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Abstract
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1 Introduction

We consider multiple-principal, multiple-agent models of pure moral hazard. That is,
principals compete through mechanisms in a scenario where there is complete informa-
tion about the types of agents, but agents’ effort is not contractible. Our goal is to estab-
lish conditions under which equilibria sustained by simple communication mechanisms
are robust to the possibility that any principal may deviate to a richer communication
scheme (i.e., an indirect mechanism) to interact with agents.

With multiple principals, it is well-established that there is a loss of generality in
focusing on incentive compatible direct mechanisms (see, for example, Peck (1997),
Martimort and Stole (2002), and Peters (2001)). That is, there exist equilibrium out-
comes sustained by indirect communication schemes that are not replicable through
direct mechanisms. In such contexts, it is thus important to understand whether there
is a rationale for the restriction to simple mechanisms which have typically been postu-
lated in much of the literature on competing principals.1 It turns out (see Theorems 1
and 2 in Peters (2003)) that, whenever multiple principals interact in the presence of a
single agent, pure strategy equilibria in simple mechanisms are robust in the sense that
they remain equilibria when richer communication schemes are feasible.

We provide a similar result for multiple-principal, multiple-agent games of pure
moral hazard. Such settings are characterized by the simultaneous presence of two
sources of correlation. By privately communicating with each agent, a principal can
induce correlated equilibria in the effort game played by agents, as is well known since
the work of Aumann (1974) and Myerson (1982). At the same time, each agent may
act as a correlating device among principals, as shown for instance by Peters (2001)
and Martimort and Stole (2002). That is, principals’ decisions depend on messages sent
by agents, and agents’ choices in turn depend on recommendations they receive from
principals.

At first glance, the idea of a communication scheme in a complete information set-
ting may seem strange. The notion of private communication between a principal and
an agent is also developed by Rahman and Obara (2009), in the context of a partnership,
and Martimort and Moreira (2008), in a common agency game with informed princi-
pals. Rahman and Obara (2009) consider a single principal who can offer “mediated
contracts,” which are contingent on the private recommendations sent to agents in pre-

1See Peters (2003) and Han (2007) for a discussion. If there is complete information and the effort
is contractible, in a direct mechanism a single principal is restricted to offering a single pay-for-effort
contract to each agent.
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vious stages of the game. Such mediated communication helps to restore efficiency in
partnership problems. Martimort and Moreira (2008) consider a public good problem
in which principals privately know their own willingness to pay, and communicate this
to an agent. Thus, the agent endogenously has private information about principal j that
is payoff-relevant to principal i.

In our setting each competing principal is allowed to send private recommendations
to the agents. An agent uses the recommendations she receives to update her beliefs over
allocations. Hence, by communicating privately with an agent, a principal can create
asymmetric information among agents, before they choose effort. In a multi-principal
framework, if such private communication is relevant to describe equilibrium behavior,
a principal may want to ask agents to reveal the information conveyed by their private
communication with other principals. That is, he may have an incentive to set up a fur-
ther stage of communication. We argue that absence of correlation between allocations
and recommendations in the decision rule of every principal makes this additional com-
munication useless. Hence, in these cases we can naturally extend the original Myerson
(1982) framework to multiple-principal, multiple-agent models of moral hazard.

We define a simple mechanism to be the one in which, for each agent, a principal
chooses a message space equal to the agent’s type space, and a recommendation space
equal to the space of feasible actions. We first show that, if the principals’ allocations
do not vary with the messages they receive, and if there is no correlation between the
allocations they offer and the recommendations they make, the best response of each
principal can be characterized by a simple mechanism. That is, there is no benefit to
a principal from asking an agent to report on the recommendations the agent receives
from other principals. Thus, the infinite regress problem mentioned by McAfee (1993)
and Epstein and Peters (1999) is broken.

We then consider the notion of strong robustness introduced by Peters (2001).2 An
equilibrium of a given multiple-principal multiple-agent game is said to be strongly
robust if there does not exist a continuation equilibrium in the agents’ game that would
induce a principal to deviate. We show that strong robustness and no-correlation are
together sufficient to imply that equilibria in simple mechanisms remain equilibria when
principals can offer more complex communications schemes. We highlight the role of
the no-correlation condition via an example.

2Han (2007) considers strong robustness in a model with complete information and contractible effort,
and Han (2008) examines the common agency case.
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Much work has been done on moral hazard with common agency (i.e., with multiple
principals and a single agent).3 In addition, Ishiguro (2005) develops a framework of
competing principals with a finite number of agents who take a non-contractible action.
These papers typically restrict attention to a situation in which no form of communi-
cation between principals and agents is considered, with principals proposing take-it or
leave-it offers. For the most part, the theoretical literature on competing mechanisms
does so.4 Take-it or leave-it offers satisfy the no-correlation condition we introduce. It
follows that an equilibrium in take-it or leave-it offers that can be sustained as a strongly
robust equilibrium in a simple mechanism game can also be sustained as a strongly ro-
bust equilibrium in the indirect mechanism game. We provide an example of such an
equilibrium in the context of a standard linear production economy subject to moral
hazard.

