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1 Introduction

It has been suggested that more than 20 percent of the population of the European Union (EU) are

exposed to higher noise levels than considered acceptable (European Commission, 1996). Noise is an

environmental and health problem of major concern in many developed countries, and one of the major

sources of noise exposure is the transport sector. Noise from this sector is problematic for, broadly

speaking, two reasons: (i) increasing transportation of goods and people means higher noise levels, and

(ii) since transport is related to human activity and needs, much of it occurs in areas where people live,

work, go to school, etc. The latter means that today’s urbanization will lead to noise being a bigger

problem in the future unless efforts are made to mitigate the problem (Nijland et al., 2003).

Such efforts come at a cost, though, and policies and projects to reduce noise levels need to be

evaluated to secure an efficient resource allocation. Benefit cost analysis (BCA) is a powerful tool to

evaluate noise abatement, but it requires both benefits and costs to be measured in a common metric.

Moreover, the EU has decided that infrastructure charges should be based on short-run marginal costs

(European Commission, 1998), which has the potential to internalize external effects of traffic. Such

charges also require monetary values. To monetize the social value of changes in noise levels, analysts

rely on non-marketed good evaluation techniques, and the technique that dominates is Rosen’s hedonic

regression method (Rosen, 1974).

Most studies monetizing noise have focused on road and air noise (Arsenio et al., 2006; Bateman et al.,

2001; Garrod et al., 2002; Navrud, 2004; Nelson, 1982, 2004). This study examines the willingness to pay

(WTP) to reduce road and railway noise. It is a well established fact in the acoustic literature that,

for the same level of the noise indicator, individuals are more annoyed by road than by railway noise

(Miedema and Oudshoorn, 2001).1 However, in a recent study using the hedonic regression technique

in the UK, Day et al. (2007) found that the WTP among property owners to reduce railway noise was

higher compared with road noise. This conflicting evidence is interesting since the evidence from the

acoustic literature is based on individuals’ stated annoyance from different noise sources, whereas the

evidence in Day et al. is based on actual decisions by property owners.

This study examines how property prices are affected by multiple noise sources, in this case road and

railway noise. The aims are: (i) to ascertain whether the findings in Day et al. (2007) are robust for the

revealed preference literature or whether the WTP is more in line with the findings in the acoustical

literature, and (ii) to estimate the WTP to reduce road and railway noise that could be considered in

policy implementation. The first aim is of great interest from both a research and policy perspective

1 The evidence also suggests that individuals are more annoyed by air than road noise
(Miedema and Oudshoorn, 2001).
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since it examines how individuals’ stated preferences (non-binding) agree with their actual behavior.

The second aim is mainly of policy interest, since it examines the need for differentiated values in BCA

or infrastructure charges (Andersson and Ögren, 2007a,b). We employ the hedonic regression technique

on a municipality in the west of Sweden.

The article is organized as follows. Section 2 briefly describes the hedonic regression technique. Sec-

tions 3, 4, and 5 contain the data used, the econometric models, and the results. The final section

discusses our findings and relates them to other results in the literature.

2 The hedonic regression technique

In his seminal paper, Sherwin Rosen (Rosen, 1974) showed that in an economy with utility and profit

maximizing individuals and firms, the marginal WTP for attributes of composite goods will equal their

implicit prices.2

Considering the scenario of interest in this study, where our composite good is a property, let L and

A = [a1, . . . , an] denote noise and a vector of other utility-bearing attributes. The hedonic price function

(P ) may then be written as

P = P (L,A). (1)

Rosen showed that the consumer’s WTP for the good will equal its market price. Since, in optimum, the

consumer’s marginal WTP equals his marginal rate of substitution between the price of the good and

any of the attributes, the slope of the price function may be used to determine the consumer’s marginal

WTP. Focusing on noise, the marginal WTP is, thus, estimated as

MWTP =
∂P (L,A)

∂L
. (2)

The information about individuals’ preferences from Eq. (2) only reveals the marginal WTP in opti-

mum; it does not reveal the underlying preference structure. To derive the price function and to estimate

the marginal WTP using the hedonic regression technique is sometimes referred to as the first step of

the technique. In the second step, where the preference parameters are estimated, the results from the

first step, together with information on property owners/households, are used. The second step enables

the analyst to calculate “theoretically consistent” values for non-marginal changes, which was done in

Day et al. (2007). In this study only the first step is conducted.

