ( )X=
X 0( ) x 0( ) y 0( ),( )=

x t( ) eµt t( )x 0( ) t( )y 0( )sin–cos( ),=

y t( ) eµt t( )sin x 0( ) t( )y 0( )cos+( ).=

µ 0= xt
µ

µ 0>
t γ t( )→ γ1 t( ) γ2 t( ),( )=

dist xt γ t( )log( ),( )
t ∞→
lim 0=

γ 0 µ<

γ1 γ2
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case of two standards. More importantly it shows that in the case of three standards the
decentralized process of adoption can oscillate between two equilibria and describe
cycles. In other words the convergence result is not robust to the introduction of more
than two standards. This suggests that while focusing on equilibrium selection the lit-
erature on standardization and the literature on evolutionary game theory and social
learning are overlooking a very important aspect of the problem at hand. That is, in prac-
tice it is common to have more than two standards in competition. If laissez-faire leads to
oscillation among several equilibria, not only standardization is going to fail, but more
than this society will fail to reach a stable state. The social costs of such failure are
potentially very high. Indeed growing international trade and technological integration
increases the need for standardization and conformity assessment systems. In a world-
wide integrated economic system individuals have trouble tracing the origin or assessing
the impact of their consumption. Standardization failure and oscillations can lead to
major consumers confidence crisis, as the one experienced today in Europe with the mad
cow disease. The economic consequences of such confidence crisis are clear. The con-
sumers who cannot trust what they consume, reduce their demand which leads to a reces-
sion in the sector. If the crisis should generalize because of repeated failures the impact
on growth and welfare would be dramatic. Then as a further extension of this study it
would be interesting to explore in detailed examples the determinant of cycles in decen-
tralized standardization. This would help us to understand when to expect convergence,
or on the contrary oscillations.

Appendix 1. Micro-foundation of individuals’ preferences

Let’s consider without loss of generality the case n = 2. At date t the problem of an adopter
is to allocate her demand between standard 1 with market share  and standard 2 with

. That is, she chooses in the set  a bundle 8.
There is a formal analogy between this problem and a problem of choice under uncer-
tainty with outcome being replaced by market share, and lotteries by . We assume
that the individuals' preference over the set Q are rational in the extended Von Neuman-
Morgensten sense. That is, for any vector of outcome (i.e., for any market shares

), the preferences on Q are complete, transitive, continuous, and satisfy the
extended independence axiom. Then the extended expected utility theorem implies that
these preferences admit a state-dependent expected utility representation: 

. Contrary to the
case where outcome is money leading to a state-independent expected utility representa-
tion, we obtain a different function  in every state . Finally, different indi-
viduals have different preferences, and the utility functions vary with . We assume that

8 Term  can be interpreted as a quantity (the fraction in total individual’s demand dedicated to standard k),
but it can also be interpreted as a probability ( ,  is then a lottery which gives standard k at quality 
with probability ).

x1
t

x2
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. Individual’s preference over the set Q associated to standard 1 and 2
with market share , is represented by the following utility function: 

We deduce that adopters make a discrete choice between standard 1 and 2. They choose
in Q either (1, 0) or (0, 1), hence   .

Appendix 2. Proof of Proposition 2

The proof is based on the following classical lemma.

Lemma 2. Let  denote i.i.d random variables having an exponential distribu-
tion. That is 

for  and 

Let . Then the random variable  defined by

is uniformly distributed over .

Now, using this lemma one can write 

Since 

we deduce that 
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