As yet, little is known about the features of equilibrium contracts in multiple-principal,
multiple-agent models. Yamashita (2007) and Peters and Valverde (2009) provide folk
theorems for such games, with a large number of allocations supported in equilibrium.
However, the menu theorems of Martimort and Stole (2002) and Peters (2001) do not
extend straightforwardly to a general multiple-principal setting.5 The methodology
proposed by Pavan and Calzolari (2008) has also not yet been extended to multiple-
principal multiple-agent games. Attar, Campioni, Piaser, and Rajan (2009) provide two
examples showing a failure of the revelation principle in competing mechanism models
of moral hazard.

Our results represent a step forward toward a characterization of equilibrium con-
tracts in this framework. Since we consider an environment with non-contractible effort,
our findings complement those of Han (2007) who restricts attention to the situation in
which principals can write contracts contingent on agents’ actions

3See, for example, Kahn and Mookherjee (1998), Parlour and Rajan (2001), Bisin and Guaitoli (2004)
and Attar, Campioni, and Piaser (2006).

4Exceptions include Epstein and Peters (1999) who introduce private recommendations in a model
without any moral hazard.

5Han (2006) extends the menu theorems to a restricted class of multiple-principal multiple-agent
games, in which the contract between a principal and agent is essentially bilateral, and separate from the
contract with any other principal or agent.
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2 Model

The model is similar to that outlined in Attar, Campioni, Piaser, and Rajan (2009). There
are n principals dealing with ` agents, where n≥ 2 and `≥ 2. Each agent i chooses an
unobservable effort ei ∈ E i, where E i is a finite set. We denote the vector of efforts as
e =

(
e1,e2, ...,e`

)
∈ E = ×`

i=1 E i. Each array of efforts supports a joint distribution on
the space of final outcomes Z = Z1× . . .×Zn. We take (z1,z2, . . . ,zn) to be a generic
element of Z, and we denote by g(z1, . . . ,zn|e1, . . . ,e`) the probability of the outcome
(z1, . . . ,zn) induced by the efforts array (e1, . . . ,e`). Let X j be the set of actions available
to principal j and x j a generic element of that set, with X = × jX j. Preferences of the
players are defined over the set X ×Z×E. We denote by v j the utility function of the
principal j and by ui the utility function of the agent i.

Principal j only observes the realization z j. An allocation rule chosen by principal j

can therefore be represented as the measurable mapping y j : Z j→ X j. We denote Yj the
set of such mappings for principal j and we let y j be a generic element of this set.

Given the array of choice rules y ∈ Y1 × . . .×Yn and the vector of efforts e =
(e1,e2, . . . ,e`), the expected utility of principal j and agent i is given by:

Vj (y,e) =
Z

z∈Z
g(z|e)v j (y(z) ,z,e) . (1)

U i (y,e) =
Z

z∈Z
g(z|e)ui (y(z) ,z,e) . (2)

We extend the general communication structure for principal-agent models intro-
duced by Myerson (1982). Each principal j chooses a message space Mi

j and a recom-
mendation space Ri

j for each agent i. Let R j = ×`
i=1Ri

j denote the set of recommen-
dations principal j can make, and M j = ×`

i=1Mi
j the set of messages he can receive.

The allocations and recommendations chosen by principal j depend on the messages
received from the agents. All relevant sets are taken to be compact and measurable.

A mechanism offered by principal j is thus given by γ j =
(
M j,R j,π j

)
and π j :

M j→ ∆(Yj×R j) is the relevant choice rule. Mechanisms are publicly observed, but the
message from agent i to principal j, and the recommendation from principal j to agent
i, are observed only by i and j. That is, principal j chooses a realization from the lottery
π j, and communicates the realized recommendations r j to the agents. Conditional on
observing ri

j, agent i updates her belief about the stochastic allocation rule y j, but need
not know the actual realization of the rule. Since recommendations are private, two
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agents i and i′ may have different posterior beliefs about principal j’s chosen allocation
rule, y j. Potentially, this allows a principal to induce a correlated equilibrium in the
continuation game in which agents choose efforts. As is usual in the literature, principals
commit to their mechanisms before agents send messages.

There are two stages at which agent i moves in the game. First, she sends a message
array mi =

(
mi

1, . . . ,m
i
n
)

to the principals. Then, after observing only her private rec-
ommendations ri =

(
ri

1, . . . ,r
i
n
)
, she chooses an effort ei ∈ E i. Given the offered mech-

anisms, let µi ∈ ∆
(
Mi) denote the message strategy of agent i, and let δi : Mi×Ri →

∆
(
E i) be her strategy in the effort game, where Mi =×n

j=1Mi
j and Ri =×n

j=1Ri
j.

Since each principal j commits to his mechanism (including his strategy π j) at the
start of the game, agents’ best responses will depend on the array of offered mecha-
nisms γ = (γ1, . . . ,γn). Let βi = (µi,δi) represent agent i’s strategy, with β = (β1, . . . ,β`)
denoting the joint strategy of the agents.

The time structure of the interaction follows the one considered in Myerson (1982),
and is provided in Figure 1.