2 The hedonic regression technique has been discussed in several articles, books and book chapters
(Bateman et al., 2001; Freeman, 2003; Haab and McDonnel, 2003; Ekeland et al., 2004; Palmquist, 2005;
Andersson, 2008), and we therefore only give a brief introduction to the technique here. For a more compre-
hensive description of the technique, see references provided or the original source (Rosen, 1974).
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3 Data

This study estimates the impact of traffic noise from both railway and roads on property prices in the

municipality of Lerum close to Gothenburg in the west of Sweden. Lerum has about 36,000 inhabitants

and a population density of 138 inhabitants per km2. Two major transport routes connecting Gothenburg

and Stockholm cross the municipality: the railway line Västra stambanan and the motorway E20. Figure 1

shows a sketch over the survey area with the two transport routes.

[Figure 1 about here.]

The data set used in this study originates from two sources. The data on the property prices and

attributes (besides the noise levels) are from the National Land Survey of Sweden and are used for

property taxation. The property attributes also contain the geographical coordinates, which are used

here to derive geographical variables like neighborhood dummies and distance to nearest train station

and highway entrance. The data set covers all the sales of single family houses in the municipality of

Lerum from the autumn of 1996 to early 2006. Since the data covers a period of several years, the

property prices have been adjusted to the property price index of the Gothenburg region and are shown

at 2004 price levels. In the regression, the sale closest to January 1st 2004 is used for those properties

that were sold several times during the period.

Information about noise levels is from a study on the health effects of traffic noise conducted in Lerum

in 2004 (Öhrström et al., 2005). Separate noise calculations were made for railway and road noise for all

the houses in Lerum.

Descriptive statistics for the different variables are shown in Table 1. The following three sections

describe the groups of variables used as explanatory variables in the price equations, followed by a section

describing the exclusion criteria used in the regressions.

[Table 1 about here.]

3.1 Structural variables

Structural variables define the character of the property, and those used in the regressions are property

type, living space and a quality index that is based on a self-reported form that the house owner fills

in for the tax assessment. The quality index is based on questions concerning the indoor-quality of the

property, for instance the standard of the kitchen, the existence of an open fire place or a sauna, etc.

The buildings are categorized as detached, linked by a garage or terraced.
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3.2 Geographical attributes

The geographical variables included in the study are all derived from the coordinates of each property.

All the properties are distributed over 11 districts based on their distance to the five commuter train

stations in the municipality. The commuter train stations are centrally situated in distinct neighborhoods

and the district variables are constructed in a way that divides properties into two groups depending on

whether they are 1 km or between 1 and 2 km from the nearest station. For properties more than 2 km

from the nearest station a separate district is created, Country side. Moreover, a variable measuring the

distance to the nearest commuter train station using the road network is included to further capture the

accessibility to train and to other community services located close to the train stations. A dummy that

equals one for the properties within 150 meters from the motorway E20 is included to control for other

disadvantages (or possibly advantages), apart from noise, of living close to a major road, like effects on

air quality. To capture accessibility by car, the distance by road to the nearest entrance to the motorway

E20 is also included in the models.

3.3 Noise indicator

The most commonly used noise indicator is the A-weighted equivalent sound pressure level, which is an

energy average over a certain time period, normally 24 hours and then denoted LAEq,24h. The A-weighting

approximates the varying sensitivity of the human ear to different frequencies. The equivalent level is a

good indicator of overall annoyance, but for sleep disturbance a better choice is the maximum level, which

is normally defined as the maximum noise level occurring during a certain time period. The maximum

level is more difficult to predict using calculation methods, and has a complex dependence on the traffic

volume since a noisy vehicle may be present even in low traffic conditions (see Sandberg and Ejsmont,

2002). We will, therefore, focus on the equivalent level in this study.

In Öhrström et al. (2005) equivalent noise levels (LAEq,24h) were calculated for each property sep-

arately for both rail and road noise using the “Nordic methods” (Jonasson and Nielsen, 1996; Nielsen,

1996). For each residential building the façade with the highest noise level was chosen to represent the

property, which meant that the rail noise and the road noise for some properties occurred at different

façades. The noise variables were calculated in 2003 and reflected the noise level for that particular year,

but the effect of traffic changes is limited if expressed in terms of changed noise level.3

The dB-scale used for all noise variables in this study does not have a natural zero point; instead,

the zero of the scale is determined by convention (see Sandberg and Ejsmont, 2002). The sound pressure

3 Approximately 1 dB for a 30% traffic increase over 10 years
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level 0 dB corresponds to a sound pressure of 20 µPa, which is roughly the lowest audible level for a tonal

sound at a frequency of 1000 Hz. The total absence of sound is represented by a sound pressure of 0 Pa,

corresponding to negative infinity on the dB scale (−∞ dB). For other environmental effects it makes

sense to use valuations that vanish when the effect variable becomes zero (for instance, number of particles

per m3 describing air pollution), but the same is not true for noise measured in dBs. The effect should

be zero when no negative effect is observed from noise, and in our study we have chosen to use a lower

limit of LAEq,24h = 45 dB. The limit is somewhat arbitrarily determined, but the percentage of persons

reporting that they are annoyed by traffic noise is very low below this level (Miedema and Oudshoorn,

2001). Therefore, the noise variables in our hedonic regressions are defined by the absolute noise level

minus 45, with 0 for levels below 45 dB.

3.4 Included observations

As mentioned above, we assume that equivalent noise levels below 45 dB do not influence the property

prices. However, to get a more homogeneous sample we include only properties with a total noise level

that is assumed to be disturbing. As thresholds we use two levels, 50 and 55 dB. The first (50 dB) is

the official Swedish threshold value, i.e. the official Swedish cost function from noise exposure is zero

for noise levels below 50 dB (SIKA, 2008). The latter (55 dB) is often used by authorities as a limit

value below which no measures are taken to mitigate the noise (Nijland and Van Wee, 2005). By using

two threshold levels, we also examine how sensitive our regression results are to the chosen level. The

threshold level is based on the total equivalent noise level, which is calculated as

Ltot(L1, L2) = 10 log(10
L1
10 + 10

L2
10 ). (3)

where Lj , j ∈ {1, 2}, represent the equivalent noise level in dB from road (1) and rail (2) traffic noise,

respectively. When L1 and L2 are equal the total level becomes L1 + 3 (= L2 + 3). If one source is

dominant, the other source will have very little influence on the total level (L1 ⊕ L2 ≈ L1 if L1 À L2).

As shown in Table 1, restricting the observations to include only properties with a total noise level of

at least 55 dB leads to a reduction of the data set by two thirds compared to using all the observations

with a total noise level of at least 50 dB.

4 Econometric model

4.1 Spatial dependence

The first law of geography states “Everything is related to everything else, but near things are more

related than distant things” (Tobler, 1970, p. 236). This statement has a bearing on hedonic regressions on
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property prices as the geographical location of a house is an important element of the good. The concept

of near things being more related than distant things is named spatial dependence. Spatial dependence,

or spatial autocorrelation, implies that the assumption of independence between observations is violated

and is often handled through either a spatial lag or error model (Anselin, 1999, 2003). The different

models can be hard to distinguish empirically, but they are based on different theoretical grounds. The

decision between models in our study is based on diagnostic tests and in terms of fit.

Assuming a linear hedonic model, the spatial lag and error models are defined by (Kim et al., 2003),

P = ρWP + Aβ + ε, (4)

P = Aβ + ε where ε = λWε + u, (5)

and where W is the spatial weight matrix that describes the correlation structure between observations.

If ρ and λ are 0 the spatial lag and error models are reduced to the OLS model. The spatial dependence

in the spatial error model in Eq. (5) is assumed to arise from a spatial pattern in omitted variables.

Thus, it is appropriate when properties share common amenities that have a spatial pattern and these

amenities cannot be controlled for. With the spatial error model the OLS estimator is unbiased but not

efficient (Anselin, 1999).

The spatial lag model in Eq. (4) assumes that the property price (the dependent variable), in addition

to its attributes, is affected by the prices of neighboring houses. This means that the total increase in

property value due to a change in the attribute level can be decomposed into a direct and an indirect

effect that occurs because, e.g., the increase in the value of the property in question raises the value

of neighboring properties, whose increased value in turn raise the value of the property in question

further. The reduced form of Eq. (4) shows the effect on the marginal benefit estimate from spatial lag

dependence,

P = [I − ρW ]−1Aβ + ν, (6)

where β is a vector of the direct effect of the property’s own characteristics, [I−ρW ]−1 the indirect effect,

and ν = [I − ρW ]−1ε. Hence, based on the spatial lag model the marginal implicit price for attribute l

is not given by βl, but by βl[I − ρW ]−1 (Kim et al., 2003).

It is not evident, however, whether the indirect effect should be included when calculating the aggre-

gated social benefit of a change in attribute level. The inclusion of the indirect effect depends on the mech-

anism behind the influence of neighboring properties (Small and Steimetz, 2007). Small and Steimetz

(2007) refer to the externality that property values are affected by the values of neighboring houses as

either technological or pecuniary. With a technological externality people obtain utility from living close

to higher-priced houses; these houses may be better maintained or there may be a status effect. The
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indirect effect ([I − ρW ]−1) then affects utility and therefore is important when estimating the marginal

implicit price. Pecuniary externalities arise when the values of surrounding properties do not affect the

utility of living in a specific property. A pecuniary effect arises, for instance, when buyers use the prices of

surroundings properties as a guide to the value of their property of interest. With pecuniary externalities

only the direct effect, estimated by βl in the spatial lag model, of an amenity change is part of welfare.