Each principal j
announces his
mechanism
(M j,R j,π j)

Each agent i
chooses her
messages, mi

Each principal j sends
recommendation ri

j
to each agent i

Each agent i
chooses ei

Payoffs
are realized

-

1 2 3 4 5

t

Figure 1: Timing of the generalized communication game

As noted by Epstein and Peters (1999), it is important to appreciate that, although
there is no explicit communication between the agents and any principal after the agents
have received their recommendations, the structure nevertheless permits principals to
choose allocation rules that depend on other principals’ recommendations. For example,
suppose there are two principals, and principal 2 chooses a recommendation space R2.
Principal 1 can choose a recommendation space R1 = E×R2. Then, a recommendation
r1

1 offered by principal 1 to agent 1 is interpreted as a contingent recommendation: it
recommends an action strategy based on principal 2’s recommendation. In Example
1 below, we demonstrate how a principal can in our framework use such contingent
recommendations.
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Agent i’s payoff from a final outcome (y,e) is given by the von Neumann–Morgenstern
utility function U i(y,e) and principal j’s payoff is given by Vj(y,e).6 The mechanisms
offered by principals, γ, and strategies played by agents, β, induce a distribution over
the outcome space Y ×E. With a standard abuse of notation, let U i(γ,β) denote agent
i’s expected utility given γ and β, and let Vj(γ,β) be principal j’s expected utility.

In this complete information framework, we define a simple mechanism as follows.
Principals set the message space to be equal to the type space for each agent, and directly
suggest the action each agent should take. That is, Mi

j = Θi and Ri
j = E i for every

j = 1, . . . ,n and for every i = 1, . . . , `. Since the type space is a singleton for each agent,
without loss of generality, strategies of principals and agents in a simple mechanism may
be defined independently of messages. That is, π j ∈ ∆

(
Yj×E

)
, and a mixed strategy

for an agent is given by δi :
(
E i)n → ∆

(
E i). We refer to any mechanism in which,

for any principal j and any agent i, either Mi
j 6= Θi or Ri

j 6= E i, or both, as an indirect
mechanism.7

3 Robustness

This section provides our result on the robustness of pure strategy equilibria of simple
mechanism games to the introduction of communication. In our setting, principals are
playing a game with each other, and their choices of mechanisms must correspond to a
Nash equilibrium of this game. Further, agents’ choices of messages and efforts must
represent continuation equilibria, given the mechanisms chosen by the principals and
recommendations received by the agents.

Ex ante, this is a complete information game: no participant has a non-trivial type.
However, since agents receive private recommendations from principals, agents may
have private information when they play the effort game. Hence, in the spirit of perfect
Bayesian equilibrium, we require that each agent i plays a best response following any
recommendation array ri =

(
ri

1, . . . ,r
i
n
)

she may receive.

6Since the allocation rule is an incentive scheme, U i(y,e) and Vj(y,e) must be thought of as expected
utilities.

7Thus, a simple mechanism in our framework corresponds to a “direct mechanism” as defined by
Myerson (1982). A different route to define direct mechanisms is suggested in Epstein and Peters (1999),
who include the communication about other principals’ mechanisms in the set of messages available to
each single agent. This general formulation leads to an infinite regress, and hence makes it difficult to
characterize equilibrium mechanisms.
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Recall that a mechanism offered by principal j is defined by (M j,R j,π j). A sim-
ple mechanism is defined by (Θ,E,π j), where π j ∈ ∆(Yj×E). Let ΓD be the simple
mechanism game among the principals. In this game, each principal j chooses a simple
mechanism π j ∈ ∆(Yj×E) at stage 1 (see Figure 1), and each agent i plays a strategy δi.
Let ΓG be the indirect mechanism game, in which each principal j chooses (M j,R j,π j),
where (with a slight abuse of notation) π j : M j → ∆(Yj×R j), and each agent i plays a
strategy βi = (µi,δi).

In an equilibrium of either ΓD or ΓG , we require that (i) each principal plays a best
response, given other principals’ strategies and agents’ strategies, and (ii) each agent i

plays a best response for every recommendation array ri she may receive, given prin-
cipals’ strategies and other agents’ strategies. Observe that a mechanism (M j,R j,π j)
is a pure strategy for principal j (even though the choice rule π j may provide a lottery
over allocation rules and recommendations). A mixed strategy for principal j is then
defined as a probability distribution over mechanisms. For convenience, we refer to
an equilibrium of ΓD or ΓG in which principals play pure strategies as a pure strategy
equilibrium.

We start by identifying conditions under which the best response of a principal is a
simple mechanism. When the agents’ continuation game is played, an agent may (via
his private recommendations) have more information about the allocation rules offered
by other principals, compared to the information available to some principal j. This
possibility is ruled out if the allocation strategies of the − j principals do not depend on
the messages they receive, and if their recommendations do not provide any information
about their allocation rules. The latter condition implies that for every array of messages
sent to any of the principals k 6= j, the conditional densities over k’s recommendations
and allocation rules are independent.

Definition 1 A mechanism offered by principal j, γ j = (M j,R j,π j), exhibits no corre-

lation between recommendations and allocations if the allocation rule π j is such that

π j : M j→ ∆(Y j)×∆(R j).

In some games, strongly robust equilibria may not exist. For example, suppose there
are just two principals, and, for a given choice of mechanisms and realized recommen-
dations, there are two continuation equilibria in the agents’ effort game. Continuation
equilibrium 1 yields principal 1 his highest payoff in the overall game, and principal
2 his lowest payoff. Continuation equilibrium 2 yields principal 1 his lowest payoff
in the overall game, and principal 2 his highest payoff. Then, equilibrium selection in
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the agents’ game may be critical in determining principals’ best responses, so that the
overall equilibrium of the game fails to be strongly robust.