Here the indirect effect is a transfer and, therefore, welfare neutral.

4.2 Hedonic price functions

The noise profiles of road noise and railway noise differ (Miedema and Oudshoorn, 2001), and it is

therefore reasonable that the influence of road and railway noise on the property price varies. Since our

data set contains information about noise levels from both road and railway noise for the properties, it

enables us to estimate separately how the different noise sources affect the property prices. Thus, our

regressions include separate variables for road and railway noise.

In estimating a relationship between noise and property prices, the choice of functional form is not

self-evident. Economic theory leaves us without much guidance (Rosen, 1974) and a variety of forms is

used in the empirical literature. The semi-logarithmic functional form, where the natural logarithm of

the price is assumed to be a linear function of the noise level, is a common choice, but other functional

forms such as piecewise linear regressions are also present in the literature (Theebe, 2004). We estimate:

(i) a semi-logarithmic price function, since it is the model that dominates in the hedonic noise literature,

and (ii) a function that is designed to have an increasing marginal WTP to reduce the noise level.

The semi-logarithmic model is given by,

ln(Pi) = β0 +
2∑

j=1

βjL
′
ij +

H∑

h=1

βh+2aih + εi (7)

where L′ij denotes the noise variables, which are defined as the noise level above 45 dB, subscript i

denotes single properties, j denotes road (1) and rail (2) as above, and aih other property attributes

besides the noise variables. The semi-logarithmic model implies a convex relationship between the price

of a property and the noise level (when βj 6= 0, j ∈ {1, 2}), i.e. the marginal WTP based on the price

function is higher for low noise levels compared to the marginal WTP for high noise levels. However,

if the marginal disutility of noise increases with the level, the marginal WTP should increase with the

noise level. We, therefore, want to relax the assumption of a convex relationship and estimate a functional

form that allows for a concave relationship between the property price and the noise level, i.e. a function

where the marginal price discount is increasing with the noise level.
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A function that attempts to capture a concave relationship between the property price and the noise

level is

Pi = γ0

2∏

j=1

f(L′ij)
H∏

h=1

aγh

ih + εi, (8)

where γh are parameters to be estimated, and where

f(L′ij) = 1 +
1− bj − (1− bj) ekjL′ij

e30kj − 1
. (9)

The parameter b corresponds to the maximum effect at the highest allowable noise level 75 dB and k

describes the concavity of the function. Figure 2 (a) and (b) shows the functional form for different values

of b and k, holding the other parameter constant. The parameter k, restricted to be between 0 and 1, is

estimated as,

kj =
ecj

1 + ecj
, (10)

thus, k is allowed to differ between road and rail noise. Hence, Eq. (8) makes it possible to assume not

only different maximum effects from railway and road noise, but also different degrees of concavity for

the two noise sources.

[Figure 2 about here.]

5 Results

5.1 Spatial Dependence

The semi-logarithmic model has been tested for spatial dependency using binary and row-standardized

distance-based spatial weight matrices. The reason for not testing the concave function for spatial de-

pendence is that methods for incorporating spatial dependence in non-linear regressions have not been

developed. The test of spatial dependence was run on each subset, properties with a total noise level of

at least 50 or 55 dB based on Eq. (3), and results are shown in Table 2.

The diagnostics in Table 2 are based on a row-standardized inverse distance weight matrix for the

larger subset and a binary weight matrix for the smaller subset. The reason for using the binary weight

matrix for the smaller subset is because we did not detect any spatial dependence with the matrices based

on the inverse distance between properties for this subset. Several band widths were tested, including the

largest Euclidian distance in our sample, and the chosen matrices are based on spatial diagnostics and

goodness of fit. Based on Moran’s I we can reject no spatial dependence, and based on the test statistics

we conclude that the spatial lag model best describes our data.

[Table 2 about here]
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5.2 Hedonic price regressions

The regression results from the semi-logarithmic models for the two subsets are shown in Table 3. The

spatial lag models reveal an improved fit and the spatial lag coefficients (ρ) are statistically significant. We

first focus on the the structural variables which are statistically significant and with the expected signs,

with one exception, Linked, which is not statistically significant in the regression with only properties

exposed to Ltot ≥ 55 dB. Some of the neighborhood dummies are also significant compared to the

reference group (Floda 2 ). The prices of properties situated within 150 meters from the motorway E20

are not significantly affected by the motorway, given that the noise level is controlled for. Distance

to the nearest train station is not statistically significantly correlated with the property price in any

regression, whereas distance to the entrance to the motorway has a positive significant coefficient in one

OLS regression but is not statistically significant in the other regressions. Comparing the OLS with the

spatial lag models we find that among statistically significant structural and geographical attributes the

price effect is reduced in the spatial lag model for most variables. The exceptions are Living space which

is unaffected, Quality index which is only affected in the smaller subset, and Terraced, Stenkullen1 and

Stenkullen2 which have a stronger effect in the spatial lag model in the smaller subset.

[Table 3 about here.]

The coefficients for the noise variables are our main interest and for both subsets the discount for road

noise is higher than for railway noise. We first focus on the OLS regression and using the observations

with a total noise level equal to or above 50 dB, the road noise coefficient is highly significant, whereas the

railway noise coefficient is significant only on the 10% level. The coefficients imply that a 1 dB increase

in road and railway noise is associated with approximately a 1.2% and a 0.4% decrease in property

price. Using only the properties with a total noise level equal to or above 55 dB reveals a slightly higher

influence of both road and railway noise on the price, 1.7% for road noise and 0.7% for railway noise

per dB, both highly significant. The coefficients for road and railway noise are statistically significantly

different in both regressions. The fit is slightly better using the data set with only properties with a total

noise level equal to or above 55 dB with a R2 at 0.56, compared to using properties where the threshold

is set to 50 dB with a R2 at 0.51.

The spatial lag model for the sample with a total noise level equal to or above 50 dB shows that

there is no change in the direct effect on the price from the road noise, and the coefficient estimate of

Rail noise is only marginally effected, it changes from −0.004 to −0.003. The coefficient for the railway

noise variable is, however, less significant. It is significant at a 10% one-tailed test level (p−val = 0.104).

In the subset with a total noise level equal to or above 55 dB the spatial lag model has no effect on
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the coefficient estimates of Road noise and Rail noise. Hence, if the spatial externality is assumed to be

pecuniary the implicit price from the OLS and the direct effect estimated by the spatial lag model are

of the same magnitude. However, if the externality is assumed to be technological the marginal implicit

price would need to be adjusted with the indirect effect.4 Since we have no information to determine

whether the spatial dependence is pecuniary or technological, and since the direct effect is similar between

the OLS and spatial lag model, we choose the conservative approach and assume that the effect is indeed

pecuniary.

The concave price function is estimated using nonlinear least-square estimation. This function is only

estimated for the larger subset due to problem of convergence when the smaller subset was used. This

functional form reveals similar results to the semi-logarithmic functional form in terms of signs and

statistical significance of the coefficient estimates. Regarding the noise variables, the relevant hypothesis

testing for bj is whether the coefficient is equal to one, since bj = 1 suggests that the price is not influenced

by the noise level. We find that b1 (road noise) is significantly different from 1 while b2 (rail noise) is not

significantly different from 1 at the 10% level. The k-parameter is calculated using the estimates of cj

(see Eq. (10)), and is restricted to being between 0 and 1 where a higher value implies a more concave

function and a value close to zero implies an almost linear relationship between the noise level and the

property price.

[Table 4 about here.]

The results show that the relationship between property value and rail noise is more concave than

the relationship between property value and road noise. This is illustrated in Figure 3, where the factors

eβjL′ij and f(L′ij) from the semi-logarithmic (Eq. (7)) and concave model (Eq. (8)), respectively, are

plotted with the estimated parameters. The semi-logarithmic model estimates a stronger negative effect

on the price at low noise levels compared to the concave model, and the effect is reversed at high noise

levels.

[Figure 3 about here.]

The Noise Sensitivity Depreciation Index (NSDI) is often used to compare results from SP and RP

noise studies (Bateman et al., 2001; Navrud, 2004). It gives the percentage change in property value due

to a 1 dB decrease in noise exposure,

NSDI =
∣∣∣∣
∂P

∂L

100
P

∣∣∣∣ . (11)

4 The indirect effect, the spatial multiplier, is (1−ρ)−1 and [I−ρW ]−1 for a lag model with a row-standardized
and binary weight matrix, respectively (Kim et al., 2003)
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The semi-logarithmic functional form has the advantage of giving an easily interpretable noise coeffi-

cient that can be approximately interpreted directly as the NSDI. This means that the NSDI is constant

for all noise levels.