A special case of recommendations uncorrelated with allocations is when recom-
mendations are deterministic rather than stochastic. For example, assume that each
agent can put in a binary effort, say high or low. In addition, suppose that in equi-
librium, each principal recommends that each agent should choose high effort. Then,
recommendations are deterministic, and regardless of allocation strategies, satisfy our
definition of being uncorrelated with allocations. With stochastic recommendations,
even if uncorrelated with allocations, principals can still induce a correlated equilibrium
in the agents’ effort game. Although agents have symmetric information about alloca-
tion rules, the recommendations serve the role of a private randomization device, as in
Aumann (1974).

Theorem 1 Suppose each principal k 6= j offers a mechanism γ̃k = (M̃k, R̃k, π̃k) in which

π̃k is invariant across messages mk and exhibits no correlation. Then, any expected pay-

off principal j can obtain in an equilibrium of the continuation game after offering an

indirect mechanism γ j = (M j,R j,π j) can be obtained in an equilibrium of the continu-

ation game after principal j offers a simple mechanism γ̂ j = (Θ,E, π̂ j).

Proof. Suppose principal j offers an indirect mechanism γ j = (M j,R j,π j). Consider
any continuation equilibrium in which agent i plays the strategy β̃i = (µ̃i, δ̃i). The mech-
anisms and agents’ strategies induce a (possibly correlated) distribution over allocations
y and efforts e. Let ν̃(y,e) denote this distribution.

Now, every principal k 6= j has an allocation strategy that is invariant to the mes-
sages he receives, and is using recommendations uncorrelated with allocations, i.e.
π̃k ∈ ∆(Yk)×∆(Rk). Since each agent i observes only the mechanisms, his own message
mi

k to principal k, and his own recommendation array ri = (ri
1, . . . ,r

i
k, . . . ,r

i
n), the efforts

chosen must remain uncorrelated with the allocation rules of principals k 6= j. Hence,
we can write ν̃(y,e) = ν j(y j,e) · ∏k 6= j π̃k(yk) where π̃k(.) is the marginal distribution
over allocations of any principal k 6= j.

The remainder of the proof replicates the arguments in Myerson (1982) for the
single-principal case. It is now straightforward for principal j to induce the same
joint distribution over allocation rules and efforts by offering the simple mechanism
γ̂ j = (Θ,E,ν j). Since this strategy induces the same joint distribution over efforts and
allocation rules as in the continuation equilibrium when principal j offered the indirect
mechanism γ j, it must be a best response for each agent i to (i) play the same message

8



strategy µ̃i as earlier, and (ii) obey the recommendation of principal j, and to ignore the
recommendations of the others. That is, it is a best response for each agent i to take the
action ei

j recommended by principal j. Let δ̂i denote agent i’s obedient strategy at the
effort stage, and let β̂i = (µ̃i, δ̂i) denote her overall strategy in the game.

Now, the mechanisms (γ̃1, · · · , γ̂ j, · · · , γ̃n) and continuation equilibrium (β̂1, . . . , β̂`)
induce the same joint distribution over allocation rules and efforts as the mechanisms
(γ̃1, · · · , ,γ j, · · · , γ̃n) and continuation equilibrium (β̃1, . . . , β̃`). Hence, the expected pay-
offs of all principals and agents must be similar in the two cases.

The theorem shows that if agents have no private information about the allocation
rules offered by other principals, a principal cannot benefit from a complex communi-
cation scheme which seeks to uncover private communication between agents and the
other principals. To interpret this result, consider an alternative extensive form of the
game. Suppose that, after the agents have received their recommendations, principals
are allowed to communicate again with the agents and to (possibly) change their original
offers. A principal could ask to each agent what are the recommendations that he has
received and modify the allocation accordingly. One can interpret this additional stage
as a possibility of renegotiation. Imagine that n−1 principals play an uncorrelated strat-
egy, is there any incentive for the n-th one to use this new communication opportunity?
Theorem 1 provides a negative answer. Since recommendations and allocations are not
correlated for n− 1 principals, the n-th one would learn nothing from the new round
of communication. Hence, whatever payoff he reaches at any continuation equilibrium,
can also be obtained by means of a simple communication mechanism.

In particular, if the recommendations that agents receive from other principals com-
municate no private information about their allocations, there is no benefit for principal
j from choosing a recommendation space such as E×R− j (where R− j =×k 6= jRk) in or-
der to send contingent recommendations to agents. Thus, the infinite regress problem is
broken. However, if there is correlation between allocation rules and recommendations
in principals’ strategies, simple communication mechanisms are no longer sufficient to
characterize a principal’s best response, as we show later in Example 1.

Observe that the theorem cannot be extended to mixed strategies for principals. The
reason is that whenever a principal plays a mixed strategy the agent can observe the
realization of that mixed strategy. This, in turn, constitutes relevant information for
the other principals. This intuition applies to the single-agent case as well (see Peters
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(2003)), and an example in this direction is provided in Han (2007) for the case with
contractible effort.

We now turn to our main question: under what conditions does an equilibrium out-
come of a simple game ΓD survive the introduction of more complex communication
mechanisms? In a simple mechanism, (trivially) allocation rules do not depend on mes-
sages. If the no correlation property is satisfied, we know that every principal can recre-
ate the payoff from any deviation to an indirect mechanism via a suitable simple mecha-
nism. The difficulty, however, is that different principals may wish to replicate different
correlated equilibria in the agents’ effort game, potentially leading to conflicting recom-
mendations being sent to the agents.