For the concave price function the NSDI is given by,

NSDI(L′ij) = 100 · f ′(L′ij)
f(L′ij)

= 100 · kj(1− bj)ekjL′ij

e30kj − bj − (1− bj)ekjL′ij

(12)

which, since other attributes cancel, only depends on the noise level.5 Thus, the NSDI of the concave

model increases with the noise level as a consequence of the functional form.

Table 5 shows NSDI estimates for the semi-logarithmic models and for different noise levels for the

concave model. The higher degree of concavity for rail noise leads to lower NSDI values from rail noise

than road noise for low noise levels but higher values for very high noise levels. The effect of rail noise on

the property prices is lower than the effect of road noise for all noise levels except the highest (70 dB).

There are few properties with noise levels above 70 dB, only three properties with road noise at 70 dB

or above and three properties with railway noise above 70 dB. This means that the calculated NSDI are

based on very few observations for the highest noise levels. Comparing the NSDI for road noise from the

semi-logarithmic model with that from the concave model shows that it is lower for all noise levels for

the semi-logarithmic model compared with the concave model. The NSDI for railway noise shows more

mixed results where the concave model gives lower price discounts for railway noise at low noise levels,

but higher discounts at higher noise levels compared to the semi-logarithmic model.

[Table 5 about here.]

6 Discussion

This study estimates the effect of exposure to road and railway noise on property prices. We have

also examined the effect of different functional forms and of the assumption when noise has an effect

on the property price (50 or 55 dB). In contrast to the findings in Day et al. (2007) we show that

road noise has a larger impact on property prices than railway noise.6 Our results are in line with the

evidence from the acoustical literature that individuals are more disturbed by road than railway noise

(Miedema and Oudshoorn, 2001).

We detect spatial dependency in our sample. The coefficient estimates of our variables of major

concern, road and railway noise, are not or only marginally affected by the use of spatial lag models

5 f ′(L′ij) = − k(1−b) e
kL′ij

e30k−1

6 Except at the highest noise levels (≥70 dB) using the concave price function. Note that the estimated price
functions at these high noise levels are based on a small number of observations.
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compared to OLS. Moreover, the findings between price functions and subsets are robust with expected

signs of statistically significant coefficient estimates. Moreover, we show that the chosen threshold level

(50 or 55 dB) has an impact on the results. In the semi-logarithmic function the influence of the noise is

higher for the 55 dB threshold level for both noise sources.

Our estimates of NSDI for road noise in the semi-logarithmic price function are within the range of

previous estimates, e.g. Bateman et al. (2004) reported a range of 0.08-2.22 with a mean value of 0.55.

The estimates from the concave function are within the range for noise levels 55, 60, and 65 dB, but

above the range for 70 dB, which is true for both noise sources. Overall, we conclude that our NSDI

estimates are higher than most of the values reported in Bateman et al. (2004). For railway noise the

number of empirical estimates of NSDI is limited; however, Day et al. (2007) report a NSDI of 0.67. Our

estimate from the semi-logarithmic model and a total noise level above or equal to 55 dB is close to this

estimate, 0.70 − 0.72, whereas the estimate from the other subsample is lower and the estimates from

the concave function varies between 0.08− 4.09.

A question not addressed in this study is what noise indicator to use. We use the equivalent level

for a full 24-hour period, LAEq,24h, which is the most commonly used noise indicator. An example of

another indicator that better reflects both general annoyance and sleep disturbance is the Lden (level

day evening night), which has been chosen as the noise indicator in the Environmental Noise Directive

(European Commission, 2002). Baranzini and Ramirez (2005) examined the effect of different noise in-

dicators in hedonic studies and found that the impact was “fundamentally the same, whatever the noise

measure used” (p. 643). The above mentioned and examined noise indicators are all scientific indicators.

Individuals are, however, assumed to base their decisions on subjective beliefs. Thus, hedonic studies

should then be based on subjective and not scientific noise indicators. Baranzini et al. (2008) studied

how estimates differed between using a subjective and a scientific noise indicator and found that for

moderate and high noise levels (55 to 75 dB) the scientific noise measure approximated the subjective

measure, and that the subjective measure did not improve the hedonic estimation.

A theoretically consistent measure of welfare estimates for non-marginal changes of the noise levels

requires the estimation of the second step of Rosen’s hedonic regression technique (Rosen, 1974; Freeman,

1974). Only the first step is estimated in this study, which means that theoretically consistent estimates

for non-marginal changes cannot be obtained from our results. However, if the price function does not

shift as a result of changes in the noise level, e.g. if the number of properties with a change is small

relative to the total market, the price function may be used to calculate the welfare measure (Freeman,

2003, p. 379). The official Swedish policy values for noise abatement (SIKA, 2008) are based on estimates

from a hedonic study on road traffic noise using this approach (Wilhelmsson, 2000). The values show
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a highly convex relationship between the social cost of noise exposure and the noise level, which is a

result of the functional form of the price equation in Wilhelmsson (2000). Our study reveals a less convex

relationship for road noise, which is in line with Day et al. (2007), who estimated the second step, and

thus, a theoretically consistent welfare estimate.