To rule out this possibility, we require equilibria in the mechanism design game to
be strongly robust in the sense of Peters (2001) and Han (2007). An equilibrium of the
simple (indirect) mechanism game is defined to be strongly robust if, regardless of the
continuation equilibrium that is chosen in the agents’ effort game, no principal j can
improve his own payoff by deviating to some other simple (indirect) mechanism.

Definition 2 (i) Let (π∗,δ∗) be an equilibrium of the simple mechanism game ΓD . The

equilibrium is strongly robust if, for every principal j, every simple mechanism π̃ j and

every continuation equilibrium δ̃, Vj(π∗,δ∗)≥Vj((π̃ j,π
∗
− j), δ̃).

(ii) Let (γ∗,β∗) be an equilibrium of the indirect mechanism game ΓG . The equilib-

rium is strongly robust if, for every principal j, every indirect mechanism γ̃ j and every

continuation equilibrium β̃, Vj(γ∗,β∗)≥Vj((γ̃ j,γ
∗
− j), β̃).

When will an equilibrium of the simple mechanism game be strongly robust? If
there is a single principal, the optimal incentive compatible simple mechanism, and
the associated continuation equilibrium in the agents’ effort game, constitute a strongly
robust equilibrium. In any mechanism he offers, the principal can induce (via his rec-
ommendations) the continuation equilibrium that maximizes his payoff. Thus, given an
optimal mechanism, there cannot exist another incentive compatible simple mechanism
and an associated continuation equilibrium that leave the principal strictly better off.

In a pure moral hazard setting, incentive compatibility is equivalent to agents “obey-
ing” the recommendations offered by a principal. With multiple principals, the notion
of obedience is troublesome, since an agent may receive conflicting recommendations
from different principals. Nevertheless, the following are some situations in which
strongly robust equilibria will exist:
(i) The agents’ continuation game has a unique equilibrium for every set of mechanisms
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offered by principals and for every realization of recommendation strategies.
(ii) The agents’ continuation game has a Pareto-dominant equilibrium for every set of
mechanisms offered by principals and for every realization of recommendation strate-
gies, and this equilibrium is selected in each case. More precisely, suppose, for every
j ∈ n, every mechanism offered by j (while keeping fixed the other n− 1 principals’
mechanisms), and every realization of the recommendation strategies, there is an equi-
librium in the agents’ continuation game which is preferred by all principals to any other
equilibrium in the continuation game. Suppose further that this equilibrium is selected
as the continuation equilibrium in all cases. Then, the original equilibrium is strongly
robust.
(iii) In the equilibrium of the overall game, all principals play weakly dominant strate-
gies. Then, a unilateral deviation cannot make any principal better off.

Using the no-correlation property, we now state our theorem on robustness of pure
strategy equilibria. The theorem provides sufficient conditions for an equilibrium out-
come of a simple mechanism game to remain an equilibrium outcome of an indirect
mechanism game. Formally,

Theorem 2 Suppose the simple mechanism game ΓD has a strongly robust equilib-

rium (π∗,δ∗) in which, for each principal j, π∗j is a pure strategy that satisfies the no-

correlation property. Then, in the indirect mechanism game ΓG , it remains a strongly

robust equilibrium for each principal j to offer the simple mechanism (Θ,E,π∗j) and for

each agent i to play δi∗. Thus, the joint distribution over allocation rules and efforts

that obtains in the equilibrium of the simple mechanism game remains an equilibrium

outcome of the indirect mechanism game.

Proof. Consider the indirect mechanism game ΓG . Suppose that, in this game, every
principal j offers a mechanism

(
M j,R j,π j

)
= (Θ,E,π∗j), where π∗j is his equilibrium

pure strategy in the simple mechanism game ΓD . It is immediate that δ∗= (δ1∗, · · · ,δ`∗)
must remain a continuation equilibrium in the agents’ efforts game.

Now, suppose the equilibrium associated with π∗ and δ∗ is not strongly robust in the
game ΓG . Then, there exists a unilateral deviation by some principal j′ to an indirect

mechanism γ̃ j′ =
(
M̃ j′ , R̃ j′, π̃ j′

)
6=
(

Θ,E,π∗j′
)

, and a continuation equilibrium β̃ = (µ̃, δ̃),
such that principal j′ earns a strictly greater utility than in the equilibrium of the simple
mechanism game (π∗,δ∗). Since principal j′ deviates to an indirect mechanism, in
general in the continuation equilibrium agents may be both sending messages according
to µ̃ and then choosing efforts according to δ̃.
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Now, every principal k 6= j′ has offered a mechanism in which his allocation rules
do not depend on the messages he receives (since his message space is a singleton)
and in which there is no correlation between his allocation rules and recommendations
(by assumption). Hence, from Theorem 1, principal j′ can achieve the same expected
payoff as he achieves by offering γ̃ j′ if he instead offered a suitable simple mechanism.
However, this implies that (π∗,δ∗) is not a strongly robust equilibrium of the game ΓD ,
which is a contradiction.

We show in Example 1 that the theorem fails to obtain when a principal correlates
his allocations with his recommendations. Attar, Campioni, Piaser, and Rajan (2009)
provide an example in the same spirit to demonstrate a failure of the revelation principle
in this setting. Here, we focus on the role of the no-correlation condition.