Our findings, which contrast with Day et al. (2007) but are in line with the evidence from the acous-

tical literature (Miedema and Oudshoorn, 2001), are especially interesting since respondents from the

study on which the data set is based stated that they were more annoyed by railway than road noise

(Öhrström et al., 2005). Öhrström et al. (2005) assumed that this was an effect of strategic answers by

the respondents, since a new railway track through Lerum was being planned at the time of the survey.

The conflicting evidence of stated and revealed preferences for road and railway noise is interesting and

highlights the importance of further research.
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Figure 1 Sketched map over the research area
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Figure 2 Influence of the parameters b and k on the price function (9)
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Figure 3 Estimated price functions for the semi-logarithmic and concave functions for road and railway noise
(Ltot ≥ 50 dB)
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Table 1 Descriptive statistics

Mean value
Variable Description All Ltot ≥ 50 dB Ltot ≥ 55 dB
Price Property price in thousand SEK and 2004 1887.215 1917.913 1812.621

price level (655.354) (675.549) (738.747)
Living space Living space in square meters 128.709 130.144 132.350

(48.099) (47.606) (61.515)
Quality Index Index of indoor-quality 28.934 29.016 28.299

(5.359) (5.517) (5.444)
Dist. station Distance to nearest railway station in km 1.792 1.672 1.585

(1.222) (1.320) (1.591)
Dist. entrance Distance to nearest motorway entrance in km 2.084 1.960 1.802

(1.033) (1.005) (0.950)
Road noise Road noise in dB exceeding 45 dB 5.065 7.566 11.415

(4.535) (4.17) (4.895)
Rail noise Rail noise in dB exceeding 45 dB 1.837 3.005 6.680

(4.040) (4.888) (6.597)
Terraced Dummy equals one if terraced house 0.056 0.063 0.081
Linked - " - if house linked by a garage 0.100 0.093 0.051
Detached - " - if detached house 0.843 0.844 0.868
Aspen 1 - " - if <1 km from nearest stn Aspen 0.017 0.026 0.048
Aspen 2 - " - if 1-2 km from nearest stn Aspen 0.054 0.043 0.015
Aspedalen1 - " - if <1 km from nearest stn Aspedalen 0.033 0.049 0.102
Aspedalen2 - " - if 1-2 km from nearest stn Aspedalen 0.096 0.088 0.039
Lerum1 - " - if <1 km from nearest stn Lerum 0.040 0.063 0.117
Lerum2 - " - if 1-2 km from nearest stn Lerum 0.230 0.252 0.177
Floda1 - " - if <1 km from nearest stn Floda 0.023 0.035 0.042
Floda2 - " - if 1-2 km from nearest stn Floda 0.299 0.246 0.180
Stenkullen1 - " - if <1 km from nearest stn Stenkullen 0.013 0.019 0.045
Stenkullen2 - " - if 1-2 km from nearest stn Stenkullen 0.047 0.067 0.153
Countryside - " - if >2 km from nearest station 0.149 0.112 0.084
E20 150m - " - if within 150 m from motorway 0.082 0.136 0.347
N 1738 1034 334
Standard deviations in brackets. For dummies, std.dev.(x) =

√
x̄(1− x̄).

EUR 1 = SEK 9.13, www.riksbank.se, 9/16/2008

Table 2 Diagnostic tests for spatial dependency in OLS regression

Ltot ≥ 50 dB Ltot ≥ 55 dB

Test Statistic df p-value Statistic df p-value
Spatial error:

Moran’s I 2.502 1 0.012 5.224 1 0.000
Lagrange multiplier 0.469 1 0.494 0.271 1 0.603
Robust Lagrange multiplier 8.104 1 0.004 0.456 1 0.500

Spatial lag:
Lagrange multiplier 14.700 1 0.000 11.055 1 0.001
Robust Lagrange multiplier 22.335 1 0.000 11.240 1 0.001

Weight matrix Inverse distance Binary
Critical distance 10 km Critical distance 4 km
Row-standardized Not row-standardized



20 Andersson, et al.

Table 3 Regression results semi-logarithmic function

Ltot ≥ 50 dB Ltot ≥ 55 dB

Variable OLS Spatial lag OLS Spatial lag
Living space 0.003*** 0.003*** 0.003*** 0.003***

(0.001) (0.001) (0.001) (0.001)
Quality index 0.014*** 0.014*** 0.018*** 0.017***

(0.003) (0.003) (0.004) (0.004)
Terraced -0.270*** -0.239*** -0.239*** -0.252***

(0.024) (0.026) (0.040) (0.039)
Linked -0.163*** -0.134*** 0.002 0.004

(0.020) (0.023) (0.059) (0.057)
Aspen1 0.272*** 0.184*** 0.274*** 0.191**

(0.053) (0.063) (0.085) (0.085)
Aspen2 0.175*** 0.099** 0.170 0.127

(0.038) (0.050) (0.137) (0.099)
Aspedalen1 0.257*** 0.173*** 0.223*** 0.018

(0.048) (0.055) (0.080) (0.090)
Aspedalen2 0.318*** 0.235*** 0.395*** 0.174**

(0.031) (0.045) (0.063) (0.078)
Lerum1 0.240*** 0.166*** 0.282*** -0.013

(0.039) (0.045) (0.061) (0.091)
Lerum2 0.169*** 0.121*** 0.183*** -0.144

(0.022) (0.028) (0.052) (0.102)
Country side 0.002 -0.016 -0.236** -0.120

(0.052) (0.054) (0.114) (0.110)
Stenkullen1 0.008 0.026 0.073 -0.219**

(0.076) (0.076) (0.107) (0.111)
Stenkullen2 -0.060 -0.050 -0.153*** -0.439***

(0.052) (0.051) (0.059) (0.102)
Floda1 0.065 0.064 0.156 0.146

(0.049) (0.050) (0.097) (0.094)
E20 150m -0.031 -0.031 0.009 8 · 10−5

(0.030) (0.029) (0.043) (0.040)
Dist. station -0.007 0.004 0.015 0.037

(0.017) (0.019) (0.026) (0.028)
Dist. entrance 0.031** 0.014 0.030 0.051*

(0.014) (0.016) (0.032) (0.030)
Road noise -0.012*** -0.012*** -0.017*** -0.017***

(0.003) (0.003) (0.004) (0.004)
Rail noise -0.004* -0.003 -0.007*** -0.007***

(0.002) (0.002) (0.003) (0.002)
Constant 6.688*** 2.864* 6.662*** 6.213***

(0.086) (1.607) (0.141) (0.174)
ρ 0.517** 5 · 10−4***

(0.217) (1 · 10−4)
N 1034 1034 334 334
R2 0.508 0.512 0.561 0.575
Log likelihood -12.973 -7.942 -21.252 -15.663
Robust standard errors in brackets.
Significance levels: * 10%, ** 5%, *** 1%
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Table 4 Regression results concave function (Ltot ≥ 50 dB)

Variable Coefficient (Std. Err.)
Living space 0.485*** (0.049)
Quality index 0.310*** (0.062)
Terraced -0.315*** (0.025)
Linked -0.174*** (0.026)
Aspen1 0.274*** (0.058)
Aspen2 0.218*** (0.055)
Aspedalen1 0.219*** (0.051)
Aspedalen2 0.312*** (0.029)
Lerum1 0.187*** (0.038)
Lerum2 0.153*** (0.027)
Country side 0.063 (0.044)
Stenkullen1 0.079 (0.100)
Stenkullen2 -0.012 (0.079)
Floda1 0.080 (0.057)
E20 150m -0.012 (0.034)
Dist. station -0.004 (0.029)
Dist. entrance 0.039 (0.029)
b1 0.560*** (0.117)
c1 -3.448** (1.396)
b2 0.506 (0.712)
c2 -1.078 (2.094)
Constant 62.848*** (14.536)
k1 0.031 (0.417)
k2 0.254 (0.397)
N 1034
R2 0.949
Robust standard errors in brackets.
Significance levels: * 10%, ** 5%, *** 1%
Subscript j = {1, 2} denotes road (1) and rail (2).
kj = ecj /(1 + ecj )

Table 5 Noise sensitivity depreciation index (NSDI)

Ltot ≥ 50 dB Ltot ≥ 55 dB

Regression model Road Rail Road Rail
Semi-log

OLS 1.17 0.36 1.68 0.70
Spatial lag 1.15 0.34 1.69 0.72

Concave
55 dB 1.35 0.08 - -
60 dB 1.70 0.28 - -
65 dB 2.19 1.03 - -
70 dB 2.90 4.09 - -

NSDI = |(∂P/∂L)(100/P )|