Example 1 (No-correlation property)
There are two principals and two agents, i.e n = 2 and ` = 2. The allocation spaces

are Y1 = {y1} and Y2 = {y21,y22} for principal 1 and 2, respectively. Here, we assume
that the output space is a singleton, so that an allocation rule is directly identified with
an allocation. The effort spaces are E1 = {a1,a2} and E2 = {b1,b2}, for agents 1 and
2. The payoffs of the game are given in the following matrix. The first payoff is that
of principal 1 (P1), who has only one allocation and chooses the row in the table; the
second payoff is that of principal 2 (P2), who chooses the column, and the last two
payoffs are those of agent 1 and 2, respectively.

y21 y22

y1

b1 b2

a1 (−100,2,0,0) (0,2,8,3)
a2 (0,2,3,8) (70,2,6,6)

b1 b2

a1 (−100,2,0,0) (0,2,8,3)
a2 (0,2,3,8) (70,2,7,7)

Table 1: Payoffs in Example 1
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Consider the following choice rules for the principals.

π1 =


(y1,a1,b2) with probability 2

7

(y1,a2,b1) with probability 2
7

(y1,a2,b2) with probability 3
7

π2 =

{
(y21,a1,b1) with probability 1

2

(y22,a2,b2) with probability 1
2

Observe that, given the offered mechanisms, there is a continuation equilibrium
where both agents follow the recommendations of P1. The corresponding payoff profile
is (30,2, 83

14 , 83
14).

We show that these choice rules constitute a strongly robust equilibrium in the direct
mechanism game. Since P2 is indifferent across all outcomes, it is sufficient to consider
only deviations by P1. We argue that, following any deviation by P1 to another simple
mechanism, there is no continuation equilibria in the agents’ game that yields P1 a
payoff strictly greater than 30.

Suppose P1 deviates to another simple mechanism. First, consider continuation
equilibria in which agents obey the recommendation of P1. In a simple mechanism,
P1 cannot offer recommendations that are contingent on the recommendations of P2.
Thus, P1 is limited to inducing the same correlated equilibrium in the agents’ game,
regardless of whether P2 offers y21 or y22. If both agents obey the recommendations of
P1, the maximal payoff he can attain is then 30, via the correlated equilibrium which
places probability 3

7 on (y1,a2,b2), and 2
7 on each of (y1,a2,b1) and (y1,a1,b2).

Next, consider continuation equilibria in which agents ignore the recommendation
of P1 in one column of the large matrix in Table 1. If agents ignore the recommendation
of P1, they will instead coordinate on a Nash Equilibrium of their continuation game.
Each of the cells of the large matrix has exactly three Nash equilibria (two pure strategy
equilibria and a mixed strategy one), each of which offer a payoff of zero to P1.

Now, it is straightforward to show that when P2 offers y21, the continuation equi-
librium that maximizes the payoff of P1 is again the correlated equilibrium that places
probability 3

7 on (y1,a2,b2), and 2
7 on each of (y1,a2,b1) and (y1,a1,b2). P1 earns a

payoff of 30 in this case. Similarly, when P2 offers y22, the payoff of P1 is maximized
by the correlated equilibrium that places probability 3

5 on (y1,a2,b2), and 1
5 on each of

(y1,a2,b1) and (y1,a1,b2). P1 earns a payoff of 42 in this case. Given the randomiza-

13



tion π2, therefore, the maximal payoff P1 can earn if agents ignore his recommendation
in at least one column of the large matrix is 21.

Thus, there is a pure strategy equilibrium in simple mechanisms which supports the
profile of payoffs (30,2, 83

14 , 83
14).

Next, suppose that, when P2 offers the direct mechanism π2, P1 can instead deviate
to an indirect mechanism. We show that there exists an indirect mechanism that yields
P1 an expected payoff of 36, by inducing the optimal correlations separately for each
allocation P2 may choose.

Consider the following indirect mechanism offered by P1. The recommendation sets
for agents 1 and 2 are, respectively R = {r1,r2,r3,r4} and S = {s1,s2,s3,s4}. Agent 1
plays the following strategies after he receives the recommendation of P1:
r1: play a1 regardless of the recommendation offered by P2.
r2: play a1 if P2 sends recommendation a1 and a2 if P2 sends recommendation a2

r3: play a2 if P2 sends recommendation a1 and a1 if P2 sends recommendation a2

r4: play a2 regardless of the recommendation offered by P2.
Agent 2’s strategy is similar (substitute si for ri and b j for a j above).
Since P1 has only one allocation to offer (y1), we specify her allocation rule only in

terms of probabilities over recommendations sent to the agents. Consider the following
probabilities over R and S.

s1 s2 s3 s4

r1 0 0 0 2/35
r2 0 0 2/35 6/35
r3 0 2/35 0 3/35
r4 2/35 6/35 3/35 9/35

Table 2: Probabilities over recommendations in indirect mechanism

Suppose each agent obeys the recommendation of P1. It is straightforward to check
that for each of the two allocations P2 can offer, the indirect mechanism above induces a
correlated equilibrium in the agents’ effort game. In particular, it induces the correlated
equilibrium that maximizes P1’s expected payoff following each allocation offered by
P2. P1 earns an expected payoff of 36 from the indirect mechanism, higher than the 30
she can earn from a direct mechanism.

This example shows that, in the absence of the no-correlation property, a principal
may wish to deviate to an indirect mechanism even if other principals offer direct mech-
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anisms. In the example, P2 offers a mechanism with a recommendation space R2 = E,
and the best response of P1 to the mechanism of P2 involves a recommendation space
E×R2. From the viewpoint of P1, the recommendation offered by P2 is equivalent to an
unknown type for each agent, and the best response of P1 is contingent on this unknown
parameter.

In our example, P2 is indifferent across all outcomes. It is easy to see that, if P2 had
non-trivial preferences over outcomes, she may, in turn, wish to make recommendations
contingent on the (contingent) recommendations of P1, and so on, leading to the infi-
nite regress problem mentioned by McAfee (1993) and the universal message space of
Epstein and Peters (1999).

4 Games without communication

Standard models of multiple principals with complete information on the agents’ side
typically do not consider communication. Instead, principals simply propose allocation
rules, and agents take a non-contractible effort. We call such a game a “game without
communication.” If the equilibrium outcomes generated in a game without communica-
tion were replicable in simple mechanism games with communication, with strategies
that satisfied the conditions of our theorem, we would be confident that no principal
could gain by a unilateral deviation to an indirect mechanism. The result is hence a
direct implication of Theorem 2.

In a game without communication, let σ j ∈ ∆(Yj) denote the strategy of principal j,
and let ρi : ∏

k
j=1 ∆(Y i

j)→ ∆(E i) denote the strategy of agent i. Let σ = (σ1, . . . ,σn), and
ρ =

(
ρ1, . . . ,ρk).

Theorem 3 Let (σ∗,ρ∗) be a pure strategy equilibrium in the game without communi-

cation. If the corresponding equilibrium outcome can be supported as a strongly robust

equilibrium in ΓD , then it remains an equilibrium outcome in the indirect mechanism

game ΓG .

Proof. Consider a pure strategy equilibrium (σ∗,ρ∗) of the game without communica-
tion. We can construct strategies (π,δ) in the game ΓD that replicate the outcome of the
equilibrium in the game with no communication. For example, let π j = σ∗j×e1

1×·· ·×ek
1

for each principal j. That is, each principal offers the allocation lottery σ j and the rec-
ommendation array (ei

1, · · · ,ek
1) to the agents. Set δi(πi

1, . . . ,π
i
n) = ρi∗(σi

j, . . . ,σ
n
j) for

each i.
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By construction, π satisfies the property that recommendations are uncorrelated with
allocation rules for each principal j. Notice that (π,δ) induces the same distribution over
terminal payoffs as (σ∗,ρ∗).

Therefore, from Theorem 2, if it is a strongly robust equilibrium in ΓD for each prin-
cipal j to offer π j and for each agent i to play δi, it remains a strongly robust equilibrium
in ΓG for each principal j to offer γ j = (Θ,E,π j), and for each agent to play δi.

Theorem 3 shows that pure strategy equilibria of games without communication can
survive the introduction of complex forms of communication if they can be supported
as strongly robust equilibria in games with communication.

One implication of our analysis is that, in the game ΓD , at the deviation stage it is
sufficient to analyze incentive compatible (i.e., obedient) behavior of the agents, since
only one principal deviates to a mechanism with communication. In other words, we
only need to consider deviations where the principal’s recommendations are followed
by agents in the continuation game. If those deviations are not profitable, then none
is and the equilibrium will be strongly robust. Even in a multiple-principal context
where the notion of obedience is not helpful to characterize equilibria, we provide a
rationale for considering incentive compatibility at the deviation stage in games without
communication.

We conclude with an example that considers an equilibrium in take-it or leave-it
offers in a standard production economy. In the example, we identify conditions under
which the equilibrium in take-it or leave-it offers is sustainable as a strongly robust
equilibrium in the corresponding simple mechanism game.

Example 2 (Robustness of equilibrium in take-it-or-leave-it offers).
There are two identical principals ( j = 1,2), each of whom obtains a profit (or pay-

off) equal to his total production minus the amount he transfers to the agents. Production
is risky: output has the value f > 0 or 0. The probability of success (i.e., obtaining f )
depends on the efforts made by two agents (i = 1,2). Let p

(
e1,e2) be the probability

of success of a principal, where ei is the effort of agent i, for i = 1,2. For each agent i,
the effort choice ei lies in the set E = {e1,e2}, where e1,e2 ∈ R+ with e1 < e2. Given
e1,e2, successes are independent across principals. Further, the probability of success
is symmetric (so p(e1,e2) = p(e2,e1)) and increasing in both arguments. Finally, we
assume that

p(e2,e2)− p(e1,e2) > p(e2,e1)− p(e1,e1) > 0, (3)
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which implies there are complementarities in production: inducing high effort from
agent 1 is more beneficial when the other agent is also providing high effort.

All players have limited liability. Thus, for each principal, an allocation rule y j is
defined by a pair of functions (y1

j ,y
2
j), where yi

j( f ) = T i
j ∈ [0, f ] is a monetary transfer to

agent i if production is successful, and yi
j(0) = 0 is the transfer to agent i if production

fails. Each player has a reservation utility of zero.
All players are risk-neutral. Principal j’s expected utility is represented as p(e1,e2) ( f−

T 1
j −T 2

j ), and, since (given efforts) successes are independent across principals, agent
i’s expected utility is p

(
e1,e2)T i

1 + p
(
e1,e2)T i

2− ei = p(e1,e2)[T i
1 +T i

2]− ei.
Define T ∗ to be the compensation level that leaves each agent indifferent between

choosing high and low effort, if both principals offer T ∗ and if the other agent chooses
e2. That is, T ∗ is defined by the equation

2 p(e2,e2)T ∗− e2 = 2 p(e1,e2)T ∗− e1. (4)

That is: T ∗ = e2−e1
2[p(e2,e2)−p(e1,e2)]

.
Consider a game with no communication, in which principals can only make take-it-

or-leave-it offers to agents. Suppose, as an extreme case, p(e2,e2)( f −2T ∗)> p(e1,e2) f .
Then, it follows that (i) if principal 2 offers the take-it-or-leave-it offer T ∗ to each agent,
it is a best response for principal 1 to do the same, provided agents coordinate on the
continuation equilibrium (e2,e2), and (ii) the equilibrium generates a higher utility for
each principal than any other equilibrium of the game (since even without compensating
the agents, a principal is worse off if any agent chooses e1).

Thus, each principal offering T ∗ to each agent, with the continuation equilibrium
(e2,e2), constitutes a strongly robust equilibrium in the take-it-or-leave-it offer game.

Now, suppose principal 2 makes a take-it-or-leave-it offer, and principal 1 deviates
to a mechanism with communication. From Theorem 1, in determining the best re-
sponse of principal 1, we only need to consider simple mechanisms with a continuation
equilibrium in which both agents obey the recommendations they receive. Let π denote
the recommendation and allocation strategy of principal 1 in a simple mechanism. Re-
call that π induces a correlated equilibrium in the agents’ effort game. Let πi j denote
the probability that agent 1 is recommended action ei and receives allocation T 1

i j , and
agent 2 is recommended action e j and receives allocation T 2

i j .
Note that we consider only deterministic transfers. In principle, we could allow

principal 1 to make a recommendation associated with a stochastic transfer (i.e., a distri-
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bution over [0, f ]). However, since all parties are risk-neutral, this restriction is without
loss of generality.

Suppose agent 1 receives the private recommendation e2. She believes that agent 2
receives e1 with probability π21 and e2 with probability π22. Thus, she obeys the rec-
ommendation only if:

π21
[
p(e2,e1)

(
T 1

21 +T ∗
)]

+π22
[
p(e2,e2)

(
T 1

22 +T ∗
)]
− e2

≥ π21
[
p(e1,e1)

(
T 1

21 +T ∗
)]

+π22
[
p(e1,e2)

(
T 1

22 +T ∗
)]
− e1.

(5)

Now, note that if π21 = 0, (5) implies T21 ≥ T ∗. Similarly, if π22 = 0, the assumption
that p(e2,e1)− p(e1,e1) < p(e2,e2)− p(e1,e2) implies that T22 > T ∗. Therefore, for any
array of probabilities (π21,π22), it must be that π21T 1

21 +π22T 1
22 ≥ T ∗.

Finally, recall that principal 1 prefers to induce e2 than e1, provided he can transfer
only T ∗ to each agent. It follows that the following simple mechanism is optimal for
P1: π11 = π12 = π21 = 0 and π22 = 1, with T i

11 = T i
12 = T i

21 = 0 and T i
22 = T ∗ for

each i. Hence, the maximal payoff that principal 1 can achieve with communication
is equivalent to his maximal payoff with take-it-or-leave-it offers. By symmetry, the
same applies to principal 2. Thus, the outcome with take-it-or-leave-it offers can be
sustained as a strongly robust equilibrium of the simple mechanism game. It follows
from Theorem 3 that the same outcome can also be supported at a strongly robust of the
indirect mechanism game.

Note that if p(e2,e2)− p(e1,e2) < p(e2,e1)− p(e1,e1), principal 1 can induce agent
1 to play e2 even with a transfer less than T ∗. Thus, the equilibrium in take-it-or-leave-it
offers need not be robust in the simple mechanism game.

5 Conclusion

Applied moral hazard models typically ignore communication between principals and
agents. We consider the robustness of pure strategy equilibria in a game with pure
moral hazard. We show that if principals do not correlate their allocation rules with the
recommendations they use with the agents, then a strongly robust equilibrium in a game
in which principals use simple mechanisms, remains a strongly robust equilibrium when
principals can instead use complex communication schemes.

It is worth emphasizing that the no-correlation condition provides for sufficiency
only. If an equilibrium in direct mechanisms fails the no-correlation property, it may

18



yet be feasible to sustain the induced outcome as an equilibrium in indirect mechanisms.
Strong robustness instead is a property that, it seems, must be required: if a principal
can profitably deviate in direct mechanisms, it is trivial that she can profitably deviate
to an indirect mechanism as well.

As we show in Example 2, equilibria in models without communication may indeed
be sustainable as strongly robust equilibria in the direct mechanisms game, in which
case the restriction to mechanisms without communication is inconsequential. However,
other applications may fail to have strongly robust equilibria, with the payoff rankings
of principals differing across the continuation equilibria in the agents’ game. In the
latter case, a principal can profitably deviate to a mechanism with communication.
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